//===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file This file implements the LegalizerHelper class to legalize /// individual instructions and the LegalizeMachineIR wrapper pass for the /// primary legalization. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" #include "llvm/CodeGen/GlobalISel/CallLowering.h" #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" #include "llvm/CodeGen/GlobalISel/Utils.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/Instructions.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #define DEBUG_TYPE "legalizer" using namespace llvm; using namespace LegalizeActions; using namespace MIPatternMatch; /// Try to break down \p OrigTy into \p NarrowTy sized pieces. /// /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, /// with any leftover piece as type \p LeftoverTy /// /// Returns -1 in the first element of the pair if the breakdown is not /// satisfiable. static std::pair getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { assert(!LeftoverTy.isValid() && "this is an out argument"); unsigned Size = OrigTy.getSizeInBits(); unsigned NarrowSize = NarrowTy.getSizeInBits(); unsigned NumParts = Size / NarrowSize; unsigned LeftoverSize = Size - NumParts * NarrowSize; assert(Size > NarrowSize); if (LeftoverSize == 0) return {NumParts, 0}; if (NarrowTy.isVector()) { unsigned EltSize = OrigTy.getScalarSizeInBits(); if (LeftoverSize % EltSize != 0) return {-1, -1}; LeftoverTy = LLT::scalarOrVector( ElementCount::getFixed(LeftoverSize / EltSize), EltSize); } else { LeftoverTy = LLT::scalar(LeftoverSize); } int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); return std::make_pair(NumParts, NumLeftover); } static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { if (!Ty.isScalar()) return nullptr; switch (Ty.getSizeInBits()) { case 16: return Type::getHalfTy(Ctx); case 32: return Type::getFloatTy(Ctx); case 64: return Type::getDoubleTy(Ctx); case 80: return Type::getX86_FP80Ty(Ctx); case 128: return Type::getFP128Ty(Ctx); default: return nullptr; } } LegalizerHelper::LegalizerHelper(MachineFunction &MF, GISelChangeObserver &Observer, MachineIRBuilder &Builder) : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), LI(*MF.getSubtarget().getLegalizerInfo()), TLI(*MF.getSubtarget().getTargetLowering()) { } LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, GISelChangeObserver &Observer, MachineIRBuilder &B) : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), TLI(*MF.getSubtarget().getTargetLowering()) { } LegalizerHelper::LegalizeResult LegalizerHelper::legalizeInstrStep(MachineInstr &MI, LostDebugLocObserver &LocObserver) { LLVM_DEBUG(dbgs() << "Legalizing: " << MI); MIRBuilder.setInstrAndDebugLoc(MI); if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; auto Step = LI.getAction(MI, MRI); switch (Step.Action) { case Legal: LLVM_DEBUG(dbgs() << ".. Already legal\n"); return AlreadyLegal; case Libcall: LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); return libcall(MI, LocObserver); case NarrowScalar: LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); return narrowScalar(MI, Step.TypeIdx, Step.NewType); case WidenScalar: LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); return widenScalar(MI, Step.TypeIdx, Step.NewType); case Bitcast: LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); return bitcast(MI, Step.TypeIdx, Step.NewType); case Lower: LLVM_DEBUG(dbgs() << ".. Lower\n"); return lower(MI, Step.TypeIdx, Step.NewType); case FewerElements: LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); case MoreElements: LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); return moreElementsVector(MI, Step.TypeIdx, Step.NewType); case Custom: LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; default: LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); return UnableToLegalize; } } void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, SmallVectorImpl &VRegs) { for (int i = 0; i < NumParts; ++i) VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); MIRBuilder.buildUnmerge(VRegs, Reg); } bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, LLT MainTy, LLT &LeftoverTy, SmallVectorImpl &VRegs, SmallVectorImpl &LeftoverRegs) { assert(!LeftoverTy.isValid() && "this is an out argument"); unsigned RegSize = RegTy.getSizeInBits(); unsigned MainSize = MainTy.getSizeInBits(); unsigned NumParts = RegSize / MainSize; unsigned LeftoverSize = RegSize - NumParts * MainSize; // Use an unmerge when possible. if (LeftoverSize == 0) { for (unsigned I = 0; I < NumParts; ++I) VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); MIRBuilder.buildUnmerge(VRegs, Reg); return true; } // Perform irregular split. Leftover is last element of RegPieces. if (MainTy.isVector()) { SmallVector RegPieces; extractVectorParts(Reg, MainTy.getNumElements(), RegPieces); for (unsigned i = 0; i < RegPieces.size() - 1; ++i) VRegs.push_back(RegPieces[i]); LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]); LeftoverTy = MRI.getType(LeftoverRegs[0]); return true; } LeftoverTy = LLT::scalar(LeftoverSize); // For irregular sizes, extract the individual parts. for (unsigned I = 0; I != NumParts; ++I) { Register NewReg = MRI.createGenericVirtualRegister(MainTy); VRegs.push_back(NewReg); MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); } for (unsigned Offset = MainSize * NumParts; Offset < RegSize; Offset += LeftoverSize) { Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); LeftoverRegs.push_back(NewReg); MIRBuilder.buildExtract(NewReg, Reg, Offset); } return true; } void LegalizerHelper::extractVectorParts(Register Reg, unsigned NumElts, SmallVectorImpl &VRegs) { LLT RegTy = MRI.getType(Reg); assert(RegTy.isVector() && "Expected a vector type"); LLT EltTy = RegTy.getElementType(); LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); unsigned RegNumElts = RegTy.getNumElements(); unsigned LeftoverNumElts = RegNumElts % NumElts; unsigned NumNarrowTyPieces = RegNumElts / NumElts; // Perfect split without leftover if (LeftoverNumElts == 0) return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs); // Irregular split. Provide direct access to all elements for artifact // combiner using unmerge to elements. Then build vectors with NumElts // elements. Remaining element(s) will be (used to build vector) Leftover. SmallVector Elts; extractParts(Reg, EltTy, RegNumElts, Elts); unsigned Offset = 0; // Requested sub-vectors of NarrowTy. for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) { ArrayRef Pieces(&Elts[Offset], NumElts); VRegs.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0)); } // Leftover element(s). if (LeftoverNumElts == 1) { VRegs.push_back(Elts[Offset]); } else { LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy); ArrayRef Pieces(&Elts[Offset], LeftoverNumElts); VRegs.push_back(MIRBuilder.buildMerge(LeftoverTy, Pieces).getReg(0)); } } void LegalizerHelper::insertParts(Register DstReg, LLT ResultTy, LLT PartTy, ArrayRef PartRegs, LLT LeftoverTy, ArrayRef LeftoverRegs) { if (!LeftoverTy.isValid()) { assert(LeftoverRegs.empty()); if (!ResultTy.isVector()) { MIRBuilder.buildMerge(DstReg, PartRegs); return; } if (PartTy.isVector()) MIRBuilder.buildConcatVectors(DstReg, PartRegs); else MIRBuilder.buildBuildVector(DstReg, PartRegs); return; } // Merge sub-vectors with different number of elements and insert into DstReg. if (ResultTy.isVector()) { assert(LeftoverRegs.size() == 1 && "Expected one leftover register"); SmallVector AllRegs; for (auto Reg : concat(PartRegs, LeftoverRegs)) AllRegs.push_back(Reg); return mergeMixedSubvectors(DstReg, AllRegs); } SmallVector GCDRegs; LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy); for (auto PartReg : concat(PartRegs, LeftoverRegs)) extractGCDType(GCDRegs, GCDTy, PartReg); LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs); buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs); } void LegalizerHelper::appendVectorElts(SmallVectorImpl &Elts, Register Reg) { LLT Ty = MRI.getType(Reg); SmallVector RegElts; extractParts(Reg, Ty.getScalarType(), Ty.getNumElements(), RegElts); Elts.append(RegElts); } /// Merge \p PartRegs with different types into \p DstReg. void LegalizerHelper::mergeMixedSubvectors(Register DstReg, ArrayRef PartRegs) { SmallVector AllElts; for (unsigned i = 0; i < PartRegs.size() - 1; ++i) appendVectorElts(AllElts, PartRegs[i]); Register Leftover = PartRegs[PartRegs.size() - 1]; if (MRI.getType(Leftover).isScalar()) AllElts.push_back(Leftover); else appendVectorElts(AllElts, Leftover); MIRBuilder.buildMerge(DstReg, AllElts); } /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. static void getUnmergeResults(SmallVectorImpl &Regs, const MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); const int StartIdx = Regs.size(); const int NumResults = MI.getNumOperands() - 1; Regs.resize(Regs.size() + NumResults); for (int I = 0; I != NumResults; ++I) Regs[StartIdx + I] = MI.getOperand(I).getReg(); } void LegalizerHelper::extractGCDType(SmallVectorImpl &Parts, LLT GCDTy, Register SrcReg) { LLT SrcTy = MRI.getType(SrcReg); if (SrcTy == GCDTy) { // If the source already evenly divides the result type, we don't need to do // anything. Parts.push_back(SrcReg); } else { // Need to split into common type sized pieces. auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); getUnmergeResults(Parts, *Unmerge); } } LLT LegalizerHelper::extractGCDType(SmallVectorImpl &Parts, LLT DstTy, LLT NarrowTy, Register SrcReg) { LLT SrcTy = MRI.getType(SrcReg); LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); extractGCDType(Parts, GCDTy, SrcReg); return GCDTy; } LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, SmallVectorImpl &VRegs, unsigned PadStrategy) { LLT LCMTy = getLCMType(DstTy, NarrowTy); int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); int NumOrigSrc = VRegs.size(); Register PadReg; // Get a value we can use to pad the source value if the sources won't evenly // cover the result type. if (NumOrigSrc < NumParts * NumSubParts) { if (PadStrategy == TargetOpcode::G_ZEXT) PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); else if (PadStrategy == TargetOpcode::G_ANYEXT) PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); else { assert(PadStrategy == TargetOpcode::G_SEXT); // Shift the sign bit of the low register through the high register. auto ShiftAmt = MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); } } // Registers for the final merge to be produced. SmallVector Remerge(NumParts); // Registers needed for intermediate merges, which will be merged into a // source for Remerge. SmallVector SubMerge(NumSubParts); // Once we've fully read off the end of the original source bits, we can reuse // the same high bits for remaining padding elements. Register AllPadReg; // Build merges to the LCM type to cover the original result type. for (int I = 0; I != NumParts; ++I) { bool AllMergePartsArePadding = true; // Build the requested merges to the requested type. for (int J = 0; J != NumSubParts; ++J) { int Idx = I * NumSubParts + J; if (Idx >= NumOrigSrc) { SubMerge[J] = PadReg; continue; } SubMerge[J] = VRegs[Idx]; // There are meaningful bits here we can't reuse later. AllMergePartsArePadding = false; } // If we've filled up a complete piece with padding bits, we can directly // emit the natural sized constant if applicable, rather than a merge of // smaller constants. if (AllMergePartsArePadding && !AllPadReg) { if (PadStrategy == TargetOpcode::G_ANYEXT) AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); else if (PadStrategy == TargetOpcode::G_ZEXT) AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); // If this is a sign extension, we can't materialize a trivial constant // with the right type and have to produce a merge. } if (AllPadReg) { // Avoid creating additional instructions if we're just adding additional // copies of padding bits. Remerge[I] = AllPadReg; continue; } if (NumSubParts == 1) Remerge[I] = SubMerge[0]; else Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); // In the sign extend padding case, re-use the first all-signbit merge. if (AllMergePartsArePadding && !AllPadReg) AllPadReg = Remerge[I]; } VRegs = std::move(Remerge); return LCMTy; } void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, ArrayRef RemergeRegs) { LLT DstTy = MRI.getType(DstReg); // Create the merge to the widened source, and extract the relevant bits into // the result. if (DstTy == LCMTy) { MIRBuilder.buildMerge(DstReg, RemergeRegs); return; } auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); if (DstTy.isScalar() && LCMTy.isScalar()) { MIRBuilder.buildTrunc(DstReg, Remerge); return; } if (LCMTy.isVector()) { unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); SmallVector UnmergeDefs(NumDefs); UnmergeDefs[0] = DstReg; for (unsigned I = 1; I != NumDefs; ++I) UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); MIRBuilder.buildUnmerge(UnmergeDefs, MIRBuilder.buildMerge(LCMTy, RemergeRegs)); return; } llvm_unreachable("unhandled case"); } static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { #define RTLIBCASE_INT(LibcallPrefix) \ do { \ switch (Size) { \ case 32: \ return RTLIB::LibcallPrefix##32; \ case 64: \ return RTLIB::LibcallPrefix##64; \ case 128: \ return RTLIB::LibcallPrefix##128; \ default: \ llvm_unreachable("unexpected size"); \ } \ } while (0) #define RTLIBCASE(LibcallPrefix) \ do { \ switch (Size) { \ case 32: \ return RTLIB::LibcallPrefix##32; \ case 64: \ return RTLIB::LibcallPrefix##64; \ case 80: \ return RTLIB::LibcallPrefix##80; \ case 128: \ return RTLIB::LibcallPrefix##128; \ default: \ llvm_unreachable("unexpected size"); \ } \ } while (0) switch (Opcode) { case TargetOpcode::G_SDIV: RTLIBCASE_INT(SDIV_I); case TargetOpcode::G_UDIV: RTLIBCASE_INT(UDIV_I); case TargetOpcode::G_SREM: RTLIBCASE_INT(SREM_I); case TargetOpcode::G_UREM: RTLIBCASE_INT(UREM_I); case TargetOpcode::G_CTLZ_ZERO_UNDEF: RTLIBCASE_INT(CTLZ_I); case TargetOpcode::G_FADD: RTLIBCASE(ADD_F); case TargetOpcode::G_FSUB: RTLIBCASE(SUB_F); case TargetOpcode::G_FMUL: RTLIBCASE(MUL_F); case TargetOpcode::G_FDIV: RTLIBCASE(DIV_F); case TargetOpcode::G_FEXP: RTLIBCASE(EXP_F); case TargetOpcode::G_FEXP2: RTLIBCASE(EXP2_F); case TargetOpcode::G_FREM: RTLIBCASE(REM_F); case TargetOpcode::G_FPOW: RTLIBCASE(POW_F); case TargetOpcode::G_FMA: RTLIBCASE(FMA_F); case TargetOpcode::G_FSIN: RTLIBCASE(SIN_F); case TargetOpcode::G_FCOS: RTLIBCASE(COS_F); case TargetOpcode::G_FLOG10: RTLIBCASE(LOG10_F); case TargetOpcode::G_FLOG: RTLIBCASE(LOG_F); case TargetOpcode::G_FLOG2: RTLIBCASE(LOG2_F); case TargetOpcode::G_FCEIL: RTLIBCASE(CEIL_F); case TargetOpcode::G_FFLOOR: RTLIBCASE(FLOOR_F); case TargetOpcode::G_FMINNUM: RTLIBCASE(FMIN_F); case TargetOpcode::G_FMAXNUM: RTLIBCASE(FMAX_F); case TargetOpcode::G_FSQRT: RTLIBCASE(SQRT_F); case TargetOpcode::G_FRINT: RTLIBCASE(RINT_F); case TargetOpcode::G_FNEARBYINT: RTLIBCASE(NEARBYINT_F); case TargetOpcode::G_INTRINSIC_ROUNDEVEN: RTLIBCASE(ROUNDEVEN_F); } llvm_unreachable("Unknown libcall function"); } /// True if an instruction is in tail position in its caller. Intended for /// legalizing libcalls as tail calls when possible. static bool isLibCallInTailPosition(MachineInstr &MI, const TargetInstrInfo &TII, MachineRegisterInfo &MRI) { MachineBasicBlock &MBB = *MI.getParent(); const Function &F = MBB.getParent()->getFunction(); // Conservatively require the attributes of the call to match those of // the return. Ignore NoAlias and NonNull because they don't affect the // call sequence. AttributeList CallerAttrs = F.getAttributes(); if (AttrBuilder(F.getContext(), CallerAttrs.getRetAttrs()) .removeAttribute(Attribute::NoAlias) .removeAttribute(Attribute::NonNull) .hasAttributes()) return false; // It's not safe to eliminate the sign / zero extension of the return value. if (CallerAttrs.hasRetAttr(Attribute::ZExt) || CallerAttrs.hasRetAttr(Attribute::SExt)) return false; // Only tail call if the following instruction is a standard return or if we // have a `thisreturn` callee, and a sequence like: // // G_MEMCPY %0, %1, %2 // $x0 = COPY %0 // RET_ReallyLR implicit $x0 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); if (Next != MBB.instr_end() && Next->isCopy()) { switch (MI.getOpcode()) { default: llvm_unreachable("unsupported opcode"); case TargetOpcode::G_BZERO: return false; case TargetOpcode::G_MEMCPY: case TargetOpcode::G_MEMMOVE: case TargetOpcode::G_MEMSET: break; } Register VReg = MI.getOperand(0).getReg(); if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg()) return false; Register PReg = Next->getOperand(0).getReg(); if (!PReg.isPhysical()) return false; auto Ret = next_nodbg(Next, MBB.instr_end()); if (Ret == MBB.instr_end() || !Ret->isReturn()) return false; if (Ret->getNumImplicitOperands() != 1) return false; if (PReg != Ret->getOperand(0).getReg()) return false; // Skip over the COPY that we just validated. Next = Ret; } if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) return false; return true; } LegalizerHelper::LegalizeResult llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, const CallLowering::ArgInfo &Result, ArrayRef Args, const CallingConv::ID CC) { auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); CallLowering::CallLoweringInfo Info; Info.CallConv = CC; Info.Callee = MachineOperand::CreateES(Name); Info.OrigRet = Result; std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); if (!CLI.lowerCall(MIRBuilder, Info)) return LegalizerHelper::UnableToLegalize; return LegalizerHelper::Legalized; } LegalizerHelper::LegalizeResult llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, const CallLowering::ArgInfo &Result, ArrayRef Args) { auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); const char *Name = TLI.getLibcallName(Libcall); const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); return createLibcall(MIRBuilder, Name, Result, Args, CC); } // Useful for libcalls where all operands have the same type. static LegalizerHelper::LegalizeResult simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, Type *OpType) { auto Libcall = getRTLibDesc(MI.getOpcode(), Size); // FIXME: What does the original arg index mean here? SmallVector Args; for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) Args.push_back({MO.getReg(), OpType, 0}); return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType, 0}, Args); } LegalizerHelper::LegalizeResult llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, MachineInstr &MI, LostDebugLocObserver &LocObserver) { auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); SmallVector Args; // Add all the args, except for the last which is an imm denoting 'tail'. for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { Register Reg = MI.getOperand(i).getReg(); // Need derive an IR type for call lowering. LLT OpLLT = MRI.getType(Reg); Type *OpTy = nullptr; if (OpLLT.isPointer()) OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); else OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); Args.push_back({Reg, OpTy, 0}); } auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); RTLIB::Libcall RTLibcall; unsigned Opc = MI.getOpcode(); switch (Opc) { case TargetOpcode::G_BZERO: RTLibcall = RTLIB::BZERO; break; case TargetOpcode::G_MEMCPY: RTLibcall = RTLIB::MEMCPY; Args[0].Flags[0].setReturned(); break; case TargetOpcode::G_MEMMOVE: RTLibcall = RTLIB::MEMMOVE; Args[0].Flags[0].setReturned(); break; case TargetOpcode::G_MEMSET: RTLibcall = RTLIB::MEMSET; Args[0].Flags[0].setReturned(); break; default: llvm_unreachable("unsupported opcode"); } const char *Name = TLI.getLibcallName(RTLibcall); // Unsupported libcall on the target. if (!Name) { LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " << MIRBuilder.getTII().getName(Opc) << "\n"); return LegalizerHelper::UnableToLegalize; } CallLowering::CallLoweringInfo Info; Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); Info.Callee = MachineOperand::CreateES(Name); Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0); Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && isLibCallInTailPosition(MI, MIRBuilder.getTII(), MRI); std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); if (!CLI.lowerCall(MIRBuilder, Info)) return LegalizerHelper::UnableToLegalize; if (Info.LoweredTailCall) { assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); // Check debug locations before removing the return. LocObserver.checkpoint(true); // We must have a return following the call (or debug insts) to get past // isLibCallInTailPosition. do { MachineInstr *Next = MI.getNextNode(); assert(Next && (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) && "Expected instr following MI to be return or debug inst?"); // We lowered a tail call, so the call is now the return from the block. // Delete the old return. Next->eraseFromParent(); } while (MI.getNextNode()); // We expect to lose the debug location from the return. LocObserver.checkpoint(false); } return LegalizerHelper::Legalized; } static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, Type *FromType) { auto ToMVT = MVT::getVT(ToType); auto FromMVT = MVT::getVT(FromType); switch (Opcode) { case TargetOpcode::G_FPEXT: return RTLIB::getFPEXT(FromMVT, ToMVT); case TargetOpcode::G_FPTRUNC: return RTLIB::getFPROUND(FromMVT, ToMVT); case TargetOpcode::G_FPTOSI: return RTLIB::getFPTOSINT(FromMVT, ToMVT); case TargetOpcode::G_FPTOUI: return RTLIB::getFPTOUINT(FromMVT, ToMVT); case TargetOpcode::G_SITOFP: return RTLIB::getSINTTOFP(FromMVT, ToMVT); case TargetOpcode::G_UITOFP: return RTLIB::getUINTTOFP(FromMVT, ToMVT); } llvm_unreachable("Unsupported libcall function"); } static LegalizerHelper::LegalizeResult conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, Type *FromType) { RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType, 0}, {{MI.getOperand(1).getReg(), FromType, 0}}); } LegalizerHelper::LegalizeResult LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) { LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); unsigned Size = LLTy.getSizeInBits(); auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); switch (MI.getOpcode()) { default: return UnableToLegalize; case TargetOpcode::G_SDIV: case TargetOpcode::G_UDIV: case TargetOpcode::G_SREM: case TargetOpcode::G_UREM: case TargetOpcode::G_CTLZ_ZERO_UNDEF: { Type *HLTy = IntegerType::get(Ctx, Size); auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); if (Status != Legalized) return Status; break; } case TargetOpcode::G_FADD: case TargetOpcode::G_FSUB: case TargetOpcode::G_FMUL: case TargetOpcode::G_FDIV: case TargetOpcode::G_FMA: case TargetOpcode::G_FPOW: case TargetOpcode::G_FREM: case TargetOpcode::G_FCOS: case TargetOpcode::G_FSIN: case TargetOpcode::G_FLOG10: case TargetOpcode::G_FLOG: case TargetOpcode::G_FLOG2: case TargetOpcode::G_FEXP: case TargetOpcode::G_FEXP2: case TargetOpcode::G_FCEIL: case TargetOpcode::G_FFLOOR: case TargetOpcode::G_FMINNUM: case TargetOpcode::G_FMAXNUM: case TargetOpcode::G_FSQRT: case TargetOpcode::G_FRINT: case TargetOpcode::G_FNEARBYINT: case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); return UnableToLegalize; } auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); if (Status != Legalized) return Status; break; } case TargetOpcode::G_FPEXT: case TargetOpcode::G_FPTRUNC: { Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); if (!FromTy || !ToTy) return UnableToLegalize; LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); if (Status != Legalized) return Status; break; } case TargetOpcode::G_FPTOSI: case TargetOpcode::G_FPTOUI: { // FIXME: Support other types unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) return UnableToLegalize; LegalizeResult Status = conversionLibcall( MI, MIRBuilder, ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); if (Status != Legalized) return Status; break; } case TargetOpcode::G_SITOFP: case TargetOpcode::G_UITOFP: { // FIXME: Support other types unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) return UnableToLegalize; LegalizeResult Status = conversionLibcall( MI, MIRBuilder, ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); if (Status != Legalized) return Status; break; } case TargetOpcode::G_BZERO: case TargetOpcode::G_MEMCPY: case TargetOpcode::G_MEMMOVE: case TargetOpcode::G_MEMSET: { LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver); if (Result != Legalized) return Result; MI.eraseFromParent(); return Result; } } MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); uint64_t NarrowSize = NarrowTy.getSizeInBits(); switch (MI.getOpcode()) { default: return UnableToLegalize; case TargetOpcode::G_IMPLICIT_DEF: { Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); // If SizeOp0 is not an exact multiple of NarrowSize, emit // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. // FIXME: Although this would also be legal for the general case, it causes // a lot of regressions in the emitted code (superfluous COPYs, artifact // combines not being hit). This seems to be a problem related to the // artifact combiner. if (SizeOp0 % NarrowSize != 0) { LLT ImplicitTy = NarrowTy; if (DstTy.isVector()) ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy); Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); MIRBuilder.buildAnyExt(DstReg, ImplicitReg); MI.eraseFromParent(); return Legalized; } int NumParts = SizeOp0 / NarrowSize; SmallVector DstRegs; for (int i = 0; i < NumParts; ++i) DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); if (DstTy.isVector()) MIRBuilder.buildBuildVector(DstReg, DstRegs); else MIRBuilder.buildMerge(DstReg, DstRegs); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_CONSTANT: { LLT Ty = MRI.getType(MI.getOperand(0).getReg()); const APInt &Val = MI.getOperand(1).getCImm()->getValue(); unsigned TotalSize = Ty.getSizeInBits(); unsigned NarrowSize = NarrowTy.getSizeInBits(); int NumParts = TotalSize / NarrowSize; SmallVector PartRegs; for (int I = 0; I != NumParts; ++I) { unsigned Offset = I * NarrowSize; auto K = MIRBuilder.buildConstant(NarrowTy, Val.lshr(Offset).trunc(NarrowSize)); PartRegs.push_back(K.getReg(0)); } LLT LeftoverTy; unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; SmallVector LeftoverRegs; if (LeftoverBits != 0) { LeftoverTy = LLT::scalar(LeftoverBits); auto K = MIRBuilder.buildConstant( LeftoverTy, Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); LeftoverRegs.push_back(K.getReg(0)); } insertParts(MI.getOperand(0).getReg(), Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_SEXT: case TargetOpcode::G_ZEXT: case TargetOpcode::G_ANYEXT: return narrowScalarExt(MI, TypeIdx, NarrowTy); case TargetOpcode::G_TRUNC: { if (TypeIdx != 1) return UnableToLegalize; uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); return UnableToLegalize; } auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_FREEZE: { if (TypeIdx != 0) return UnableToLegalize; LLT Ty = MRI.getType(MI.getOperand(0).getReg()); // Should widen scalar first if (Ty.getSizeInBits() % NarrowTy.getSizeInBits() != 0) return UnableToLegalize; auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg()); SmallVector Parts; for (unsigned i = 0; i < Unmerge->getNumDefs(); ++i) { Parts.push_back( MIRBuilder.buildFreeze(NarrowTy, Unmerge.getReg(i)).getReg(0)); } MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Parts); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_ADD: case TargetOpcode::G_SUB: case TargetOpcode::G_SADDO: case TargetOpcode::G_SSUBO: case TargetOpcode::G_SADDE: case TargetOpcode::G_SSUBE: case TargetOpcode::G_UADDO: case TargetOpcode::G_USUBO: case TargetOpcode::G_UADDE: case TargetOpcode::G_USUBE: return narrowScalarAddSub(MI, TypeIdx, NarrowTy); case TargetOpcode::G_MUL: case TargetOpcode::G_UMULH: return narrowScalarMul(MI, NarrowTy); case TargetOpcode::G_EXTRACT: return narrowScalarExtract(MI, TypeIdx, NarrowTy); case TargetOpcode::G_INSERT: return narrowScalarInsert(MI, TypeIdx, NarrowTy); case TargetOpcode::G_LOAD: { auto &LoadMI = cast(MI); Register DstReg = LoadMI.getDstReg(); LLT DstTy = MRI.getType(DstReg); if (DstTy.isVector()) return UnableToLegalize; if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) { Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO()); MIRBuilder.buildAnyExt(DstReg, TmpReg); LoadMI.eraseFromParent(); return Legalized; } return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy); } case TargetOpcode::G_ZEXTLOAD: case TargetOpcode::G_SEXTLOAD: { auto &LoadMI = cast(MI); Register DstReg = LoadMI.getDstReg(); Register PtrReg = LoadMI.getPointerReg(); Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); auto &MMO = LoadMI.getMMO(); unsigned MemSize = MMO.getSizeInBits(); if (MemSize == NarrowSize) { MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); } else if (MemSize < NarrowSize) { MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO); } else if (MemSize > NarrowSize) { // FIXME: Need to split the load. return UnableToLegalize; } if (isa(LoadMI)) MIRBuilder.buildZExt(DstReg, TmpReg); else MIRBuilder.buildSExt(DstReg, TmpReg); LoadMI.eraseFromParent(); return Legalized; } case TargetOpcode::G_STORE: { auto &StoreMI = cast(MI); Register SrcReg = StoreMI.getValueReg(); LLT SrcTy = MRI.getType(SrcReg); if (SrcTy.isVector()) return UnableToLegalize; int NumParts = SizeOp0 / NarrowSize; unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; if (SrcTy.isVector() && LeftoverBits != 0) return UnableToLegalize; if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) { Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); MIRBuilder.buildTrunc(TmpReg, SrcReg); MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO()); StoreMI.eraseFromParent(); return Legalized; } return reduceLoadStoreWidth(StoreMI, 0, NarrowTy); } case TargetOpcode::G_SELECT: return narrowScalarSelect(MI, TypeIdx, NarrowTy); case TargetOpcode::G_AND: case TargetOpcode::G_OR: case TargetOpcode::G_XOR: { // Legalize bitwise operation: // A = BinOp B, C // into: // B1, ..., BN = G_UNMERGE_VALUES B // C1, ..., CN = G_UNMERGE_VALUES C // A1 = BinOp B1, C2 // ... // AN = BinOp BN, CN // A = G_MERGE_VALUES A1, ..., AN return narrowScalarBasic(MI, TypeIdx, NarrowTy); } case TargetOpcode::G_SHL: case TargetOpcode::G_LSHR: case TargetOpcode::G_ASHR: return narrowScalarShift(MI, TypeIdx, NarrowTy); case TargetOpcode::G_CTLZ: case TargetOpcode::G_CTLZ_ZERO_UNDEF: case TargetOpcode::G_CTTZ: case TargetOpcode::G_CTTZ_ZERO_UNDEF: case TargetOpcode::G_CTPOP: if (TypeIdx == 1) switch (MI.getOpcode()) { case TargetOpcode::G_CTLZ: case TargetOpcode::G_CTLZ_ZERO_UNDEF: return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); case TargetOpcode::G_CTTZ: case TargetOpcode::G_CTTZ_ZERO_UNDEF: return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); case TargetOpcode::G_CTPOP: return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); default: return UnableToLegalize; } Observer.changingInstr(MI); narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_INTTOPTR: if (TypeIdx != 1) return UnableToLegalize; Observer.changingInstr(MI); narrowScalarSrc(MI, NarrowTy, 1); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_PTRTOINT: if (TypeIdx != 0) return UnableToLegalize; Observer.changingInstr(MI); narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_PHI: { // FIXME: add support for when SizeOp0 isn't an exact multiple of // NarrowSize. if (SizeOp0 % NarrowSize != 0) return UnableToLegalize; unsigned NumParts = SizeOp0 / NarrowSize; SmallVector DstRegs(NumParts); SmallVector, 2> SrcRegs(MI.getNumOperands() / 2); Observer.changingInstr(MI); for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, SrcRegs[i / 2]); } MachineBasicBlock &MBB = *MI.getParent(); MIRBuilder.setInsertPt(MBB, MI); for (unsigned i = 0; i < NumParts; ++i) { DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); MachineInstrBuilder MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); for (unsigned j = 1; j < MI.getNumOperands(); j += 2) MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); } MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); Observer.changedInstr(MI); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_EXTRACT_VECTOR_ELT: case TargetOpcode::G_INSERT_VECTOR_ELT: { if (TypeIdx != 2) return UnableToLegalize; int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; Observer.changingInstr(MI); narrowScalarSrc(MI, NarrowTy, OpIdx); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_ICMP: { Register LHS = MI.getOperand(2).getReg(); LLT SrcTy = MRI.getType(LHS); uint64_t SrcSize = SrcTy.getSizeInBits(); CmpInst::Predicate Pred = static_cast(MI.getOperand(1).getPredicate()); // TODO: Handle the non-equality case for weird sizes. if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred)) return UnableToLegalize; LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover) SmallVector LHSPartRegs, LHSLeftoverRegs; if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs, LHSLeftoverRegs)) return UnableToLegalize; LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type. SmallVector RHSPartRegs, RHSLeftoverRegs; if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused, RHSPartRegs, RHSLeftoverRegs)) return UnableToLegalize; // We now have the LHS and RHS of the compare split into narrow-type // registers, plus potentially some leftover type. Register Dst = MI.getOperand(0).getReg(); LLT ResTy = MRI.getType(Dst); if (ICmpInst::isEquality(Pred)) { // For each part on the LHS and RHS, keep track of the result of XOR-ing // them together. For each equal part, the result should be all 0s. For // each non-equal part, we'll get at least one 1. auto Zero = MIRBuilder.buildConstant(NarrowTy, 0); SmallVector Xors; for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) { auto LHS = std::get<0>(LHSAndRHS); auto RHS = std::get<1>(LHSAndRHS); auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0); Xors.push_back(Xor); } // Build a G_XOR for each leftover register. Each G_XOR must be widened // to the desired narrow type so that we can OR them together later. SmallVector WidenedXors; for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) { auto LHS = std::get<0>(LHSAndRHS); auto RHS = std::get<1>(LHSAndRHS); auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0); LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor); buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors, /* PadStrategy = */ TargetOpcode::G_ZEXT); Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end()); } // Now, for each part we broke up, we know if they are equal/not equal // based off the G_XOR. We can OR these all together and compare against // 0 to get the result. assert(Xors.size() >= 2 && "Should have gotten at least two Xors?"); auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]); for (unsigned I = 2, E = Xors.size(); I < E; ++I) Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]); MIRBuilder.buildICmp(Pred, Dst, Or, Zero); } else { // TODO: Handle non-power-of-two types. assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?"); assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?"); Register LHSL = LHSPartRegs[0]; Register LHSH = LHSPartRegs[1]; Register RHSL = RHSPartRegs[0]; Register RHSH = RHSPartRegs[1]; MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); MachineInstrBuilder CmpHEQ = MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH); } MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_SEXT_INREG: { if (TypeIdx != 0) return UnableToLegalize; int64_t SizeInBits = MI.getOperand(2).getImm(); // So long as the new type has more bits than the bits we're extending we // don't need to break it apart. if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { Observer.changingInstr(MI); // We don't lose any non-extension bits by truncating the src and // sign-extending the dst. MachineOperand &MO1 = MI.getOperand(1); auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); MO1.setReg(TruncMIB.getReg(0)); MachineOperand &MO2 = MI.getOperand(0); Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); MIRBuilder.buildSExt(MO2, DstExt); MO2.setReg(DstExt); Observer.changedInstr(MI); return Legalized; } // Break it apart. Components below the extension point are unmodified. The // component containing the extension point becomes a narrower SEXT_INREG. // Components above it are ashr'd from the component containing the // extension point. if (SizeOp0 % NarrowSize != 0) return UnableToLegalize; int NumParts = SizeOp0 / NarrowSize; // List the registers where the destination will be scattered. SmallVector DstRegs; // List the registers where the source will be split. SmallVector SrcRegs; // Create all the temporary registers. for (int i = 0; i < NumParts; ++i) { Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); SrcRegs.push_back(SrcReg); } // Explode the big arguments into smaller chunks. MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); Register AshrCstReg = MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) .getReg(0); Register FullExtensionReg = 0; Register PartialExtensionReg = 0; // Do the operation on each small part. for (int i = 0; i < NumParts; ++i) { if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) DstRegs.push_back(SrcRegs[i]); else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { assert(PartialExtensionReg && "Expected to visit partial extension before full"); if (FullExtensionReg) { DstRegs.push_back(FullExtensionReg); continue; } DstRegs.push_back( MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) .getReg(0)); FullExtensionReg = DstRegs.back(); } else { DstRegs.push_back( MIRBuilder .buildInstr( TargetOpcode::G_SEXT_INREG, {NarrowTy}, {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) .getReg(0)); PartialExtensionReg = DstRegs.back(); } } // Gather the destination registers into the final destination. Register DstReg = MI.getOperand(0).getReg(); MIRBuilder.buildMerge(DstReg, DstRegs); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_BSWAP: case TargetOpcode::G_BITREVERSE: { if (SizeOp0 % NarrowSize != 0) return UnableToLegalize; Observer.changingInstr(MI); SmallVector SrcRegs, DstRegs; unsigned NumParts = SizeOp0 / NarrowSize; extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); for (unsigned i = 0; i < NumParts; ++i) { auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, {SrcRegs[NumParts - 1 - i]}); DstRegs.push_back(DstPart.getReg(0)); } MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); Observer.changedInstr(MI); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_PTR_ADD: case TargetOpcode::G_PTRMASK: { if (TypeIdx != 1) return UnableToLegalize; Observer.changingInstr(MI); narrowScalarSrc(MI, NarrowTy, 2); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_FPTOUI: case TargetOpcode::G_FPTOSI: return narrowScalarFPTOI(MI, TypeIdx, NarrowTy); case TargetOpcode::G_FPEXT: if (TypeIdx != 0) return UnableToLegalize; Observer.changingInstr(MI); narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); Observer.changedInstr(MI); return Legalized; } } Register LegalizerHelper::coerceToScalar(Register Val) { LLT Ty = MRI.getType(Val); if (Ty.isScalar()) return Val; const DataLayout &DL = MIRBuilder.getDataLayout(); LLT NewTy = LLT::scalar(Ty.getSizeInBits()); if (Ty.isPointer()) { if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) return Register(); return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); } Register NewVal = Val; assert(Ty.isVector()); LLT EltTy = Ty.getElementType(); if (EltTy.isPointer()) NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); } void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, unsigned OpIdx, unsigned ExtOpcode) { MachineOperand &MO = MI.getOperand(OpIdx); auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); MO.setReg(ExtB.getReg(0)); } void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, unsigned OpIdx) { MachineOperand &MO = MI.getOperand(OpIdx); auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); MO.setReg(ExtB.getReg(0)); } void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, unsigned OpIdx, unsigned TruncOpcode) { MachineOperand &MO = MI.getOperand(OpIdx); Register DstExt = MRI.createGenericVirtualRegister(WideTy); MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); MO.setReg(DstExt); } void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, unsigned OpIdx, unsigned ExtOpcode) { MachineOperand &MO = MI.getOperand(OpIdx); Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); MO.setReg(DstTrunc); } void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, unsigned OpIdx) { MachineOperand &MO = MI.getOperand(OpIdx); MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); Register Dst = MO.getReg(); Register DstExt = MRI.createGenericVirtualRegister(WideTy); MO.setReg(DstExt); MIRBuilder.buildDeleteTrailingVectorElements(Dst, DstExt); } void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, unsigned OpIdx) { MachineOperand &MO = MI.getOperand(OpIdx); SmallVector Regs; MO.setReg(MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO).getReg(0)); } void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { MachineOperand &Op = MI.getOperand(OpIdx); Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); } void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { MachineOperand &MO = MI.getOperand(OpIdx); Register CastDst = MRI.createGenericVirtualRegister(CastTy); MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); MIRBuilder.buildBitcast(MO, CastDst); MO.setReg(CastDst); } LegalizerHelper::LegalizeResult LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { if (TypeIdx != 1) return UnableToLegalize; Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); if (DstTy.isVector()) return UnableToLegalize; Register Src1 = MI.getOperand(1).getReg(); LLT SrcTy = MRI.getType(Src1); const int DstSize = DstTy.getSizeInBits(); const int SrcSize = SrcTy.getSizeInBits(); const int WideSize = WideTy.getSizeInBits(); const int NumMerge = (DstSize + WideSize - 1) / WideSize; unsigned NumOps = MI.getNumOperands(); unsigned NumSrc = MI.getNumOperands() - 1; unsigned PartSize = DstTy.getSizeInBits() / NumSrc; if (WideSize >= DstSize) { // Directly pack the bits in the target type. Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); for (unsigned I = 2; I != NumOps; ++I) { const unsigned Offset = (I - 1) * PartSize; Register SrcReg = MI.getOperand(I).getReg(); assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : MRI.createGenericVirtualRegister(WideTy); auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); MIRBuilder.buildOr(NextResult, ResultReg, Shl); ResultReg = NextResult; } if (WideSize > DstSize) MIRBuilder.buildTrunc(DstReg, ResultReg); else if (DstTy.isPointer()) MIRBuilder.buildIntToPtr(DstReg, ResultReg); MI.eraseFromParent(); return Legalized; } // Unmerge the original values to the GCD type, and recombine to the next // multiple greater than the original type. // // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 // %12:_(s12) = G_MERGE_VALUES %10, %11 // // Padding with undef if necessary: // // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 // %7:_(s2) = G_IMPLICIT_DEF // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 // %10:_(s12) = G_MERGE_VALUES %8, %9 const int GCD = greatestCommonDivisor(SrcSize, WideSize); LLT GCDTy = LLT::scalar(GCD); SmallVector Parts; SmallVector NewMergeRegs; SmallVector Unmerges; LLT WideDstTy = LLT::scalar(NumMerge * WideSize); // Decompose the original operands if they don't evenly divide. for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { Register SrcReg = MO.getReg(); if (GCD == SrcSize) { Unmerges.push_back(SrcReg); } else { auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) Unmerges.push_back(Unmerge.getReg(J)); } } // Pad with undef to the next size that is a multiple of the requested size. if (static_cast(Unmerges.size()) != NumMerge * WideSize) { Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) Unmerges.push_back(UndefReg); } const int PartsPerGCD = WideSize / GCD; // Build merges of each piece. ArrayRef Slicer(Unmerges); for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); NewMergeRegs.push_back(Merge.getReg(0)); } // A truncate may be necessary if the requested type doesn't evenly divide the // original result type. if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { MIRBuilder.buildMerge(DstReg, NewMergeRegs); } else { auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); } MI.eraseFromParent(); return Legalized; } Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { Register WideReg = MRI.createGenericVirtualRegister(WideTy); LLT OrigTy = MRI.getType(OrigReg); LLT LCMTy = getLCMType(WideTy, OrigTy); const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); Register UnmergeSrc = WideReg; // Create a merge to the LCM type, padding with undef // %0:_(<3 x s32>) = G_FOO => <4 x s32> // => // %1:_(<4 x s32>) = G_FOO // %2:_(<4 x s32>) = G_IMPLICIT_DEF // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 if (NumMergeParts > 1) { Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); SmallVector MergeParts(NumMergeParts, Undef); MergeParts[0] = WideReg; UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); } // Unmerge to the original register and pad with dead defs. SmallVector UnmergeResults(NumUnmergeParts); UnmergeResults[0] = OrigReg; for (int I = 1; I != NumUnmergeParts; ++I) UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); return WideReg; } LegalizerHelper::LegalizeResult LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { if (TypeIdx != 0) return UnableToLegalize; int NumDst = MI.getNumOperands() - 1; Register SrcReg = MI.getOperand(NumDst).getReg(); LLT SrcTy = MRI.getType(SrcReg); if (SrcTy.isVector()) return UnableToLegalize; Register Dst0Reg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(Dst0Reg); if (!DstTy.isScalar()) return UnableToLegalize; if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { if (SrcTy.isPointer()) { const DataLayout &DL = MIRBuilder.getDataLayout(); if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { LLVM_DEBUG( dbgs() << "Not casting non-integral address space integer\n"); return UnableToLegalize; } SrcTy = LLT::scalar(SrcTy.getSizeInBits()); SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); } // Widen SrcTy to WideTy. This does not affect the result, but since the // user requested this size, it is probably better handled than SrcTy and // should reduce the total number of legalization artifacts. if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { SrcTy = WideTy; SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); } // Theres no unmerge type to target. Directly extract the bits from the // source type unsigned DstSize = DstTy.getSizeInBits(); MIRBuilder.buildTrunc(Dst0Reg, SrcReg); for (int I = 1; I != NumDst; ++I) { auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); MIRBuilder.buildTrunc(MI.getOperand(I), Shr); } MI.eraseFromParent(); return Legalized; } // Extend the source to a wider type. LLT LCMTy = getLCMType(SrcTy, WideTy); Register WideSrc = SrcReg; if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { // TODO: If this is an integral address space, cast to integer and anyext. if (SrcTy.isPointer()) { LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); return UnableToLegalize; } WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); } auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); // Create a sequence of unmerges and merges to the original results. Since we // may have widened the source, we will need to pad the results with dead defs // to cover the source register. // e.g. widen s48 to s64: // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) // // => // %4:_(s192) = G_ANYEXT %0:_(s96) // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge // ; unpack to GCD type, with extra dead defs // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination const LLT GCDTy = getGCDType(WideTy, DstTy); const int NumUnmerge = Unmerge->getNumOperands() - 1; const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); // Directly unmerge to the destination without going through a GCD type // if possible if (PartsPerRemerge == 1) { const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); for (int I = 0; I != NumUnmerge; ++I) { auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); for (int J = 0; J != PartsPerUnmerge; ++J) { int Idx = I * PartsPerUnmerge + J; if (Idx < NumDst) MIB.addDef(MI.getOperand(Idx).getReg()); else { // Create dead def for excess components. MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); } } MIB.addUse(Unmerge.getReg(I)); } } else { SmallVector Parts; for (int J = 0; J != NumUnmerge; ++J) extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); SmallVector RemergeParts; for (int I = 0; I != NumDst; ++I) { for (int J = 0; J < PartsPerRemerge; ++J) { const int Idx = I * PartsPerRemerge + J; RemergeParts.emplace_back(Parts[Idx]); } MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); RemergeParts.clear(); } } MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT SrcTy = MRI.getType(SrcReg); LLT DstTy = MRI.getType(DstReg); unsigned Offset = MI.getOperand(2).getImm(); if (TypeIdx == 0) { if (SrcTy.isVector() || DstTy.isVector()) return UnableToLegalize; SrcOp Src(SrcReg); if (SrcTy.isPointer()) { // Extracts from pointers can be handled only if they are really just // simple integers. const DataLayout &DL = MIRBuilder.getDataLayout(); if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) return UnableToLegalize; LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); SrcTy = SrcAsIntTy; } if (DstTy.isPointer()) return UnableToLegalize; if (Offset == 0) { // Avoid a shift in the degenerate case. MIRBuilder.buildTrunc(DstReg, MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); MI.eraseFromParent(); return Legalized; } // Do a shift in the source type. LLT ShiftTy = SrcTy; if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { Src = MIRBuilder.buildAnyExt(WideTy, Src); ShiftTy = WideTy; } auto LShr = MIRBuilder.buildLShr( ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); MIRBuilder.buildTrunc(DstReg, LShr); MI.eraseFromParent(); return Legalized; } if (SrcTy.isScalar()) { Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); Observer.changedInstr(MI); return Legalized; } if (!SrcTy.isVector()) return UnableToLegalize; if (DstTy != SrcTy.getElementType()) return UnableToLegalize; if (Offset % SrcTy.getScalarSizeInBits() != 0) return UnableToLegalize; Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * Offset); widenScalarDst(MI, WideTy.getScalarType(), 0); Observer.changedInstr(MI); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { if (TypeIdx != 0 || WideTy.isVector()) return UnableToLegalize; Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { if (TypeIdx == 1) return UnableToLegalize; // TODO unsigned Opcode; unsigned ExtOpcode; Optional CarryIn = None; switch (MI.getOpcode()) { default: llvm_unreachable("Unexpected opcode!"); case TargetOpcode::G_SADDO: Opcode = TargetOpcode::G_ADD; ExtOpcode = TargetOpcode::G_SEXT; break; case TargetOpcode::G_SSUBO: Opcode = TargetOpcode::G_SUB; ExtOpcode = TargetOpcode::G_SEXT; break; case TargetOpcode::G_UADDO: Opcode = TargetOpcode::G_ADD; ExtOpcode = TargetOpcode::G_ZEXT; break; case TargetOpcode::G_USUBO: Opcode = TargetOpcode::G_SUB; ExtOpcode = TargetOpcode::G_ZEXT; break; case TargetOpcode::G_SADDE: Opcode = TargetOpcode::G_UADDE; ExtOpcode = TargetOpcode::G_SEXT; CarryIn = MI.getOperand(4).getReg(); break; case TargetOpcode::G_SSUBE: Opcode = TargetOpcode::G_USUBE; ExtOpcode = TargetOpcode::G_SEXT; CarryIn = MI.getOperand(4).getReg(); break; case TargetOpcode::G_UADDE: Opcode = TargetOpcode::G_UADDE; ExtOpcode = TargetOpcode::G_ZEXT; CarryIn = MI.getOperand(4).getReg(); break; case TargetOpcode::G_USUBE: Opcode = TargetOpcode::G_USUBE; ExtOpcode = TargetOpcode::G_ZEXT; CarryIn = MI.getOperand(4).getReg(); break; } auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); // Do the arithmetic in the larger type. Register NewOp; if (CarryIn) { LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); NewOp = MIRBuilder .buildInstr(Opcode, {WideTy, CarryOutTy}, {LHSExt, RHSExt, *CarryIn}) .getReg(0); } else { NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); } LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); // There is no overflow if the ExtOp is the same as NewOp. MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); // Now trunc the NewOp to the original result. MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || MI.getOpcode() == TargetOpcode::G_SSUBSAT || MI.getOpcode() == TargetOpcode::G_SSHLSAT; bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || MI.getOpcode() == TargetOpcode::G_USHLSAT; // We can convert this to: // 1. Any extend iN to iM // 2. SHL by M-N // 3. [US][ADD|SUB|SHL]SAT // 4. L/ASHR by M-N // // It may be more efficient to lower this to a min and a max operation in // the higher precision arithmetic if the promoted operation isn't legal, // but this decision is up to the target's lowering request. Register DstReg = MI.getOperand(0).getReg(); unsigned NewBits = WideTy.getScalarSizeInBits(); unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); // Shifts must zero-extend the RHS to preserve the unsigned quantity, and // must not left shift the RHS to preserve the shift amount. auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {ShiftL, ShiftR}, MI.getFlags()); // Use a shift that will preserve the number of sign bits when the trunc is // folded away. auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); MIRBuilder.buildTrunc(DstReg, Result); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { if (TypeIdx == 1) return UnableToLegalize; bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO; Register Result = MI.getOperand(0).getReg(); Register OriginalOverflow = MI.getOperand(1).getReg(); Register LHS = MI.getOperand(2).getReg(); Register RHS = MI.getOperand(3).getReg(); LLT SrcTy = MRI.getType(LHS); LLT OverflowTy = MRI.getType(OriginalOverflow); unsigned SrcBitWidth = SrcTy.getScalarSizeInBits(); // To determine if the result overflowed in the larger type, we extend the // input to the larger type, do the multiply (checking if it overflows), // then also check the high bits of the result to see if overflow happened // there. unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS}); auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS}); auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy}, {LeftOperand, RightOperand}); auto Mul = Mulo->getOperand(0); MIRBuilder.buildTrunc(Result, Mul); MachineInstrBuilder ExtResult; // Overflow occurred if it occurred in the larger type, or if the high part // of the result does not zero/sign-extend the low part. Check this second // possibility first. if (IsSigned) { // For signed, overflow occurred when the high part does not sign-extend // the low part. ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth); } else { // Unsigned overflow occurred when the high part does not zero-extend the // low part. ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth); } // Multiplication cannot overflow if the WideTy is >= 2 * original width, // so we don't need to check the overflow result of larger type Mulo. if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) { auto Overflow = MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult); // Finally check if the multiplication in the larger type itself overflowed. MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow); } else { MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult); } MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { switch (MI.getOpcode()) { default: return UnableToLegalize; case TargetOpcode::G_ATOMICRMW_XCHG: case TargetOpcode::G_ATOMICRMW_ADD: case TargetOpcode::G_ATOMICRMW_SUB: case TargetOpcode::G_ATOMICRMW_AND: case TargetOpcode::G_ATOMICRMW_OR: case TargetOpcode::G_ATOMICRMW_XOR: case TargetOpcode::G_ATOMICRMW_MIN: case TargetOpcode::G_ATOMICRMW_MAX: case TargetOpcode::G_ATOMICRMW_UMIN: case TargetOpcode::G_ATOMICRMW_UMAX: assert(TypeIdx == 0 && "atomicrmw with second scalar type"); Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); widenScalarDst(MI, WideTy, 0); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_ATOMIC_CMPXCHG: assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type"); Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); widenScalarDst(MI, WideTy, 0); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: if (TypeIdx == 0) { Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT); widenScalarDst(MI, WideTy, 0); Observer.changedInstr(MI); return Legalized; } assert(TypeIdx == 1 && "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type"); Observer.changingInstr(MI); widenScalarDst(MI, WideTy, 1); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_EXTRACT: return widenScalarExtract(MI, TypeIdx, WideTy); case TargetOpcode::G_INSERT: return widenScalarInsert(MI, TypeIdx, WideTy); case TargetOpcode::G_MERGE_VALUES: return widenScalarMergeValues(MI, TypeIdx, WideTy); case TargetOpcode::G_UNMERGE_VALUES: return widenScalarUnmergeValues(MI, TypeIdx, WideTy); case TargetOpcode::G_SADDO: case TargetOpcode::G_SSUBO: case TargetOpcode::G_UADDO: case TargetOpcode::G_USUBO: case TargetOpcode::G_SADDE: case TargetOpcode::G_SSUBE: case TargetOpcode::G_UADDE: case TargetOpcode::G_USUBE: return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); case TargetOpcode::G_UMULO: case TargetOpcode::G_SMULO: return widenScalarMulo(MI, TypeIdx, WideTy); case TargetOpcode::G_SADDSAT: case TargetOpcode::G_SSUBSAT: case TargetOpcode::G_SSHLSAT: case TargetOpcode::G_UADDSAT: case TargetOpcode::G_USUBSAT: case TargetOpcode::G_USHLSAT: return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); case TargetOpcode::G_CTTZ: case TargetOpcode::G_CTTZ_ZERO_UNDEF: case TargetOpcode::G_CTLZ: case TargetOpcode::G_CTLZ_ZERO_UNDEF: case TargetOpcode::G_CTPOP: { if (TypeIdx == 0) { Observer.changingInstr(MI); widenScalarDst(MI, WideTy, 0); Observer.changedInstr(MI); return Legalized; } Register SrcReg = MI.getOperand(1).getReg(); // First extend the input. unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ || MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF ? TargetOpcode::G_ANYEXT : TargetOpcode::G_ZEXT; auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg}); LLT CurTy = MRI.getType(SrcReg); unsigned NewOpc = MI.getOpcode(); if (NewOpc == TargetOpcode::G_CTTZ) { // The count is the same in the larger type except if the original // value was zero. This can be handled by setting the bit just off // the top of the original type. auto TopBit = APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); MIBSrc = MIRBuilder.buildOr( WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); // Now we know the operand is non-zero, use the more relaxed opcode. NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF; } // Perform the operation at the larger size. auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc}); // This is already the correct result for CTPOP and CTTZs if (MI.getOpcode() == TargetOpcode::G_CTLZ || MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { // The correct result is NewOp - (Difference in widety and current ty). unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); MIBNewOp = MIRBuilder.buildSub( WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); } MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_BSWAP: { Observer.changingInstr(MI); Register DstReg = MI.getOperand(0).getReg(); Register ShrReg = MRI.createGenericVirtualRegister(WideTy); Register DstExt = MRI.createGenericVirtualRegister(WideTy); Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); MI.getOperand(0).setReg(DstExt); MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); LLT Ty = MRI.getType(DstReg); unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); MIRBuilder.buildTrunc(DstReg, ShrReg); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_BITREVERSE: { Observer.changingInstr(MI); Register DstReg = MI.getOperand(0).getReg(); LLT Ty = MRI.getType(DstReg); unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); Register DstExt = MRI.createGenericVirtualRegister(WideTy); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); MI.getOperand(0).setReg(DstExt); MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); MIRBuilder.buildTrunc(DstReg, Shift); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_FREEZE: Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_ABS: Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_ADD: case TargetOpcode::G_AND: case TargetOpcode::G_MUL: case TargetOpcode::G_OR: case TargetOpcode::G_XOR: case TargetOpcode::G_SUB: // Perform operation at larger width (any extension is fines here, high bits // don't affect the result) and then truncate the result back to the // original type. Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_SBFX: case TargetOpcode::G_UBFX: Observer.changingInstr(MI); if (TypeIdx == 0) { widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); widenScalarDst(MI, WideTy); } else { widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); } Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_SHL: Observer.changingInstr(MI); if (TypeIdx == 0) { widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); widenScalarDst(MI, WideTy); } else { assert(TypeIdx == 1); // The "number of bits to shift" operand must preserve its value as an // unsigned integer: widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); } Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_SDIV: case TargetOpcode::G_SREM: case TargetOpcode::G_SMIN: case TargetOpcode::G_SMAX: Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_SDIVREM: Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); widenScalarDst(MI, WideTy); widenScalarDst(MI, WideTy, 1); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_ASHR: case TargetOpcode::G_LSHR: Observer.changingInstr(MI); if (TypeIdx == 0) { unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; widenScalarSrc(MI, WideTy, 1, CvtOp); widenScalarDst(MI, WideTy); } else { assert(TypeIdx == 1); // The "number of bits to shift" operand must preserve its value as an // unsigned integer: widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); } Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_UDIV: case TargetOpcode::G_UREM: case TargetOpcode::G_UMIN: case TargetOpcode::G_UMAX: Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_UDIVREM: Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); widenScalarDst(MI, WideTy); widenScalarDst(MI, WideTy, 1); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_SELECT: Observer.changingInstr(MI); if (TypeIdx == 0) { // Perform operation at larger width (any extension is fine here, high // bits don't affect the result) and then truncate the result back to the // original type. widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); widenScalarDst(MI, WideTy); } else { bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); // Explicit extension is required here since high bits affect the result. widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); } Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_FPTOSI: case TargetOpcode::G_FPTOUI: Observer.changingInstr(MI); if (TypeIdx == 0) widenScalarDst(MI, WideTy); else widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_SITOFP: Observer.changingInstr(MI); if (TypeIdx == 0) widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); else widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_UITOFP: Observer.changingInstr(MI); if (TypeIdx == 0) widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); else widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_LOAD: case TargetOpcode::G_SEXTLOAD: case TargetOpcode::G_ZEXTLOAD: Observer.changingInstr(MI); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_STORE: { if (TypeIdx != 0) return UnableToLegalize; LLT Ty = MRI.getType(MI.getOperand(0).getReg()); if (!Ty.isScalar()) return UnableToLegalize; Observer.changingInstr(MI); unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; widenScalarSrc(MI, WideTy, 0, ExtType); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_CONSTANT: { MachineOperand &SrcMO = MI.getOperand(1); LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( MRI.getType(MI.getOperand(0).getReg())); assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || ExtOpc == TargetOpcode::G_ANYEXT) && "Illegal Extend"); const APInt &SrcVal = SrcMO.getCImm()->getValue(); const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) ? SrcVal.sext(WideTy.getSizeInBits()) : SrcVal.zext(WideTy.getSizeInBits()); Observer.changingInstr(MI); SrcMO.setCImm(ConstantInt::get(Ctx, Val)); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_FCONSTANT: { MachineOperand &SrcMO = MI.getOperand(1); LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); APFloat Val = SrcMO.getFPImm()->getValueAPF(); bool LosesInfo; switch (WideTy.getSizeInBits()) { case 32: Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &LosesInfo); break; case 64: Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &LosesInfo); break; default: return UnableToLegalize; } assert(!LosesInfo && "extend should always be lossless"); Observer.changingInstr(MI); SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_IMPLICIT_DEF: { Observer.changingInstr(MI); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_BRCOND: Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_FCMP: Observer.changingInstr(MI); if (TypeIdx == 0) widenScalarDst(MI, WideTy); else { widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); } Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_ICMP: Observer.changingInstr(MI); if (TypeIdx == 0) widenScalarDst(MI, WideTy); else { unsigned ExtOpcode = CmpInst::isSigned(static_cast( MI.getOperand(1).getPredicate())) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; widenScalarSrc(MI, WideTy, 2, ExtOpcode); widenScalarSrc(MI, WideTy, 3, ExtOpcode); } Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_PTR_ADD: assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_PHI: { assert(TypeIdx == 0 && "Expecting only Idx 0"); Observer.changingInstr(MI); for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); } MachineBasicBlock &MBB = *MI.getParent(); MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_EXTRACT_VECTOR_ELT: { if (TypeIdx == 0) { Register VecReg = MI.getOperand(1).getReg(); LLT VecTy = MRI.getType(VecReg); Observer.changingInstr(MI); widenScalarSrc( MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1, TargetOpcode::G_ANYEXT); widenScalarDst(MI, WideTy, 0); Observer.changedInstr(MI); return Legalized; } if (TypeIdx != 2) return UnableToLegalize; Observer.changingInstr(MI); // TODO: Probably should be zext widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_INSERT_VECTOR_ELT: { if (TypeIdx == 1) { Observer.changingInstr(MI); Register VecReg = MI.getOperand(1).getReg(); LLT VecTy = MRI.getType(VecReg); LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy); widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); widenScalarDst(MI, WideVecTy, 0); Observer.changedInstr(MI); return Legalized; } if (TypeIdx == 2) { Observer.changingInstr(MI); // TODO: Probably should be zext widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); Observer.changedInstr(MI); return Legalized; } return UnableToLegalize; } case TargetOpcode::G_FADD: case TargetOpcode::G_FMUL: case TargetOpcode::G_FSUB: case TargetOpcode::G_FMA: case TargetOpcode::G_FMAD: case TargetOpcode::G_FNEG: case TargetOpcode::G_FABS: case TargetOpcode::G_FCANONICALIZE: case TargetOpcode::G_FMINNUM: case TargetOpcode::G_FMAXNUM: case TargetOpcode::G_FMINNUM_IEEE: case TargetOpcode::G_FMAXNUM_IEEE: case TargetOpcode::G_FMINIMUM: case TargetOpcode::G_FMAXIMUM: case TargetOpcode::G_FDIV: case TargetOpcode::G_FREM: case TargetOpcode::G_FCEIL: case TargetOpcode::G_FFLOOR: case TargetOpcode::G_FCOS: case TargetOpcode::G_FSIN: case TargetOpcode::G_FLOG10: case TargetOpcode::G_FLOG: case TargetOpcode::G_FLOG2: case TargetOpcode::G_FRINT: case TargetOpcode::G_FNEARBYINT: case TargetOpcode::G_FSQRT: case TargetOpcode::G_FEXP: case TargetOpcode::G_FEXP2: case TargetOpcode::G_FPOW: case TargetOpcode::G_INTRINSIC_TRUNC: case TargetOpcode::G_INTRINSIC_ROUND: case TargetOpcode::G_INTRINSIC_ROUNDEVEN: assert(TypeIdx == 0); Observer.changingInstr(MI); for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_FPOWI: { if (TypeIdx != 0) return UnableToLegalize; Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_INTTOPTR: if (TypeIdx != 1) return UnableToLegalize; Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_PTRTOINT: if (TypeIdx != 0) return UnableToLegalize; Observer.changingInstr(MI); widenScalarDst(MI, WideTy, 0); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_BUILD_VECTOR: { Observer.changingInstr(MI); const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); for (int I = 1, E = MI.getNumOperands(); I != E; ++I) widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); // Avoid changing the result vector type if the source element type was // requested. if (TypeIdx == 1) { MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); } else { widenScalarDst(MI, WideTy, 0); } Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_SEXT_INREG: if (TypeIdx != 0) return UnableToLegalize; Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_PTRMASK: { if (TypeIdx != 1) return UnableToLegalize; Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); Observer.changedInstr(MI); return Legalized; } } } static void getUnmergePieces(SmallVectorImpl &Pieces, MachineIRBuilder &B, Register Src, LLT Ty) { auto Unmerge = B.buildUnmerge(Ty, Src); for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) Pieces.push_back(Unmerge.getReg(I)); } LegalizerHelper::LegalizeResult LegalizerHelper::lowerBitcast(MachineInstr &MI) { Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(Dst); LLT SrcTy = MRI.getType(Src); if (SrcTy.isVector()) { LLT SrcEltTy = SrcTy.getElementType(); SmallVector SrcRegs; if (DstTy.isVector()) { int NumDstElt = DstTy.getNumElements(); int NumSrcElt = SrcTy.getNumElements(); LLT DstEltTy = DstTy.getElementType(); LLT DstCastTy = DstEltTy; // Intermediate bitcast result type LLT SrcPartTy = SrcEltTy; // Original unmerge result type. // If there's an element size mismatch, insert intermediate casts to match // the result element type. if (NumSrcElt < NumDstElt) { // Source element type is larger. // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) // // => // // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 // %3:_(<2 x s8>) = G_BITCAST %2 // %4:_(<2 x s8>) = G_BITCAST %3 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy); SrcPartTy = SrcEltTy; } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. // // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) // // => // // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 // %3:_(s16) = G_BITCAST %2 // %4:_(s16) = G_BITCAST %3 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy); DstCastTy = DstEltTy; } getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); for (Register &SrcReg : SrcRegs) SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); } else getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); MIRBuilder.buildMerge(Dst, SrcRegs); MI.eraseFromParent(); return Legalized; } if (DstTy.isVector()) { SmallVector SrcRegs; getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); MIRBuilder.buildMerge(Dst, SrcRegs); MI.eraseFromParent(); return Legalized; } return UnableToLegalize; } /// Figure out the bit offset into a register when coercing a vector index for /// the wide element type. This is only for the case when promoting vector to /// one with larger elements. // /// /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, Register Idx, unsigned NewEltSize, unsigned OldEltSize) { const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); LLT IdxTy = B.getMRI()->getType(Idx); // Now figure out the amount we need to shift to get the target bits. auto OffsetMask = B.buildConstant( IdxTy, ~(APInt::getAllOnes(IdxTy.getSizeInBits()) << Log2EltRatio)); auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); return B.buildShl(IdxTy, OffsetIdx, B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); } /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this /// is casting to a vector with a smaller element size, perform multiple element /// extracts and merge the results. If this is coercing to a vector with larger /// elements, index the bitcasted vector and extract the target element with bit /// operations. This is intended to force the indexing in the native register /// size for architectures that can dynamically index the register file. LegalizerHelper::LegalizeResult LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { if (TypeIdx != 1) return UnableToLegalize; Register Dst = MI.getOperand(0).getReg(); Register SrcVec = MI.getOperand(1).getReg(); Register Idx = MI.getOperand(2).getReg(); LLT SrcVecTy = MRI.getType(SrcVec); LLT IdxTy = MRI.getType(Idx); LLT SrcEltTy = SrcVecTy.getElementType(); unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; unsigned OldNumElts = SrcVecTy.getNumElements(); LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); const unsigned NewEltSize = NewEltTy.getSizeInBits(); const unsigned OldEltSize = SrcEltTy.getSizeInBits(); if (NewNumElts > OldNumElts) { // Decreasing the vector element size // // e.g. i64 = extract_vector_elt x:v2i64, y:i32 // => // v4i32:castx = bitcast x:v2i64 // // i64 = bitcast // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), // (i32 (extract_vector_elt castx, (2 * y + 1))) // if (NewNumElts % OldNumElts != 0) return UnableToLegalize; // Type of the intermediate result vector. const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; LLT MidTy = LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy); auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); SmallVector NewOps(NewEltsPerOldElt); auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); NewOps[I] = Elt.getReg(0); } auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); MIRBuilder.buildBitcast(Dst, NewVec); MI.eraseFromParent(); return Legalized; } if (NewNumElts < OldNumElts) { if (NewEltSize % OldEltSize != 0) return UnableToLegalize; // This only depends on powers of 2 because we use bit tricks to figure out // the bit offset we need to shift to get the target element. A general // expansion could emit division/multiply. if (!isPowerOf2_32(NewEltSize / OldEltSize)) return UnableToLegalize; // Increasing the vector element size. // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(), %idx // // => // // %cast = G_BITCAST %vec // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) // %elt_bits = G_LSHR %wide_elt, %offset_bits // %elt = G_TRUNC %elt_bits const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); // Divide to get the index in the wider element type. auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); Register WideElt = CastVec; if (CastTy.isVector()) { WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, ScaledIdx).getReg(0); } // Compute the bit offset into the register of the target element. Register OffsetBits = getBitcastWiderVectorElementOffset( MIRBuilder, Idx, NewEltSize, OldEltSize); // Shift the wide element to get the target element. auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); MIRBuilder.buildTrunc(Dst, ExtractedBits); MI.eraseFromParent(); return Legalized; } return UnableToLegalize; } /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p /// TargetReg, while preserving other bits in \p TargetReg. /// /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) static Register buildBitFieldInsert(MachineIRBuilder &B, Register TargetReg, Register InsertReg, Register OffsetBits) { LLT TargetTy = B.getMRI()->getType(TargetReg); LLT InsertTy = B.getMRI()->getType(InsertReg); auto ZextVal = B.buildZExt(TargetTy, InsertReg); auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); // Produce a bitmask of the value to insert auto EltMask = B.buildConstant( TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), InsertTy.getSizeInBits())); // Shift it into position auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); // Clear out the bits in the wide element auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); // The value to insert has all zeros already, so stick it into the masked // wide element. return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); } /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this /// is increasing the element size, perform the indexing in the target element /// type, and use bit operations to insert at the element position. This is /// intended for architectures that can dynamically index the register file and /// want to force indexing in the native register size. LegalizerHelper::LegalizeResult LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { if (TypeIdx != 0) return UnableToLegalize; Register Dst = MI.getOperand(0).getReg(); Register SrcVec = MI.getOperand(1).getReg(); Register Val = MI.getOperand(2).getReg(); Register Idx = MI.getOperand(3).getReg(); LLT VecTy = MRI.getType(Dst); LLT IdxTy = MRI.getType(Idx); LLT VecEltTy = VecTy.getElementType(); LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; const unsigned NewEltSize = NewEltTy.getSizeInBits(); const unsigned OldEltSize = VecEltTy.getSizeInBits(); unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; unsigned OldNumElts = VecTy.getNumElements(); Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); if (NewNumElts < OldNumElts) { if (NewEltSize % OldEltSize != 0) return UnableToLegalize; // This only depends on powers of 2 because we use bit tricks to figure out // the bit offset we need to shift to get the target element. A general // expansion could emit division/multiply. if (!isPowerOf2_32(NewEltSize / OldEltSize)) return UnableToLegalize; const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); // Divide to get the index in the wider element type. auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); Register ExtractedElt = CastVec; if (CastTy.isVector()) { ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, ScaledIdx).getReg(0); } // Compute the bit offset into the register of the target element. Register OffsetBits = getBitcastWiderVectorElementOffset( MIRBuilder, Idx, NewEltSize, OldEltSize); Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, Val, OffsetBits); if (CastTy.isVector()) { InsertedElt = MIRBuilder.buildInsertVectorElement( CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); } MIRBuilder.buildBitcast(Dst, InsertedElt); MI.eraseFromParent(); return Legalized; } return UnableToLegalize; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) { // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT Register DstReg = LoadMI.getDstReg(); Register PtrReg = LoadMI.getPointerReg(); LLT DstTy = MRI.getType(DstReg); MachineMemOperand &MMO = LoadMI.getMMO(); LLT MemTy = MMO.getMemoryType(); MachineFunction &MF = MIRBuilder.getMF(); unsigned MemSizeInBits = MemTy.getSizeInBits(); unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes(); if (MemSizeInBits != MemStoreSizeInBits) { if (MemTy.isVector()) return UnableToLegalize; // Promote to a byte-sized load if not loading an integral number of // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. LLT WideMemTy = LLT::scalar(MemStoreSizeInBits); MachineMemOperand *NewMMO = MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy); Register LoadReg = DstReg; LLT LoadTy = DstTy; // If this wasn't already an extending load, we need to widen the result // register to avoid creating a load with a narrower result than the source. if (MemStoreSizeInBits > DstTy.getSizeInBits()) { LoadTy = WideMemTy; LoadReg = MRI.createGenericVirtualRegister(WideMemTy); } if (isa(LoadMI)) { auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits); } else if (isa(LoadMI) || WideMemTy == DstTy) { auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); // The extra bits are guaranteed to be zero, since we stored them that // way. A zext load from Wide thus automatically gives zext from MemVT. MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits); } else { MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO); } if (DstTy != LoadTy) MIRBuilder.buildTrunc(DstReg, LoadReg); LoadMI.eraseFromParent(); return Legalized; } // Big endian lowering not implemented. if (MIRBuilder.getDataLayout().isBigEndian()) return UnableToLegalize; // This load needs splitting into power of 2 sized loads. // // Our strategy here is to generate anyextending loads for the smaller // types up to next power-2 result type, and then combine the two larger // result values together, before truncating back down to the non-pow-2 // type. // E.g. v1 = i24 load => // v2 = i32 zextload (2 byte) // v3 = i32 load (1 byte) // v4 = i32 shl v3, 16 // v5 = i32 or v4, v2 // v1 = i24 trunc v5 // By doing this we generate the correct truncate which should get // combined away as an artifact with a matching extend. uint64_t LargeSplitSize, SmallSplitSize; if (!isPowerOf2_32(MemSizeInBits)) { // This load needs splitting into power of 2 sized loads. LargeSplitSize = PowerOf2Floor(MemSizeInBits); SmallSplitSize = MemSizeInBits - LargeSplitSize; } else { // This is already a power of 2, but we still need to split this in half. // // Assume we're being asked to decompose an unaligned load. // TODO: If this requires multiple splits, handle them all at once. auto &Ctx = MF.getFunction().getContext(); if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) return UnableToLegalize; SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; } if (MemTy.isVector()) { // TODO: Handle vector extloads if (MemTy != DstTy) return UnableToLegalize; // TODO: We can do better than scalarizing the vector and at least split it // in half. return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType()); } MachineMemOperand *LargeMMO = MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); MachineMemOperand *SmallMMO = MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); LLT PtrTy = MRI.getType(PtrReg); unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits()); LLT AnyExtTy = LLT::scalar(AnyExtSize); auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy, PtrReg, *LargeMMO); auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy, SmallPtr, *SmallMMO); auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); if (AnyExtTy == DstTy) MIRBuilder.buildOr(DstReg, Shift, LargeLoad); else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) { auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); MIRBuilder.buildTrunc(DstReg, {Or}); } else { assert(DstTy.isPointer() && "expected pointer"); auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); // FIXME: We currently consider this to be illegal for non-integral address // spaces, but we need still need a way to reinterpret the bits. MIRBuilder.buildIntToPtr(DstReg, Or); } LoadMI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) { // Lower a non-power of 2 store into multiple pow-2 stores. // E.g. split an i24 store into an i16 store + i8 store. // We do this by first extending the stored value to the next largest power // of 2 type, and then using truncating stores to store the components. // By doing this, likewise with G_LOAD, generate an extend that can be // artifact-combined away instead of leaving behind extracts. Register SrcReg = StoreMI.getValueReg(); Register PtrReg = StoreMI.getPointerReg(); LLT SrcTy = MRI.getType(SrcReg); MachineFunction &MF = MIRBuilder.getMF(); MachineMemOperand &MMO = **StoreMI.memoperands_begin(); LLT MemTy = MMO.getMemoryType(); unsigned StoreWidth = MemTy.getSizeInBits(); unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes(); if (StoreWidth != StoreSizeInBits) { if (SrcTy.isVector()) return UnableToLegalize; // Promote to a byte-sized store with upper bits zero if not // storing an integral number of bytes. For example, promote // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) LLT WideTy = LLT::scalar(StoreSizeInBits); if (StoreSizeInBits > SrcTy.getSizeInBits()) { // Avoid creating a store with a narrower source than result. SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); SrcTy = WideTy; } auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth); MachineMemOperand *NewMMO = MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy); MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO); StoreMI.eraseFromParent(); return Legalized; } if (MemTy.isVector()) { // TODO: Handle vector trunc stores if (MemTy != SrcTy) return UnableToLegalize; // TODO: We can do better than scalarizing the vector and at least split it // in half. return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType()); } unsigned MemSizeInBits = MemTy.getSizeInBits(); uint64_t LargeSplitSize, SmallSplitSize; if (!isPowerOf2_32(MemSizeInBits)) { LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits()); SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize; } else { auto &Ctx = MF.getFunction().getContext(); if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) return UnableToLegalize; // Don't know what we're being asked to do. SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; } // Extend to the next pow-2. If this store was itself the result of lowering, // e.g. an s56 store being broken into s32 + s24, we might have a stored type // that's wider than the stored size. unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits()); const LLT NewSrcTy = LLT::scalar(AnyExtSize); if (SrcTy.isPointer()) { const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits()); SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0); } auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg); // Obtain the smaller value by shifting away the larger value. auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize); auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt); // Generate the PtrAdd and truncating stores. LLT PtrTy = MRI.getType(PtrReg); auto OffsetCst = MIRBuilder.buildConstant( LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); auto SmallPtr = MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst); MachineMemOperand *LargeMMO = MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); MachineMemOperand *SmallMMO = MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO); MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO); StoreMI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { switch (MI.getOpcode()) { case TargetOpcode::G_LOAD: { if (TypeIdx != 0) return UnableToLegalize; MachineMemOperand &MMO = **MI.memoperands_begin(); // Not sure how to interpret a bitcast of an extending load. if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) return UnableToLegalize; Observer.changingInstr(MI); bitcastDst(MI, CastTy, 0); MMO.setType(CastTy); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_STORE: { if (TypeIdx != 0) return UnableToLegalize; MachineMemOperand &MMO = **MI.memoperands_begin(); // Not sure how to interpret a bitcast of a truncating store. if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) return UnableToLegalize; Observer.changingInstr(MI); bitcastSrc(MI, CastTy, 0); MMO.setType(CastTy); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_SELECT: { if (TypeIdx != 0) return UnableToLegalize; if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { LLVM_DEBUG( dbgs() << "bitcast action not implemented for vector select\n"); return UnableToLegalize; } Observer.changingInstr(MI); bitcastSrc(MI, CastTy, 2); bitcastSrc(MI, CastTy, 3); bitcastDst(MI, CastTy, 0); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_AND: case TargetOpcode::G_OR: case TargetOpcode::G_XOR: { Observer.changingInstr(MI); bitcastSrc(MI, CastTy, 1); bitcastSrc(MI, CastTy, 2); bitcastDst(MI, CastTy, 0); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_EXTRACT_VECTOR_ELT: return bitcastExtractVectorElt(MI, TypeIdx, CastTy); case TargetOpcode::G_INSERT_VECTOR_ELT: return bitcastInsertVectorElt(MI, TypeIdx, CastTy); default: return UnableToLegalize; } } // Legalize an instruction by changing the opcode in place. void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { Observer.changingInstr(MI); MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); Observer.changedInstr(MI); } LegalizerHelper::LegalizeResult LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { using namespace TargetOpcode; switch(MI.getOpcode()) { default: return UnableToLegalize; case TargetOpcode::G_BITCAST: return lowerBitcast(MI); case TargetOpcode::G_SREM: case TargetOpcode::G_UREM: { LLT Ty = MRI.getType(MI.getOperand(0).getReg()); auto Quot = MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, {MI.getOperand(1), MI.getOperand(2)}); auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_SADDO: case TargetOpcode::G_SSUBO: return lowerSADDO_SSUBO(MI); case TargetOpcode::G_UMULH: case TargetOpcode::G_SMULH: return lowerSMULH_UMULH(MI); case TargetOpcode::G_SMULO: case TargetOpcode::G_UMULO: { // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the // result. Register Res = MI.getOperand(0).getReg(); Register Overflow = MI.getOperand(1).getReg(); Register LHS = MI.getOperand(2).getReg(); Register RHS = MI.getOperand(3).getReg(); LLT Ty = MRI.getType(Res); unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO ? TargetOpcode::G_SMULH : TargetOpcode::G_UMULH; Observer.changingInstr(MI); const auto &TII = MIRBuilder.getTII(); MI.setDesc(TII.get(TargetOpcode::G_MUL)); MI.RemoveOperand(1); Observer.changedInstr(MI); auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); auto Zero = MIRBuilder.buildConstant(Ty, 0); // Move insert point forward so we can use the Res register if needed. MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); // For *signed* multiply, overflow is detected by checking: // (hi != (lo >> bitwidth-1)) if (Opcode == TargetOpcode::G_SMULH) { auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); } else { MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); } return Legalized; } case TargetOpcode::G_FNEG: { Register Res = MI.getOperand(0).getReg(); LLT Ty = MRI.getType(Res); // TODO: Handle vector types once we are able to // represent them. if (Ty.isVector()) return UnableToLegalize; auto SignMask = MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); Register SubByReg = MI.getOperand(1).getReg(); MIRBuilder.buildXor(Res, SubByReg, SignMask); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_FSUB: { Register Res = MI.getOperand(0).getReg(); LLT Ty = MRI.getType(Res); // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). // First, check if G_FNEG is marked as Lower. If so, we may // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) return UnableToLegalize; Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); Register Neg = MRI.createGenericVirtualRegister(Ty); MIRBuilder.buildFNeg(Neg, RHS); MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_FMAD: return lowerFMad(MI); case TargetOpcode::G_FFLOOR: return lowerFFloor(MI); case TargetOpcode::G_INTRINSIC_ROUND: return lowerIntrinsicRound(MI); case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { // Since round even is the assumed rounding mode for unconstrained FP // operations, rint and roundeven are the same operation. changeOpcode(MI, TargetOpcode::G_FRINT); return Legalized; } case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { Register OldValRes = MI.getOperand(0).getReg(); Register SuccessRes = MI.getOperand(1).getReg(); Register Addr = MI.getOperand(2).getReg(); Register CmpVal = MI.getOperand(3).getReg(); Register NewVal = MI.getOperand(4).getReg(); MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, **MI.memoperands_begin()); MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_LOAD: case TargetOpcode::G_SEXTLOAD: case TargetOpcode::G_ZEXTLOAD: return lowerLoad(cast(MI)); case TargetOpcode::G_STORE: return lowerStore(cast(MI)); case TargetOpcode::G_CTLZ_ZERO_UNDEF: case TargetOpcode::G_CTTZ_ZERO_UNDEF: case TargetOpcode::G_CTLZ: case TargetOpcode::G_CTTZ: case TargetOpcode::G_CTPOP: return lowerBitCount(MI); case G_UADDO: { Register Res = MI.getOperand(0).getReg(); Register CarryOut = MI.getOperand(1).getReg(); Register LHS = MI.getOperand(2).getReg(); Register RHS = MI.getOperand(3).getReg(); MIRBuilder.buildAdd(Res, LHS, RHS); MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); MI.eraseFromParent(); return Legalized; } case G_UADDE: { Register Res = MI.getOperand(0).getReg(); Register CarryOut = MI.getOperand(1).getReg(); Register LHS = MI.getOperand(2).getReg(); Register RHS = MI.getOperand(3).getReg(); Register CarryIn = MI.getOperand(4).getReg(); LLT Ty = MRI.getType(Res); auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); MI.eraseFromParent(); return Legalized; } case G_USUBO: { Register Res = MI.getOperand(0).getReg(); Register BorrowOut = MI.getOperand(1).getReg(); Register LHS = MI.getOperand(2).getReg(); Register RHS = MI.getOperand(3).getReg(); MIRBuilder.buildSub(Res, LHS, RHS); MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); MI.eraseFromParent(); return Legalized; } case G_USUBE: { Register Res = MI.getOperand(0).getReg(); Register BorrowOut = MI.getOperand(1).getReg(); Register LHS = MI.getOperand(2).getReg(); Register RHS = MI.getOperand(3).getReg(); Register BorrowIn = MI.getOperand(4).getReg(); const LLT CondTy = MRI.getType(BorrowOut); const LLT Ty = MRI.getType(Res); auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); MI.eraseFromParent(); return Legalized; } case G_UITOFP: return lowerUITOFP(MI); case G_SITOFP: return lowerSITOFP(MI); case G_FPTOUI: return lowerFPTOUI(MI); case G_FPTOSI: return lowerFPTOSI(MI); case G_FPTRUNC: return lowerFPTRUNC(MI); case G_FPOWI: return lowerFPOWI(MI); case G_SMIN: case G_SMAX: case G_UMIN: case G_UMAX: return lowerMinMax(MI); case G_FCOPYSIGN: return lowerFCopySign(MI); case G_FMINNUM: case G_FMAXNUM: return lowerFMinNumMaxNum(MI); case G_MERGE_VALUES: return lowerMergeValues(MI); case G_UNMERGE_VALUES: return lowerUnmergeValues(MI); case TargetOpcode::G_SEXT_INREG: { assert(MI.getOperand(2).isImm() && "Expected immediate"); int64_t SizeInBits = MI.getOperand(2).getImm(); Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(DstReg); Register TmpRes = MRI.createGenericVirtualRegister(DstTy); auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); MI.eraseFromParent(); return Legalized; } case G_EXTRACT_VECTOR_ELT: case G_INSERT_VECTOR_ELT: return lowerExtractInsertVectorElt(MI); case G_SHUFFLE_VECTOR: return lowerShuffleVector(MI); case G_DYN_STACKALLOC: return lowerDynStackAlloc(MI); case G_EXTRACT: return lowerExtract(MI); case G_INSERT: return lowerInsert(MI); case G_BSWAP: return lowerBswap(MI); case G_BITREVERSE: return lowerBitreverse(MI); case G_READ_REGISTER: case G_WRITE_REGISTER: return lowerReadWriteRegister(MI); case G_UADDSAT: case G_USUBSAT: { // Try to make a reasonable guess about which lowering strategy to use. The // target can override this with custom lowering and calling the // implementation functions. LLT Ty = MRI.getType(MI.getOperand(0).getReg()); if (LI.isLegalOrCustom({G_UMIN, Ty})) return lowerAddSubSatToMinMax(MI); return lowerAddSubSatToAddoSubo(MI); } case G_SADDSAT: case G_SSUBSAT: { LLT Ty = MRI.getType(MI.getOperand(0).getReg()); // FIXME: It would probably make more sense to see if G_SADDO is preferred, // since it's a shorter expansion. However, we would need to figure out the // preferred boolean type for the carry out for the query. if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) return lowerAddSubSatToMinMax(MI); return lowerAddSubSatToAddoSubo(MI); } case G_SSHLSAT: case G_USHLSAT: return lowerShlSat(MI); case G_ABS: return lowerAbsToAddXor(MI); case G_SELECT: return lowerSelect(MI); case G_SDIVREM: case G_UDIVREM: return lowerDIVREM(MI); case G_FSHL: case G_FSHR: return lowerFunnelShift(MI); case G_ROTL: case G_ROTR: return lowerRotate(MI); case G_MEMSET: case G_MEMCPY: case G_MEMMOVE: return lowerMemCpyFamily(MI); case G_MEMCPY_INLINE: return lowerMemcpyInline(MI); GISEL_VECREDUCE_CASES_NONSEQ return lowerVectorReduction(MI); } } Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, Align MinAlign) const { // FIXME: We're missing a way to go back from LLT to llvm::Type to query the // datalayout for the preferred alignment. Also there should be a target hook // for this to allow targets to reduce the alignment and ignore the // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of // the type. return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); } MachineInstrBuilder LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, MachinePointerInfo &PtrInfo) { MachineFunction &MF = MIRBuilder.getMF(); const DataLayout &DL = MIRBuilder.getDataLayout(); int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); unsigned AddrSpace = DL.getAllocaAddrSpace(); LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); } static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, LLT VecTy) { int64_t IdxVal; if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) return IdxReg; LLT IdxTy = B.getMRI()->getType(IdxReg); unsigned NElts = VecTy.getNumElements(); if (isPowerOf2_32(NElts)) { APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); } return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) .getReg(0); } Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, Register Index) { LLT EltTy = VecTy.getElementType(); // Calculate the element offset and add it to the pointer. unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. assert(EltSize * 8 == EltTy.getSizeInBits() && "Converting bits to bytes lost precision"); Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); LLT IdxTy = MRI.getType(Index); auto Mul = MIRBuilder.buildMul(IdxTy, Index, MIRBuilder.buildConstant(IdxTy, EltSize)); LLT PtrTy = MRI.getType(VecPtr); return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); } #ifndef NDEBUG /// Check that all vector operands have same number of elements. Other operands /// should be listed in NonVecOp. static bool hasSameNumEltsOnAllVectorOperands( GenericMachineInstr &MI, MachineRegisterInfo &MRI, std::initializer_list NonVecOpIndices) { if (MI.getNumMemOperands() != 0) return false; LLT VecTy = MRI.getType(MI.getReg(0)); if (!VecTy.isVector()) return false; unsigned NumElts = VecTy.getNumElements(); for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) { MachineOperand &Op = MI.getOperand(OpIdx); if (!Op.isReg()) { if (!is_contained(NonVecOpIndices, OpIdx)) return false; continue; } LLT Ty = MRI.getType(Op.getReg()); if (!Ty.isVector()) { if (!is_contained(NonVecOpIndices, OpIdx)) return false; continue; } if (Ty.getNumElements() != NumElts) return false; } return true; } #endif /// Fill \p DstOps with DstOps that have same number of elements combined as /// the Ty. These DstOps have either scalar type when \p NumElts = 1 or are /// vectors with \p NumElts elements. When Ty.getNumElements() is not multiple /// of \p NumElts last DstOp (leftover) has fewer then \p NumElts elements. static void makeDstOps(SmallVectorImpl &DstOps, LLT Ty, unsigned NumElts) { LLT LeftoverTy; assert(Ty.isVector() && "Expected vector type"); LLT EltTy = Ty.getElementType(); LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); int NumParts, NumLeftover; std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(Ty, NarrowTy, LeftoverTy); assert(NumParts > 0 && "Error in getNarrowTypeBreakDown"); for (int i = 0; i < NumParts; ++i) { DstOps.push_back(NarrowTy); } if (LeftoverTy.isValid()) { assert(NumLeftover == 1 && "expected exactly one leftover"); DstOps.push_back(LeftoverTy); } } /// Operand \p Op is used on \p N sub-instructions. Fill \p Ops with \p N SrcOps /// made from \p Op depending on operand type. static void broadcastSrcOp(SmallVectorImpl &Ops, unsigned N, MachineOperand &Op) { for (unsigned i = 0; i < N; ++i) { if (Op.isReg()) Ops.push_back(Op.getReg()); else if (Op.isImm()) Ops.push_back(Op.getImm()); else if (Op.isPredicate()) Ops.push_back(static_cast(Op.getPredicate())); else llvm_unreachable("Unsupported type"); } } // Handle splitting vector operations which need to have the same number of // elements in each type index, but each type index may have a different element // type. // // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> // <2 x s64> = G_SHL <2 x s64>, <2 x s32> // <2 x s64> = G_SHL <2 x s64>, <2 x s32> // // Also handles some irregular breakdown cases, e.g. // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> // <2 x s64> = G_SHL <2 x s64>, <2 x s32> // s64 = G_SHL s64, s32 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorMultiEltType( GenericMachineInstr &MI, unsigned NumElts, std::initializer_list NonVecOpIndices) { assert(hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) && "Non-compatible opcode or not specified non-vector operands"); unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); unsigned NumDefs = MI.getNumDefs(); // Create DstOps (sub-vectors with NumElts elts + Leftover) for each output. // Build instructions with DstOps to use instruction found by CSE directly. // CSE copies found instruction into given vreg when building with vreg dest. SmallVector, 2> OutputOpsPieces(NumDefs); // Output registers will be taken from created instructions. SmallVector, 2> OutputRegs(NumDefs); for (unsigned i = 0; i < NumDefs; ++i) { makeDstOps(OutputOpsPieces[i], MRI.getType(MI.getReg(i)), NumElts); } // Split vector input operands into sub-vectors with NumElts elts + Leftover. // Operands listed in NonVecOpIndices will be used as is without splitting; // examples: compare predicate in icmp and fcmp (op 1), vector select with i1 // scalar condition (op 1), immediate in sext_inreg (op 2). SmallVector, 3> InputOpsPieces(NumInputs); for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); ++UseIdx, ++UseNo) { if (is_contained(NonVecOpIndices, UseIdx)) { broadcastSrcOp(InputOpsPieces[UseNo], OutputOpsPieces[0].size(), MI.getOperand(UseIdx)); } else { SmallVector SplitPieces; extractVectorParts(MI.getReg(UseIdx), NumElts, SplitPieces); for (auto Reg : SplitPieces) InputOpsPieces[UseNo].push_back(Reg); } } unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; // Take i-th piece of each input operand split and build sub-vector/scalar // instruction. Set i-th DstOp(s) from OutputOpsPieces as destination(s). for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { SmallVector Defs; for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) Defs.push_back(OutputOpsPieces[DstNo][i]); SmallVector Uses; for (unsigned InputNo = 0; InputNo < NumInputs; ++InputNo) Uses.push_back(InputOpsPieces[InputNo][i]); auto I = MIRBuilder.buildInstr(MI.getOpcode(), Defs, Uses, MI.getFlags()); for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) OutputRegs[DstNo].push_back(I.getReg(DstNo)); } // Merge small outputs into MI's output for each def operand. if (NumLeftovers) { for (unsigned i = 0; i < NumDefs; ++i) mergeMixedSubvectors(MI.getReg(i), OutputRegs[i]); } else { for (unsigned i = 0; i < NumDefs; ++i) MIRBuilder.buildMerge(MI.getReg(i), OutputRegs[i]); } MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorPhi(GenericMachineInstr &MI, unsigned NumElts) { unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); unsigned NumDefs = MI.getNumDefs(); SmallVector OutputOpsPieces; SmallVector OutputRegs; makeDstOps(OutputOpsPieces, MRI.getType(MI.getReg(0)), NumElts); // Instructions that perform register split will be inserted in basic block // where register is defined (basic block is in the next operand). SmallVector, 3> InputOpsPieces(NumInputs / 2); for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); UseIdx += 2, ++UseNo) { MachineBasicBlock &OpMBB = *MI.getOperand(UseIdx + 1).getMBB(); MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); extractVectorParts(MI.getReg(UseIdx), NumElts, InputOpsPieces[UseNo]); } // Build PHIs with fewer elements. unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; MIRBuilder.setInsertPt(*MI.getParent(), MI); for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { auto Phi = MIRBuilder.buildInstr(TargetOpcode::G_PHI); Phi.addDef( MRI.createGenericVirtualRegister(OutputOpsPieces[i].getLLTTy(MRI))); OutputRegs.push_back(Phi.getReg(0)); for (unsigned j = 0; j < NumInputs / 2; ++j) { Phi.addUse(InputOpsPieces[j][i]); Phi.add(MI.getOperand(1 + j * 2 + 1)); } } // Merge small outputs into MI's def. if (NumLeftovers) { mergeMixedSubvectors(MI.getReg(0), OutputRegs); } else { MIRBuilder.buildMerge(MI.getReg(0), OutputRegs); } MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { const int NumDst = MI.getNumOperands() - 1; const Register SrcReg = MI.getOperand(NumDst).getReg(); LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); LLT SrcTy = MRI.getType(SrcReg); if (TypeIdx != 1 || NarrowTy == DstTy) return UnableToLegalize; // Requires compatible types. Otherwise SrcReg should have been defined by // merge-like instruction that would get artifact combined. Most likely // instruction that defines SrcReg has to perform more/fewer elements // legalization compatible with NarrowTy. assert(SrcTy.isVector() && NarrowTy.isVector() && "Expected vector types"); assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); if ((SrcTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || (NarrowTy.getSizeInBits() % DstTy.getSizeInBits() != 0)) return UnableToLegalize; // This is most likely DstTy (smaller then register size) packed in SrcTy // (larger then register size) and since unmerge was not combined it will be // lowered to bit sequence extracts from register. Unpack SrcTy to NarrowTy // (register size) pieces first. Then unpack each of NarrowTy pieces to DstTy. // %1:_(DstTy), %2, %3, %4 = G_UNMERGE_VALUES %0:_(SrcTy) // // %5:_(NarrowTy), %6 = G_UNMERGE_VALUES %0:_(SrcTy) - reg sequence // %1:_(DstTy), %2 = G_UNMERGE_VALUES %5:_(NarrowTy) - sequence of bits in reg // %3:_(DstTy), %4 = G_UNMERGE_VALUES %6:_(NarrowTy) auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, SrcReg); const int NumUnmerge = Unmerge->getNumOperands() - 1; const int PartsPerUnmerge = NumDst / NumUnmerge; for (int I = 0; I != NumUnmerge; ++I) { auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); for (int J = 0; J != PartsPerUnmerge; ++J) MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); MIB.addUse(Unmerge.getReg(I)); } MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); // Requires compatible types. Otherwise user of DstReg did not perform unmerge // that should have been artifact combined. Most likely instruction that uses // DstReg has to do more/fewer elements legalization compatible with NarrowTy. assert(DstTy.isVector() && NarrowTy.isVector() && "Expected vector types"); assert((DstTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); if (NarrowTy == SrcTy) return UnableToLegalize; // This attempts to lower part of LCMTy merge/unmerge sequence. Intended use // is for old mir tests. Since the changes to more/fewer elements it should no // longer be possible to generate MIR like this when starting from llvm-ir // because LCMTy approach was replaced with merge/unmerge to vector elements. if (TypeIdx == 1) { assert(SrcTy.isVector() && "Expected vector types"); assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); if ((DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || (NarrowTy.getNumElements() >= SrcTy.getNumElements())) return UnableToLegalize; // %2:_(DstTy) = G_CONCAT_VECTORS %0:_(SrcTy), %1:_(SrcTy) // // %3:_(EltTy), %4, %5 = G_UNMERGE_VALUES %0:_(SrcTy) // %6:_(EltTy), %7, %8 = G_UNMERGE_VALUES %1:_(SrcTy) // %9:_(NarrowTy) = G_BUILD_VECTOR %3:_(EltTy), %4 // %10:_(NarrowTy) = G_BUILD_VECTOR %5:_(EltTy), %6 // %11:_(NarrowTy) = G_BUILD_VECTOR %7:_(EltTy), %8 // %2:_(DstTy) = G_CONCAT_VECTORS %9:_(NarrowTy), %10, %11 SmallVector Elts; LLT EltTy = MRI.getType(MI.getOperand(1).getReg()).getScalarType(); for (unsigned i = 1; i < MI.getNumOperands(); ++i) { auto Unmerge = MIRBuilder.buildUnmerge(EltTy, MI.getOperand(i).getReg()); for (unsigned j = 0; j < Unmerge->getNumDefs(); ++j) Elts.push_back(Unmerge.getReg(j)); } SmallVector NarrowTyElts; unsigned NumNarrowTyElts = NarrowTy.getNumElements(); unsigned NumNarrowTyPieces = DstTy.getNumElements() / NumNarrowTyElts; for (unsigned i = 0, Offset = 0; i < NumNarrowTyPieces; ++i, Offset += NumNarrowTyElts) { ArrayRef Pieces(&Elts[Offset], NumNarrowTyElts); NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0)); } MIRBuilder.buildMerge(DstReg, NarrowTyElts); MI.eraseFromParent(); return Legalized; } assert(TypeIdx == 0 && "Bad type index"); if ((NarrowTy.getSizeInBits() % SrcTy.getSizeInBits() != 0) || (DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0)) return UnableToLegalize; // This is most likely SrcTy (smaller then register size) packed in DstTy // (larger then register size) and since merge was not combined it will be // lowered to bit sequence packing into register. Merge SrcTy to NarrowTy // (register size) pieces first. Then merge each of NarrowTy pieces to DstTy. // %0:_(DstTy) = G_MERGE_VALUES %1:_(SrcTy), %2, %3, %4 // // %5:_(NarrowTy) = G_MERGE_VALUES %1:_(SrcTy), %2 - sequence of bits in reg // %6:_(NarrowTy) = G_MERGE_VALUES %3:_(SrcTy), %4 // %0:_(DstTy) = G_MERGE_VALUES %5:_(NarrowTy), %6 - reg sequence SmallVector NarrowTyElts; unsigned NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); unsigned NumSrcElts = SrcTy.isVector() ? SrcTy.getNumElements() : 1; unsigned NumElts = NarrowTy.getNumElements() / NumSrcElts; for (unsigned i = 0; i < NumParts; ++i) { SmallVector Sources; for (unsigned j = 0; j < NumElts; ++j) Sources.push_back(MI.getOperand(1 + i * NumElts + j).getReg()); NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Sources).getReg(0)); } MIRBuilder.buildMerge(DstReg, NarrowTyElts); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, LLT NarrowVecTy) { Register DstReg = MI.getOperand(0).getReg(); Register SrcVec = MI.getOperand(1).getReg(); Register InsertVal; bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); if (IsInsert) InsertVal = MI.getOperand(2).getReg(); Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); // TODO: Handle total scalarization case. if (!NarrowVecTy.isVector()) return UnableToLegalize; LLT VecTy = MRI.getType(SrcVec); // If the index is a constant, we can really break this down as you would // expect, and index into the target size pieces. int64_t IdxVal; auto MaybeCst = getIConstantVRegValWithLookThrough(Idx, MRI); if (MaybeCst) { IdxVal = MaybeCst->Value.getSExtValue(); // Avoid out of bounds indexing the pieces. if (IdxVal >= VecTy.getNumElements()) { MIRBuilder.buildUndef(DstReg); MI.eraseFromParent(); return Legalized; } SmallVector VecParts; LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); // Build a sequence of NarrowTy pieces in VecParts for this operand. LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, TargetOpcode::G_ANYEXT); unsigned NewNumElts = NarrowVecTy.getNumElements(); LLT IdxTy = MRI.getType(Idx); int64_t PartIdx = IdxVal / NewNumElts; auto NewIdx = MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); if (IsInsert) { LLT PartTy = MRI.getType(VecParts[PartIdx]); // Use the adjusted index to insert into one of the subvectors. auto InsertPart = MIRBuilder.buildInsertVectorElement( PartTy, VecParts[PartIdx], InsertVal, NewIdx); VecParts[PartIdx] = InsertPart.getReg(0); // Recombine the inserted subvector with the others to reform the result // vector. buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); } else { MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); } MI.eraseFromParent(); return Legalized; } // With a variable index, we can't perform the operation in a smaller type, so // we're forced to expand this. // // TODO: We could emit a chain of compare/select to figure out which piece to // index. return lowerExtractInsertVectorElt(MI); } LegalizerHelper::LegalizeResult LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx, LLT NarrowTy) { // FIXME: Don't know how to handle secondary types yet. if (TypeIdx != 0) return UnableToLegalize; // This implementation doesn't work for atomics. Give up instead of doing // something invalid. if (LdStMI.isAtomic()) return UnableToLegalize; bool IsLoad = isa(LdStMI); Register ValReg = LdStMI.getReg(0); Register AddrReg = LdStMI.getPointerReg(); LLT ValTy = MRI.getType(ValReg); // FIXME: Do we need a distinct NarrowMemory legalize action? if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) { LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); return UnableToLegalize; } int NumParts = -1; int NumLeftover = -1; LLT LeftoverTy; SmallVector NarrowRegs, NarrowLeftoverRegs; if (IsLoad) { std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); } else { if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, NarrowLeftoverRegs)) { NumParts = NarrowRegs.size(); NumLeftover = NarrowLeftoverRegs.size(); } } if (NumParts == -1) return UnableToLegalize; LLT PtrTy = MRI.getType(AddrReg); const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); unsigned TotalSize = ValTy.getSizeInBits(); // Split the load/store into PartTy sized pieces starting at Offset. If this // is a load, return the new registers in ValRegs. For a store, each elements // of ValRegs should be PartTy. Returns the next offset that needs to be // handled. auto MMO = LdStMI.getMMO(); auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl &ValRegs, unsigned Offset) -> unsigned { MachineFunction &MF = MIRBuilder.getMF(); unsigned PartSize = PartTy.getSizeInBits(); for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; Offset += PartSize, ++Idx) { unsigned ByteOffset = Offset / 8; Register NewAddrReg; MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); MachineMemOperand *NewMMO = MF.getMachineMemOperand(&MMO, ByteOffset, PartTy); if (IsLoad) { Register Dst = MRI.createGenericVirtualRegister(PartTy); ValRegs.push_back(Dst); MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); } else { MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); } } return Offset; }; unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); // Handle the rest of the register if this isn't an even type breakdown. if (LeftoverTy.isValid()) splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); if (IsLoad) { insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, LeftoverTy, NarrowLeftoverRegs); } LdStMI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { using namespace TargetOpcode; GenericMachineInstr &GMI = cast(MI); unsigned NumElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; switch (MI.getOpcode()) { case G_IMPLICIT_DEF: case G_TRUNC: case G_AND: case G_OR: case G_XOR: case G_ADD: case G_SUB: case G_MUL: case G_PTR_ADD: case G_SMULH: case G_UMULH: case G_FADD: case G_FMUL: case G_FSUB: case G_FNEG: case G_FABS: case G_FCANONICALIZE: case G_FDIV: case G_FREM: case G_FMA: case G_FMAD: case G_FPOW: case G_FEXP: case G_FEXP2: case G_FLOG: case G_FLOG2: case G_FLOG10: case G_FNEARBYINT: case G_FCEIL: case G_FFLOOR: case G_FRINT: case G_INTRINSIC_ROUND: case G_INTRINSIC_ROUNDEVEN: case G_INTRINSIC_TRUNC: case G_FCOS: case G_FSIN: case G_FSQRT: case G_BSWAP: case G_BITREVERSE: case G_SDIV: case G_UDIV: case G_SREM: case G_UREM: case G_SDIVREM: case G_UDIVREM: case G_SMIN: case G_SMAX: case G_UMIN: case G_UMAX: case G_ABS: case G_FMINNUM: case G_FMAXNUM: case G_FMINNUM_IEEE: case G_FMAXNUM_IEEE: case G_FMINIMUM: case G_FMAXIMUM: case G_FSHL: case G_FSHR: case G_ROTL: case G_ROTR: case G_FREEZE: case G_SADDSAT: case G_SSUBSAT: case G_UADDSAT: case G_USUBSAT: case G_UMULO: case G_SMULO: case G_SHL: case G_LSHR: case G_ASHR: case G_SSHLSAT: case G_USHLSAT: case G_CTLZ: case G_CTLZ_ZERO_UNDEF: case G_CTTZ: case G_CTTZ_ZERO_UNDEF: case G_CTPOP: case G_FCOPYSIGN: case G_ZEXT: case G_SEXT: case G_ANYEXT: case G_FPEXT: case G_FPTRUNC: case G_SITOFP: case G_UITOFP: case G_FPTOSI: case G_FPTOUI: case G_INTTOPTR: case G_PTRTOINT: case G_ADDRSPACE_CAST: return fewerElementsVectorMultiEltType(GMI, NumElts); case G_ICMP: case G_FCMP: return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*cpm predicate*/}); case G_SELECT: if (MRI.getType(MI.getOperand(1).getReg()).isVector()) return fewerElementsVectorMultiEltType(GMI, NumElts); return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*scalar cond*/}); case G_PHI: return fewerElementsVectorPhi(GMI, NumElts); case G_UNMERGE_VALUES: return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); case G_BUILD_VECTOR: assert(TypeIdx == 0 && "not a vector type index"); return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); case G_CONCAT_VECTORS: if (TypeIdx != 1) // TODO: This probably does work as expected already. return UnableToLegalize; return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); case G_EXTRACT_VECTOR_ELT: case G_INSERT_VECTOR_ELT: return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); case G_LOAD: case G_STORE: return reduceLoadStoreWidth(cast(MI), TypeIdx, NarrowTy); case G_SEXT_INREG: return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*imm*/}); GISEL_VECREDUCE_CASES_NONSEQ return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy); case G_SHUFFLE_VECTOR: return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy); default: return UnableToLegalize; } } LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle( MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); if (TypeIdx != 0) return UnableToLegalize; Register DstReg = MI.getOperand(0).getReg(); Register Src1Reg = MI.getOperand(1).getReg(); Register Src2Reg = MI.getOperand(2).getReg(); ArrayRef Mask = MI.getOperand(3).getShuffleMask(); LLT DstTy = MRI.getType(DstReg); LLT Src1Ty = MRI.getType(Src1Reg); LLT Src2Ty = MRI.getType(Src2Reg); // The shuffle should be canonicalized by now. if (DstTy != Src1Ty) return UnableToLegalize; if (DstTy != Src2Ty) return UnableToLegalize; if (!isPowerOf2_32(DstTy.getNumElements())) return UnableToLegalize; // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly. // Further legalization attempts will be needed to do split further. NarrowTy = DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2)); unsigned NewElts = NarrowTy.getNumElements(); SmallVector SplitSrc1Regs, SplitSrc2Regs; extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs); extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs); Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0], SplitSrc2Regs[1]}; Register Hi, Lo; // If Lo or Hi uses elements from at most two of the four input vectors, then // express it as a vector shuffle of those two inputs. Otherwise extract the // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR. SmallVector Ops; for (unsigned High = 0; High < 2; ++High) { Register &Output = High ? Hi : Lo; // Build a shuffle mask for the output, discovering on the fly which // input vectors to use as shuffle operands (recorded in InputUsed). // If building a suitable shuffle vector proves too hard, then bail // out with useBuildVector set. unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered. unsigned FirstMaskIdx = High * NewElts; bool UseBuildVector = false; for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { // The mask element. This indexes into the input. int Idx = Mask[FirstMaskIdx + MaskOffset]; // The input vector this mask element indexes into. unsigned Input = (unsigned)Idx / NewElts; if (Input >= array_lengthof(Inputs)) { // The mask element does not index into any input vector. Ops.push_back(-1); continue; } // Turn the index into an offset from the start of the input vector. Idx -= Input * NewElts; // Find or create a shuffle vector operand to hold this input. unsigned OpNo; for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) { if (InputUsed[OpNo] == Input) { // This input vector is already an operand. break; } else if (InputUsed[OpNo] == -1U) { // Create a new operand for this input vector. InputUsed[OpNo] = Input; break; } } if (OpNo >= array_lengthof(InputUsed)) { // More than two input vectors used! Give up on trying to create a // shuffle vector. Insert all elements into a BUILD_VECTOR instead. UseBuildVector = true; break; } // Add the mask index for the new shuffle vector. Ops.push_back(Idx + OpNo * NewElts); } if (UseBuildVector) { LLT EltTy = NarrowTy.getElementType(); SmallVector SVOps; // Extract the input elements by hand. for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { // The mask element. This indexes into the input. int Idx = Mask[FirstMaskIdx + MaskOffset]; // The input vector this mask element indexes into. unsigned Input = (unsigned)Idx / NewElts; if (Input >= array_lengthof(Inputs)) { // The mask element is "undef" or indexes off the end of the input. SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0)); continue; } // Turn the index into an offset from the start of the input vector. Idx -= Input * NewElts; // Extract the vector element by hand. SVOps.push_back(MIRBuilder .buildExtractVectorElement( EltTy, Inputs[Input], MIRBuilder.buildConstant(LLT::scalar(32), Idx)) .getReg(0)); } // Construct the Lo/Hi output using a G_BUILD_VECTOR. Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0); } else if (InputUsed[0] == -1U) { // No input vectors were used! The result is undefined. Output = MIRBuilder.buildUndef(NarrowTy).getReg(0); } else { Register Op0 = Inputs[InputUsed[0]]; // If only one input was used, use an undefined vector for the other. Register Op1 = InputUsed[1] == -1U ? MIRBuilder.buildUndef(NarrowTy).getReg(0) : Inputs[InputUsed[1]]; // At least one input vector was used. Create a new shuffle vector. Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0); } Ops.clear(); } MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi}); MI.eraseFromParent(); return Legalized; } static unsigned getScalarOpcForReduction(unsigned Opc) { unsigned ScalarOpc; switch (Opc) { case TargetOpcode::G_VECREDUCE_FADD: ScalarOpc = TargetOpcode::G_FADD; break; case TargetOpcode::G_VECREDUCE_FMUL: ScalarOpc = TargetOpcode::G_FMUL; break; case TargetOpcode::G_VECREDUCE_FMAX: ScalarOpc = TargetOpcode::G_FMAXNUM; break; case TargetOpcode::G_VECREDUCE_FMIN: ScalarOpc = TargetOpcode::G_FMINNUM; break; case TargetOpcode::G_VECREDUCE_ADD: ScalarOpc = TargetOpcode::G_ADD; break; case TargetOpcode::G_VECREDUCE_MUL: ScalarOpc = TargetOpcode::G_MUL; break; case TargetOpcode::G_VECREDUCE_AND: ScalarOpc = TargetOpcode::G_AND; break; case TargetOpcode::G_VECREDUCE_OR: ScalarOpc = TargetOpcode::G_OR; break; case TargetOpcode::G_VECREDUCE_XOR: ScalarOpc = TargetOpcode::G_XOR; break; case TargetOpcode::G_VECREDUCE_SMAX: ScalarOpc = TargetOpcode::G_SMAX; break; case TargetOpcode::G_VECREDUCE_SMIN: ScalarOpc = TargetOpcode::G_SMIN; break; case TargetOpcode::G_VECREDUCE_UMAX: ScalarOpc = TargetOpcode::G_UMAX; break; case TargetOpcode::G_VECREDUCE_UMIN: ScalarOpc = TargetOpcode::G_UMIN; break; default: llvm_unreachable("Unhandled reduction"); } return ScalarOpc; } LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions( MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { unsigned Opc = MI.getOpcode(); assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD && Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL && "Sequential reductions not expected"); if (TypeIdx != 1) return UnableToLegalize; // The semantics of the normal non-sequential reductions allow us to freely // re-associate the operation. Register SrcReg = MI.getOperand(1).getReg(); LLT SrcTy = MRI.getType(SrcReg); Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); if (NarrowTy.isVector() && (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)) return UnableToLegalize; unsigned ScalarOpc = getScalarOpcForReduction(Opc); SmallVector SplitSrcs; // If NarrowTy is a scalar then we're being asked to scalarize. const unsigned NumParts = NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements() : SrcTy.getNumElements(); extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs); if (NarrowTy.isScalar()) { if (DstTy != NarrowTy) return UnableToLegalize; // FIXME: handle implicit extensions. if (isPowerOf2_32(NumParts)) { // Generate a tree of scalar operations to reduce the critical path. SmallVector PartialResults; unsigned NumPartsLeft = NumParts; while (NumPartsLeft > 1) { for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) { PartialResults.emplace_back( MIRBuilder .buildInstr(ScalarOpc, {NarrowTy}, {SplitSrcs[Idx], SplitSrcs[Idx + 1]}) .getReg(0)); } SplitSrcs = PartialResults; PartialResults.clear(); NumPartsLeft = SplitSrcs.size(); } assert(SplitSrcs.size() == 1); MIRBuilder.buildCopy(DstReg, SplitSrcs[0]); MI.eraseFromParent(); return Legalized; } // If we can't generate a tree, then just do sequential operations. Register Acc = SplitSrcs[0]; for (unsigned Idx = 1; Idx < NumParts; ++Idx) Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]}) .getReg(0); MIRBuilder.buildCopy(DstReg, Acc); MI.eraseFromParent(); return Legalized; } SmallVector PartialReductions; for (unsigned Part = 0; Part < NumParts; ++Part) { PartialReductions.push_back( MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0)); } // If the types involved are powers of 2, we can generate intermediate vector // ops, before generating a final reduction operation. if (isPowerOf2_32(SrcTy.getNumElements()) && isPowerOf2_32(NarrowTy.getNumElements())) { return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc); } Register Acc = PartialReductions[0]; for (unsigned Part = 1; Part < NumParts; ++Part) { if (Part == NumParts - 1) { MIRBuilder.buildInstr(ScalarOpc, {DstReg}, {Acc, PartialReductions[Part]}); } else { Acc = MIRBuilder .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]}) .getReg(0); } } MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg, LLT SrcTy, LLT NarrowTy, unsigned ScalarOpc) { SmallVector SplitSrcs; // Split the sources into NarrowTy size pieces. extractParts(SrcReg, NarrowTy, SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs); // We're going to do a tree reduction using vector operations until we have // one NarrowTy size value left. while (SplitSrcs.size() > 1) { SmallVector PartialRdxs; for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) { Register LHS = SplitSrcs[Idx]; Register RHS = SplitSrcs[Idx + 1]; // Create the intermediate vector op. Register Res = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0); PartialRdxs.push_back(Res); } SplitSrcs = std::move(PartialRdxs); } // Finally generate the requested NarrowTy based reduction. Observer.changingInstr(MI); MI.getOperand(1).setReg(SplitSrcs[0]); Observer.changedInstr(MI); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, const LLT HalfTy, const LLT AmtTy) { Register InL = MRI.createGenericVirtualRegister(HalfTy); Register InH = MRI.createGenericVirtualRegister(HalfTy); MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); if (Amt.isZero()) { MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); MI.eraseFromParent(); return Legalized; } LLT NVT = HalfTy; unsigned NVTBits = HalfTy.getSizeInBits(); unsigned VTBits = 2 * NVTBits; SrcOp Lo(Register(0)), Hi(Register(0)); if (MI.getOpcode() == TargetOpcode::G_SHL) { if (Amt.ugt(VTBits)) { Lo = Hi = MIRBuilder.buildConstant(NVT, 0); } else if (Amt.ugt(NVTBits)) { Lo = MIRBuilder.buildConstant(NVT, 0); Hi = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); } else if (Amt == NVTBits) { Lo = MIRBuilder.buildConstant(NVT, 0); Hi = InL; } else { Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); auto OrLHS = MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); auto OrRHS = MIRBuilder.buildLShr( NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); } } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { if (Amt.ugt(VTBits)) { Lo = Hi = MIRBuilder.buildConstant(NVT, 0); } else if (Amt.ugt(NVTBits)) { Lo = MIRBuilder.buildLShr(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); Hi = MIRBuilder.buildConstant(NVT, 0); } else if (Amt == NVTBits) { Lo = InH; Hi = MIRBuilder.buildConstant(NVT, 0); } else { auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); auto OrRHS = MIRBuilder.buildShl( NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); } } else { if (Amt.ugt(VTBits)) { Hi = Lo = MIRBuilder.buildAShr( NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); } else if (Amt.ugt(NVTBits)) { Lo = MIRBuilder.buildAShr(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); Hi = MIRBuilder.buildAShr(NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); } else if (Amt == NVTBits) { Lo = InH; Hi = MIRBuilder.buildAShr(NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); } else { auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); auto OrRHS = MIRBuilder.buildShl( NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); } } MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); MI.eraseFromParent(); return Legalized; } // TODO: Optimize if constant shift amount. LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, LLT RequestedTy) { if (TypeIdx == 1) { Observer.changingInstr(MI); narrowScalarSrc(MI, RequestedTy, 2); Observer.changedInstr(MI); return Legalized; } Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); if (DstTy.isVector()) return UnableToLegalize; Register Amt = MI.getOperand(2).getReg(); LLT ShiftAmtTy = MRI.getType(Amt); const unsigned DstEltSize = DstTy.getScalarSizeInBits(); if (DstEltSize % 2 != 0) return UnableToLegalize; // Ignore the input type. We can only go to exactly half the size of the // input. If that isn't small enough, the resulting pieces will be further // legalized. const unsigned NewBitSize = DstEltSize / 2; const LLT HalfTy = LLT::scalar(NewBitSize); const LLT CondTy = LLT::scalar(1); if (auto VRegAndVal = getIConstantVRegValWithLookThrough(Amt, MRI)) { return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy, ShiftAmtTy); } // TODO: Expand with known bits. // Handle the fully general expansion by an unknown amount. auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); Register InL = MRI.createGenericVirtualRegister(HalfTy); Register InH = MRI.createGenericVirtualRegister(HalfTy); MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); Register ResultRegs[2]; switch (MI.getOpcode()) { case TargetOpcode::G_SHL: { // Short: ShAmt < NewBitSize auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); // Long: ShAmt >= NewBitSize auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); auto Hi = MIRBuilder.buildSelect( HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); ResultRegs[0] = Lo.getReg(0); ResultRegs[1] = Hi.getReg(0); break; } case TargetOpcode::G_LSHR: case TargetOpcode::G_ASHR: { // Short: ShAmt < NewBitSize auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); // Long: ShAmt >= NewBitSize MachineInstrBuilder HiL; if (MI.getOpcode() == TargetOpcode::G_LSHR) { HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. } else { auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. } auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, AmtExcess}); // Lo from Hi part. auto Lo = MIRBuilder.buildSelect( HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); ResultRegs[0] = Lo.getReg(0); ResultRegs[1] = Hi.getReg(0); break; } default: llvm_unreachable("not a shift"); } MIRBuilder.buildMerge(DstReg, ResultRegs); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, LLT MoreTy) { assert(TypeIdx == 0 && "Expecting only Idx 0"); Observer.changingInstr(MI); for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); moreElementsVectorSrc(MI, MoreTy, I); } MachineBasicBlock &MBB = *MI.getParent(); MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); moreElementsVectorDst(MI, MoreTy, 0); Observer.changedInstr(MI); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, LLT MoreTy) { unsigned Opc = MI.getOpcode(); switch (Opc) { case TargetOpcode::G_IMPLICIT_DEF: case TargetOpcode::G_LOAD: { if (TypeIdx != 0) return UnableToLegalize; Observer.changingInstr(MI); moreElementsVectorDst(MI, MoreTy, 0); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_STORE: if (TypeIdx != 0) return UnableToLegalize; Observer.changingInstr(MI); moreElementsVectorSrc(MI, MoreTy, 0); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_AND: case TargetOpcode::G_OR: case TargetOpcode::G_XOR: case TargetOpcode::G_ADD: case TargetOpcode::G_SUB: case TargetOpcode::G_MUL: case TargetOpcode::G_FADD: case TargetOpcode::G_FMUL: case TargetOpcode::G_UADDSAT: case TargetOpcode::G_USUBSAT: case TargetOpcode::G_SADDSAT: case TargetOpcode::G_SSUBSAT: case TargetOpcode::G_SMIN: case TargetOpcode::G_SMAX: case TargetOpcode::G_UMIN: case TargetOpcode::G_UMAX: case TargetOpcode::G_FMINNUM: case TargetOpcode::G_FMAXNUM: case TargetOpcode::G_FMINNUM_IEEE: case TargetOpcode::G_FMAXNUM_IEEE: case TargetOpcode::G_FMINIMUM: case TargetOpcode::G_FMAXIMUM: { Observer.changingInstr(MI); moreElementsVectorSrc(MI, MoreTy, 1); moreElementsVectorSrc(MI, MoreTy, 2); moreElementsVectorDst(MI, MoreTy, 0); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_FMA: case TargetOpcode::G_FSHR: case TargetOpcode::G_FSHL: { Observer.changingInstr(MI); moreElementsVectorSrc(MI, MoreTy, 1); moreElementsVectorSrc(MI, MoreTy, 2); moreElementsVectorSrc(MI, MoreTy, 3); moreElementsVectorDst(MI, MoreTy, 0); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_EXTRACT: if (TypeIdx != 1) return UnableToLegalize; Observer.changingInstr(MI); moreElementsVectorSrc(MI, MoreTy, 1); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_INSERT: case TargetOpcode::G_FREEZE: case TargetOpcode::G_FNEG: case TargetOpcode::G_FABS: case TargetOpcode::G_BSWAP: case TargetOpcode::G_FCANONICALIZE: case TargetOpcode::G_SEXT_INREG: if (TypeIdx != 0) return UnableToLegalize; Observer.changingInstr(MI); moreElementsVectorSrc(MI, MoreTy, 1); moreElementsVectorDst(MI, MoreTy, 0); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_SELECT: if (TypeIdx != 0) return UnableToLegalize; if (MRI.getType(MI.getOperand(1).getReg()).isVector()) return UnableToLegalize; Observer.changingInstr(MI); moreElementsVectorSrc(MI, MoreTy, 2); moreElementsVectorSrc(MI, MoreTy, 3); moreElementsVectorDst(MI, MoreTy, 0); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_UNMERGE_VALUES: return UnableToLegalize; case TargetOpcode::G_PHI: return moreElementsVectorPhi(MI, TypeIdx, MoreTy); case TargetOpcode::G_SHUFFLE_VECTOR: return moreElementsVectorShuffle(MI, TypeIdx, MoreTy); case TargetOpcode::G_BUILD_VECTOR: { SmallVector Elts; for (auto Op : MI.uses()) { Elts.push_back(Op.getReg()); } for (unsigned i = Elts.size(); i < MoreTy.getNumElements(); ++i) { Elts.push_back(MIRBuilder.buildUndef(MoreTy.getScalarType())); } MIRBuilder.buildDeleteTrailingVectorElements( MI.getOperand(0).getReg(), MIRBuilder.buildInstr(Opc, {MoreTy}, Elts)); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_TRUNC: { Observer.changingInstr(MI); moreElementsVectorSrc(MI, MoreTy, 1); moreElementsVectorDst(MI, MoreTy, 0); Observer.changedInstr(MI); return Legalized; } default: return UnableToLegalize; } } LegalizerHelper::LegalizeResult LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI, unsigned int TypeIdx, LLT MoreTy) { if (TypeIdx != 0) return UnableToLegalize; Register DstReg = MI.getOperand(0).getReg(); Register Src1Reg = MI.getOperand(1).getReg(); Register Src2Reg = MI.getOperand(2).getReg(); ArrayRef Mask = MI.getOperand(3).getShuffleMask(); LLT DstTy = MRI.getType(DstReg); LLT Src1Ty = MRI.getType(Src1Reg); LLT Src2Ty = MRI.getType(Src2Reg); unsigned NumElts = DstTy.getNumElements(); unsigned WidenNumElts = MoreTy.getNumElements(); // Expect a canonicalized shuffle. if (DstTy != Src1Ty || DstTy != Src2Ty) return UnableToLegalize; moreElementsVectorSrc(MI, MoreTy, 1); moreElementsVectorSrc(MI, MoreTy, 2); // Adjust mask based on new input vector length. SmallVector NewMask; for (unsigned I = 0; I != NumElts; ++I) { int Idx = Mask[I]; if (Idx < static_cast(NumElts)) NewMask.push_back(Idx); else NewMask.push_back(Idx - NumElts + WidenNumElts); } for (unsigned I = NumElts; I != WidenNumElts; ++I) NewMask.push_back(-1); moreElementsVectorDst(MI, MoreTy, 0); MIRBuilder.setInstrAndDebugLoc(MI); MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), MI.getOperand(2).getReg(), NewMask); MI.eraseFromParent(); return Legalized; } void LegalizerHelper::multiplyRegisters(SmallVectorImpl &DstRegs, ArrayRef Src1Regs, ArrayRef Src2Regs, LLT NarrowTy) { MachineIRBuilder &B = MIRBuilder; unsigned SrcParts = Src1Regs.size(); unsigned DstParts = DstRegs.size(); unsigned DstIdx = 0; // Low bits of the result. Register FactorSum = B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); DstRegs[DstIdx] = FactorSum; unsigned CarrySumPrevDstIdx; SmallVector Factors; for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { // Collect low parts of muls for DstIdx. for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; i <= std::min(DstIdx, SrcParts - 1); ++i) { MachineInstrBuilder Mul = B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); Factors.push_back(Mul.getReg(0)); } // Collect high parts of muls from previous DstIdx. for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { MachineInstrBuilder Umulh = B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); Factors.push_back(Umulh.getReg(0)); } // Add CarrySum from additions calculated for previous DstIdx. if (DstIdx != 1) { Factors.push_back(CarrySumPrevDstIdx); } Register CarrySum; // Add all factors and accumulate all carries into CarrySum. if (DstIdx != DstParts - 1) { MachineInstrBuilder Uaddo = B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); FactorSum = Uaddo.getReg(0); CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); for (unsigned i = 2; i < Factors.size(); ++i) { MachineInstrBuilder Uaddo = B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); FactorSum = Uaddo.getReg(0); MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); } } else { // Since value for the next index is not calculated, neither is CarrySum. FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); for (unsigned i = 2; i < Factors.size(); ++i) FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); } CarrySumPrevDstIdx = CarrySum; DstRegs[DstIdx] = FactorSum; Factors.clear(); } } LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { if (TypeIdx != 0) return UnableToLegalize; Register DstReg = MI.getOperand(0).getReg(); LLT DstType = MRI.getType(DstReg); // FIXME: add support for vector types if (DstType.isVector()) return UnableToLegalize; unsigned Opcode = MI.getOpcode(); unsigned OpO, OpE, OpF; switch (Opcode) { case TargetOpcode::G_SADDO: case TargetOpcode::G_SADDE: case TargetOpcode::G_UADDO: case TargetOpcode::G_UADDE: case TargetOpcode::G_ADD: OpO = TargetOpcode::G_UADDO; OpE = TargetOpcode::G_UADDE; OpF = TargetOpcode::G_UADDE; if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) OpF = TargetOpcode::G_SADDE; break; case TargetOpcode::G_SSUBO: case TargetOpcode::G_SSUBE: case TargetOpcode::G_USUBO: case TargetOpcode::G_USUBE: case TargetOpcode::G_SUB: OpO = TargetOpcode::G_USUBO; OpE = TargetOpcode::G_USUBE; OpF = TargetOpcode::G_USUBE; if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) OpF = TargetOpcode::G_SSUBE; break; default: llvm_unreachable("Unexpected add/sub opcode!"); } // 1 for a plain add/sub, 2 if this is an operation with a carry-out. unsigned NumDefs = MI.getNumExplicitDefs(); Register Src1 = MI.getOperand(NumDefs).getReg(); Register Src2 = MI.getOperand(NumDefs + 1).getReg(); Register CarryDst, CarryIn; if (NumDefs == 2) CarryDst = MI.getOperand(1).getReg(); if (MI.getNumOperands() == NumDefs + 3) CarryIn = MI.getOperand(NumDefs + 2).getReg(); LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); LLT LeftoverTy, DummyTy; SmallVector Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs; extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left); extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left); int NarrowParts = Src1Regs.size(); for (int I = 0, E = Src1Left.size(); I != E; ++I) { Src1Regs.push_back(Src1Left[I]); Src2Regs.push_back(Src2Left[I]); } DstRegs.reserve(Src1Regs.size()); for (int i = 0, e = Src1Regs.size(); i != e; ++i) { Register DstReg = MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i])); Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); // Forward the final carry-out to the destination register if (i == e - 1 && CarryDst) CarryOut = CarryDst; if (!CarryIn) { MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, {Src1Regs[i], Src2Regs[i]}); } else if (i == e - 1) { MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, {Src1Regs[i], Src2Regs[i], CarryIn}); } else { MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, {Src1Regs[i], Src2Regs[i], CarryIn}); } DstRegs.push_back(DstReg); CarryIn = CarryOut; } insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy, makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy, makeArrayRef(DstRegs).drop_front(NarrowParts)); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { Register DstReg = MI.getOperand(0).getReg(); Register Src1 = MI.getOperand(1).getReg(); Register Src2 = MI.getOperand(2).getReg(); LLT Ty = MRI.getType(DstReg); if (Ty.isVector()) return UnableToLegalize; unsigned Size = Ty.getSizeInBits(); unsigned NarrowSize = NarrowTy.getSizeInBits(); if (Size % NarrowSize != 0) return UnableToLegalize; unsigned NumParts = Size / NarrowSize; bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; unsigned DstTmpParts = NumParts * (IsMulHigh ? 2 : 1); SmallVector Src1Parts, Src2Parts; SmallVector DstTmpRegs(DstTmpParts); extractParts(Src1, NarrowTy, NumParts, Src1Parts); extractParts(Src2, NarrowTy, NumParts, Src2Parts); multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); // Take only high half of registers if this is high mul. ArrayRef DstRegs(&DstTmpRegs[DstTmpParts - NumParts], NumParts); MIRBuilder.buildMerge(DstReg, DstRegs); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { if (TypeIdx != 0) return UnableToLegalize; bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI; Register Src = MI.getOperand(1).getReg(); LLT SrcTy = MRI.getType(Src); // If all finite floats fit into the narrowed integer type, we can just swap // out the result type. This is practically only useful for conversions from // half to at least 16-bits, so just handle the one case. if (SrcTy.getScalarType() != LLT::scalar(16) || NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u)) return UnableToLegalize; Observer.changingInstr(MI); narrowScalarDst(MI, NarrowTy, 0, IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT); Observer.changedInstr(MI); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { if (TypeIdx != 1) return UnableToLegalize; uint64_t NarrowSize = NarrowTy.getSizeInBits(); int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); // FIXME: add support for when SizeOp1 isn't an exact multiple of // NarrowSize. if (SizeOp1 % NarrowSize != 0) return UnableToLegalize; int NumParts = SizeOp1 / NarrowSize; SmallVector SrcRegs, DstRegs; SmallVector Indexes; extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); Register OpReg = MI.getOperand(0).getReg(); uint64_t OpStart = MI.getOperand(2).getImm(); uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); for (int i = 0; i < NumParts; ++i) { unsigned SrcStart = i * NarrowSize; if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { // No part of the extract uses this subregister, ignore it. continue; } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { // The entire subregister is extracted, forward the value. DstRegs.push_back(SrcRegs[i]); continue; } // OpSegStart is where this destination segment would start in OpReg if it // extended infinitely in both directions. int64_t ExtractOffset; uint64_t SegSize; if (OpStart < SrcStart) { ExtractOffset = 0; SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); } else { ExtractOffset = OpStart - SrcStart; SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); } Register SegReg = SrcRegs[i]; if (ExtractOffset != 0 || SegSize != NarrowSize) { // A genuine extract is needed. SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); } DstRegs.push_back(SegReg); } Register DstReg = MI.getOperand(0).getReg(); if (MRI.getType(DstReg).isVector()) MIRBuilder.buildBuildVector(DstReg, DstRegs); else if (DstRegs.size() > 1) MIRBuilder.buildMerge(DstReg, DstRegs); else MIRBuilder.buildCopy(DstReg, DstRegs[0]); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { // FIXME: Don't know how to handle secondary types yet. if (TypeIdx != 0) return UnableToLegalize; SmallVector SrcRegs, LeftoverRegs, DstRegs; SmallVector Indexes; LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); LLT LeftoverTy; extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs, LeftoverRegs); for (Register Reg : LeftoverRegs) SrcRegs.push_back(Reg); uint64_t NarrowSize = NarrowTy.getSizeInBits(); Register OpReg = MI.getOperand(2).getReg(); uint64_t OpStart = MI.getOperand(3).getImm(); uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); for (int I = 0, E = SrcRegs.size(); I != E; ++I) { unsigned DstStart = I * NarrowSize; if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { // The entire subregister is defined by this insert, forward the new // value. DstRegs.push_back(OpReg); continue; } Register SrcReg = SrcRegs[I]; if (MRI.getType(SrcRegs[I]) == LeftoverTy) { // The leftover reg is smaller than NarrowTy, so we need to extend it. SrcReg = MRI.createGenericVirtualRegister(NarrowTy); MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]); } if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { // No part of the insert affects this subregister, forward the original. DstRegs.push_back(SrcReg); continue; } // OpSegStart is where this destination segment would start in OpReg if it // extended infinitely in both directions. int64_t ExtractOffset, InsertOffset; uint64_t SegSize; if (OpStart < DstStart) { InsertOffset = 0; ExtractOffset = DstStart - OpStart; SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); } else { InsertOffset = OpStart - DstStart; ExtractOffset = 0; SegSize = std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); } Register SegReg = OpReg; if (ExtractOffset != 0 || SegSize != OpSize) { // A genuine extract is needed. SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); } Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset); DstRegs.push_back(DstReg); } uint64_t WideSize = DstRegs.size() * NarrowSize; Register DstReg = MI.getOperand(0).getReg(); if (WideSize > RegTy.getSizeInBits()) { Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize)); MIRBuilder.buildMerge(MergeReg, DstRegs); MIRBuilder.buildTrunc(DstReg, MergeReg); } else MIRBuilder.buildMerge(DstReg, DstRegs); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); assert(MI.getNumOperands() == 3 && TypeIdx == 0); SmallVector DstRegs, DstLeftoverRegs; SmallVector Src0Regs, Src0LeftoverRegs; SmallVector Src1Regs, Src1LeftoverRegs; LLT LeftoverTy; if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, Src0Regs, Src0LeftoverRegs)) return UnableToLegalize; LLT Unused; if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, Src1Regs, Src1LeftoverRegs)) llvm_unreachable("inconsistent extractParts result"); for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, {Src0Regs[I], Src1Regs[I]}); DstRegs.push_back(Inst.getReg(0)); } for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { auto Inst = MIRBuilder.buildInstr( MI.getOpcode(), {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); DstLeftoverRegs.push_back(Inst.getReg(0)); } insertParts(DstReg, DstTy, NarrowTy, DstRegs, LeftoverTy, DstLeftoverRegs); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { if (TypeIdx != 0) return UnableToLegalize; Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(DstReg); if (DstTy.isVector()) return UnableToLegalize; SmallVector Parts; LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); buildWidenedRemergeToDst(DstReg, LCMTy, Parts); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { if (TypeIdx != 0) return UnableToLegalize; Register CondReg = MI.getOperand(1).getReg(); LLT CondTy = MRI.getType(CondReg); if (CondTy.isVector()) // TODO: Handle vselect return UnableToLegalize; Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); SmallVector DstRegs, DstLeftoverRegs; SmallVector Src1Regs, Src1LeftoverRegs; SmallVector Src2Regs, Src2LeftoverRegs; LLT LeftoverTy; if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, Src1Regs, Src1LeftoverRegs)) return UnableToLegalize; LLT Unused; if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, Src2Regs, Src2LeftoverRegs)) llvm_unreachable("inconsistent extractParts result"); for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { auto Select = MIRBuilder.buildSelect(NarrowTy, CondReg, Src1Regs[I], Src2Regs[I]); DstRegs.push_back(Select.getReg(0)); } for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { auto Select = MIRBuilder.buildSelect( LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); DstLeftoverRegs.push_back(Select.getReg(0)); } insertParts(DstReg, DstTy, NarrowTy, DstRegs, LeftoverTy, DstLeftoverRegs); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { if (TypeIdx != 1) return UnableToLegalize; Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(DstReg); LLT SrcTy = MRI.getType(SrcReg); unsigned NarrowSize = NarrowTy.getSizeInBits(); if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; MachineIRBuilder &B = MIRBuilder; auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) auto C_0 = B.buildConstant(NarrowTy, 0); auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), UnmergeSrc.getReg(1), C_0); auto LoCTLZ = IsUndef ? B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); MI.eraseFromParent(); return Legalized; } return UnableToLegalize; } LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { if (TypeIdx != 1) return UnableToLegalize; Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(DstReg); LLT SrcTy = MRI.getType(SrcReg); unsigned NarrowSize = NarrowTy.getSizeInBits(); if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; MachineIRBuilder &B = MIRBuilder; auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) auto C_0 = B.buildConstant(NarrowTy, 0); auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), UnmergeSrc.getReg(0), C_0); auto HiCTTZ = IsUndef ? B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); MI.eraseFromParent(); return Legalized; } return UnableToLegalize; } LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { if (TypeIdx != 1) return UnableToLegalize; Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); unsigned NarrowSize = NarrowTy.getSizeInBits(); if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); MI.eraseFromParent(); return Legalized; } return UnableToLegalize; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerBitCount(MachineInstr &MI) { unsigned Opc = MI.getOpcode(); const auto &TII = MIRBuilder.getTII(); auto isSupported = [this](const LegalityQuery &Q) { auto QAction = LI.getAction(Q).Action; return QAction == Legal || QAction == Libcall || QAction == Custom; }; switch (Opc) { default: return UnableToLegalize; case TargetOpcode::G_CTLZ_ZERO_UNDEF: { // This trivially expands to CTLZ. Observer.changingInstr(MI); MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_CTLZ: { Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(DstReg); LLT SrcTy = MRI.getType(SrcReg); unsigned Len = SrcTy.getSizeInBits(); if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); auto ICmp = MIRBuilder.buildICmp( CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); auto LenConst = MIRBuilder.buildConstant(DstTy, Len); MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); MI.eraseFromParent(); return Legalized; } // for now, we do this: // NewLen = NextPowerOf2(Len); // x = x | (x >> 1); // x = x | (x >> 2); // ... // x = x | (x >>16); // x = x | (x >>32); // for 64-bit input // Upto NewLen/2 // return Len - popcount(x); // // Ref: "Hacker's Delight" by Henry Warren Register Op = SrcReg; unsigned NewLen = PowerOf2Ceil(Len); for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); auto MIBOp = MIRBuilder.buildOr( SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); Op = MIBOp.getReg(0); } auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), MIBPop); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_CTTZ_ZERO_UNDEF: { // This trivially expands to CTTZ. Observer.changingInstr(MI); MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_CTTZ: { Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(DstReg); LLT SrcTy = MRI.getType(SrcReg); unsigned Len = SrcTy.getSizeInBits(); if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with // zero. auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); auto Zero = MIRBuilder.buildConstant(SrcTy, 0); auto ICmp = MIRBuilder.buildICmp( CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); auto LenConst = MIRBuilder.buildConstant(DstTy, Len); MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); MI.eraseFromParent(); return Legalized; } // for now, we use: { return popcount(~x & (x - 1)); } // unless the target has ctlz but not ctpop, in which case we use: // { return 32 - nlz(~x & (x-1)); } // Ref: "Hacker's Delight" by Henry Warren auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); auto MIBTmp = MIRBuilder.buildAnd( SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); MI.eraseFromParent(); return Legalized; } MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); MI.getOperand(1).setReg(MIBTmp.getReg(0)); return Legalized; } case TargetOpcode::G_CTPOP: { Register SrcReg = MI.getOperand(1).getReg(); LLT Ty = MRI.getType(SrcReg); unsigned Size = Ty.getSizeInBits(); MachineIRBuilder &B = MIRBuilder; // Count set bits in blocks of 2 bits. Default approach would be // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } // We use following formula instead: // B2Count = val - { (val >> 1) & 0x55555555 } // since it gives same result in blocks of 2 with one instruction less. auto C_1 = B.buildConstant(Ty, 1); auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); // In order to get count in blocks of 4 add values from adjacent block of 2. // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } auto C_2 = B.buildConstant(Ty, 2); auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); // For count in blocks of 8 bits we don't have to mask high 4 bits before // addition since count value sits in range {0,...,8} and 4 bits are enough // to hold such binary values. After addition high 4 bits still hold count // of set bits in high 4 bit block, set them to zero and get 8 bit result. // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F auto C_4 = B.buildConstant(Ty, 4); auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); auto ResTmp = B.buildMul(Ty, B8Count, MulMask); // Shift count result from 8 high bits to low bits. auto C_SizeM8 = B.buildConstant(Ty, Size - 8); B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); MI.eraseFromParent(); return Legalized; } } } // Check that (every element of) Reg is undef or not an exact multiple of BW. static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, Register Reg, unsigned BW) { return matchUnaryPredicate( MRI, Reg, [=](const Constant *C) { // Null constant here means an undef. const ConstantInt *CI = dyn_cast_or_null(C); return !CI || CI->getValue().urem(BW) != 0; }, /*AllowUndefs*/ true); } LegalizerHelper::LegalizeResult LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) { Register Dst = MI.getOperand(0).getReg(); Register X = MI.getOperand(1).getReg(); Register Y = MI.getOperand(2).getReg(); Register Z = MI.getOperand(3).getReg(); LLT Ty = MRI.getType(Dst); LLT ShTy = MRI.getType(Z); unsigned BW = Ty.getScalarSizeInBits(); if (!isPowerOf2_32(BW)) return UnableToLegalize; const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { // fshl X, Y, Z -> fshr X, Y, -Z // fshr X, Y, Z -> fshl X, Y, -Z auto Zero = MIRBuilder.buildConstant(ShTy, 0); Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0); } else { // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z auto One = MIRBuilder.buildConstant(ShTy, 1); if (IsFSHL) { Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); X = MIRBuilder.buildLShr(Ty, X, One).getReg(0); } else { X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0); } Z = MIRBuilder.buildNot(ShTy, Z).getReg(0); } MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z}); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) { Register Dst = MI.getOperand(0).getReg(); Register X = MI.getOperand(1).getReg(); Register Y = MI.getOperand(2).getReg(); Register Z = MI.getOperand(3).getReg(); LLT Ty = MRI.getType(Dst); LLT ShTy = MRI.getType(Z); const unsigned BW = Ty.getScalarSizeInBits(); const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; Register ShX, ShY; Register ShAmt, InvShAmt; // FIXME: Emit optimized urem by constant instead of letting it expand later. if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { // fshl: X << C | Y >> (BW - C) // fshr: X << (BW - C) | Y >> C // where C = Z % BW is not zero auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0); ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0); ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0); } else { // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1); if (isPowerOf2_32(BW)) { // Z % BW -> Z & (BW - 1) ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0); // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) auto NotZ = MIRBuilder.buildNot(ShTy, Z); InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0); } else { auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0); } auto One = MIRBuilder.buildConstant(ShTy, 1); if (IsFSHL) { ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0); auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One); ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0); } else { auto ShX1 = MIRBuilder.buildShl(Ty, X, One); ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0); ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0); } } MIRBuilder.buildOr(Dst, ShX, ShY); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerFunnelShift(MachineInstr &MI) { // These operations approximately do the following (while avoiding undefined // shifts by BW): // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) Register Dst = MI.getOperand(0).getReg(); LLT Ty = MRI.getType(Dst); LLT ShTy = MRI.getType(MI.getOperand(3).getReg()); bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; // TODO: Use smarter heuristic that accounts for vector legalization. if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower) return lowerFunnelShiftAsShifts(MI); // This only works for powers of 2, fallback to shifts if it fails. LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI); if (Result == UnableToLegalize) return lowerFunnelShiftAsShifts(MI); return Result; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) { Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); Register Amt = MI.getOperand(2).getReg(); LLT AmtTy = MRI.getType(Amt); auto Zero = MIRBuilder.buildConstant(AmtTy, 0); bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt); MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg}); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) { Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); Register Amt = MI.getOperand(2).getReg(); LLT DstTy = MRI.getType(Dst); LLT SrcTy = MRI.getType(Src); LLT AmtTy = MRI.getType(Amt); unsigned EltSizeInBits = DstTy.getScalarSizeInBits(); bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; MIRBuilder.setInstrAndDebugLoc(MI); // If a rotate in the other direction is supported, use it. unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) && isPowerOf2_32(EltSizeInBits)) return lowerRotateWithReverseRotate(MI); // If a funnel shift is supported, use it. unsigned FShOpc = IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; unsigned RevFsh = !IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; bool IsFShLegal = false; if ((IsFShLegal = LI.isLegalOrCustom({FShOpc, {DstTy, AmtTy}})) || LI.isLegalOrCustom({RevFsh, {DstTy, AmtTy}})) { auto buildFunnelShift = [&](unsigned Opc, Register R1, Register R2, Register R3) { MIRBuilder.buildInstr(Opc, {R1}, {R2, R2, R3}); MI.eraseFromParent(); return Legalized; }; // If a funnel shift in the other direction is supported, use it. if (IsFShLegal) { return buildFunnelShift(FShOpc, Dst, Src, Amt); } else if (isPowerOf2_32(EltSizeInBits)) { Amt = MIRBuilder.buildNeg(DstTy, Amt).getReg(0); return buildFunnelShift(RevFsh, Dst, Src, Amt); } } auto Zero = MIRBuilder.buildConstant(AmtTy, 0); unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR; unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL; auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1); Register ShVal; Register RevShiftVal; if (isPowerOf2_32(EltSizeInBits)) { // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt); auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC); ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC); RevShiftVal = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0); } else { // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits); auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC); ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt); auto One = MIRBuilder.buildConstant(AmtTy, 1); auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One}); RevShiftVal = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0); } MIRBuilder.buildOr(Dst, ShVal, RevShiftVal); MI.eraseFromParent(); return Legalized; } // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float // representation. LegalizerHelper::LegalizeResult LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); const LLT S64 = LLT::scalar(64); const LLT S32 = LLT::scalar(32); const LLT S1 = LLT::scalar(1); assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); // unsigned cul2f(ulong u) { // uint lz = clz(u); // uint e = (u != 0) ? 127U + 63U - lz : 0; // u = (u << lz) & 0x7fffffffffffffffUL; // ulong t = u & 0xffffffffffUL; // uint v = (e << 23) | (uint)(u >> 40); // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); // return as_float(v + r); // } auto Zero32 = MIRBuilder.buildConstant(S32, 0); auto Zero64 = MIRBuilder.buildConstant(S64, 0); auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); auto K = MIRBuilder.buildConstant(S32, 127U + 63U); auto Sub = MIRBuilder.buildSub(S32, K, LZ); auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); auto T = MIRBuilder.buildAnd(S64, U, Mask1); auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); auto One = MIRBuilder.buildConstant(S32, 1); auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); MIRBuilder.buildAdd(Dst, V, R); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(Dst); LLT SrcTy = MRI.getType(Src); if (SrcTy == LLT::scalar(1)) { auto True = MIRBuilder.buildFConstant(DstTy, 1.0); auto False = MIRBuilder.buildFConstant(DstTy, 0.0); MIRBuilder.buildSelect(Dst, Src, True, False); MI.eraseFromParent(); return Legalized; } if (SrcTy != LLT::scalar(64)) return UnableToLegalize; if (DstTy == LLT::scalar(32)) { // TODO: SelectionDAG has several alternative expansions to port which may // be more reasonble depending on the available instructions. If a target // has sitofp, does not have CTLZ, or can efficiently use f64 as an // intermediate type, this is probably worse. return lowerU64ToF32BitOps(MI); } return UnableToLegalize; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(Dst); LLT SrcTy = MRI.getType(Src); const LLT S64 = LLT::scalar(64); const LLT S32 = LLT::scalar(32); const LLT S1 = LLT::scalar(1); if (SrcTy == S1) { auto True = MIRBuilder.buildFConstant(DstTy, -1.0); auto False = MIRBuilder.buildFConstant(DstTy, 0.0); MIRBuilder.buildSelect(Dst, Src, True, False); MI.eraseFromParent(); return Legalized; } if (SrcTy != S64) return UnableToLegalize; if (DstTy == S32) { // signed cl2f(long l) { // long s = l >> 63; // float r = cul2f((l + s) ^ s); // return s ? -r : r; // } Register L = Src; auto SignBit = MIRBuilder.buildConstant(S64, 63); auto S = MIRBuilder.buildAShr(S64, L, SignBit); auto LPlusS = MIRBuilder.buildAdd(S64, L, S); auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); auto R = MIRBuilder.buildUITOFP(S32, Xor); auto RNeg = MIRBuilder.buildFNeg(S32, R); auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, MIRBuilder.buildConstant(S64, 0)); MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); MI.eraseFromParent(); return Legalized; } return UnableToLegalize; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(Dst); LLT SrcTy = MRI.getType(Src); const LLT S64 = LLT::scalar(64); const LLT S32 = LLT::scalar(32); if (SrcTy != S64 && SrcTy != S32) return UnableToLegalize; if (DstTy != S32 && DstTy != S64) return UnableToLegalize; // FPTOSI gives same result as FPTOUI for positive signed integers. // FPTOUI needs to deal with fp values that convert to unsigned integers // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() : APFloat::IEEEdouble(), APInt::getZero(SrcTy.getSizeInBits())); TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); const LLT S1 = LLT::scalar(1); MachineInstrBuilder FCMP = MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(Dst); LLT SrcTy = MRI.getType(Src); const LLT S64 = LLT::scalar(64); const LLT S32 = LLT::scalar(32); // FIXME: Only f32 to i64 conversions are supported. if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) return UnableToLegalize; // Expand f32 -> i64 conversion // This algorithm comes from compiler-rt's implementation of fixsfdi: // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); auto SignMask = MIRBuilder.buildConstant(SrcTy, APInt::getSignMask(SrcEltBits)); auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); Sign = MIRBuilder.buildSExt(DstTy, Sign); auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); R = MIRBuilder.buildZExt(DstTy, R); auto Bias = MIRBuilder.buildConstant(SrcTy, 127); auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); const LLT S1 = LLT::scalar(1); auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, Exponent, ExponentLoBit); R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, Exponent, ZeroSrcTy); auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); MI.eraseFromParent(); return Legalized; } // f64 -> f16 conversion using round-to-nearest-even rounding mode. LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. return UnableToLegalize; const unsigned ExpMask = 0x7ff; const unsigned ExpBiasf64 = 1023; const unsigned ExpBiasf16 = 15; const LLT S32 = LLT::scalar(32); const LLT S1 = LLT::scalar(1); auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); Register U = Unmerge.getReg(0); Register UH = Unmerge.getReg(1); auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); // Subtract the fp64 exponent bias (1023) to get the real exponent and // add the f16 bias (15) to get the biased exponent for the f16 format. E = MIRBuilder.buildAdd( S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); auto MaskedSig = MIRBuilder.buildAnd(S32, UH, MIRBuilder.buildConstant(S32, 0x1ff)); MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); auto Zero = MIRBuilder.buildConstant(S32, 0); auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); M = MIRBuilder.buildOr(S32, M, Lo40Set); // (M != 0 ? 0x0200 : 0) | 0x7c00; auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); // N = M | (E << 12); auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); auto N = MIRBuilder.buildOr(S32, M, EShl12); // B = clamp(1-E, 0, 13); auto One = MIRBuilder.buildConstant(S32, 1); auto OneSubExp = MIRBuilder.buildSub(S32, One, E); auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); auto SigSetHigh = MIRBuilder.buildOr(S32, M, MIRBuilder.buildConstant(S32, 0x1000)); auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); auto D0 = MIRBuilder.buildShl(S32, D, B); auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, D0, SigSetHigh); auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); D = MIRBuilder.buildOr(S32, D, D1); auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, MIRBuilder.buildConstant(S32, 3)); auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, MIRBuilder.buildConstant(S32, 5)); auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); V1 = MIRBuilder.buildOr(S32, V0, V1); V = MIRBuilder.buildAdd(S32, V, V1); auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, E, MIRBuilder.buildConstant(S32, 30)); V = MIRBuilder.buildSelect(S32, CmpEGt30, MIRBuilder.buildConstant(S32, 0x7c00), V); auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, E, MIRBuilder.buildConstant(S32, 1039)); V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); // Extract the sign bit. auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); // Insert the sign bit V = MIRBuilder.buildOr(S32, Sign, V); MIRBuilder.buildTrunc(Dst, V); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(Dst); LLT SrcTy = MRI.getType(Src); const LLT S64 = LLT::scalar(64); const LLT S16 = LLT::scalar(16); if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) return lowerFPTRUNC_F64_TO_F16(MI); return UnableToLegalize; } // TODO: If RHS is a constant SelectionDAGBuilder expands this into a // multiplication tree. LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { Register Dst = MI.getOperand(0).getReg(); Register Src0 = MI.getOperand(1).getReg(); Register Src1 = MI.getOperand(2).getReg(); LLT Ty = MRI.getType(Dst); auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); MI.eraseFromParent(); return Legalized; } static CmpInst::Predicate minMaxToCompare(unsigned Opc) { switch (Opc) { case TargetOpcode::G_SMIN: return CmpInst::ICMP_SLT; case TargetOpcode::G_SMAX: return CmpInst::ICMP_SGT; case TargetOpcode::G_UMIN: return CmpInst::ICMP_ULT; case TargetOpcode::G_UMAX: return CmpInst::ICMP_UGT; default: llvm_unreachable("not in integer min/max"); } } LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { Register Dst = MI.getOperand(0).getReg(); Register Src0 = MI.getOperand(1).getReg(); Register Src1 = MI.getOperand(2).getReg(); const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); LLT CmpType = MRI.getType(Dst).changeElementSize(1); auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerFCopySign(MachineInstr &MI) { Register Dst = MI.getOperand(0).getReg(); Register Src0 = MI.getOperand(1).getReg(); Register Src1 = MI.getOperand(2).getReg(); const LLT Src0Ty = MRI.getType(Src0); const LLT Src1Ty = MRI.getType(Src1); const int Src0Size = Src0Ty.getScalarSizeInBits(); const int Src1Size = Src1Ty.getScalarSizeInBits(); auto SignBitMask = MIRBuilder.buildConstant( Src0Ty, APInt::getSignMask(Src0Size)); auto NotSignBitMask = MIRBuilder.buildConstant( Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); Register And1; if (Src0Ty == Src1Ty) { And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); } else if (Src0Size > Src1Size) { auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); } else { auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); } // Be careful about setting nsz/nnan/ninf on every instruction, since the // constants are a nan and -0.0, but the final result should preserve // everything. unsigned Flags = MI.getFlags(); MIRBuilder.buildOr(Dst, And0, And1, Flags); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; Register Dst = MI.getOperand(0).getReg(); Register Src0 = MI.getOperand(1).getReg(); Register Src1 = MI.getOperand(2).getReg(); LLT Ty = MRI.getType(Dst); if (!MI.getFlag(MachineInstr::FmNoNans)) { // Insert canonicalizes if it's possible we need to quiet to get correct // sNaN behavior. // Note this must be done here, and not as an optimization combine in the // absence of a dedicate quiet-snan instruction as we're using an // omni-purpose G_FCANONICALIZE. if (!isKnownNeverSNaN(Src0, MRI)) Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); if (!isKnownNeverSNaN(Src1, MRI)) Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); } // If there are no nans, it's safe to simply replace this with the non-IEEE // version. MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c Register DstReg = MI.getOperand(0).getReg(); LLT Ty = MRI.getType(DstReg); unsigned Flags = MI.getFlags(); auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), Flags); MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { Register DstReg = MI.getOperand(0).getReg(); Register X = MI.getOperand(1).getReg(); const unsigned Flags = MI.getFlags(); const LLT Ty = MRI.getType(DstReg); const LLT CondTy = Ty.changeElementSize(1); // round(x) => // t = trunc(x); // d = fabs(x - t); // o = copysign(1.0f, x); // return t + (d >= 0.5 ? o : 0.0); auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); auto One = MIRBuilder.buildFConstant(Ty, 1.0); auto Half = MIRBuilder.buildFConstant(Ty, 0.5); auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, Flags); auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerFFloor(MachineInstr &MI) { Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); unsigned Flags = MI.getFlags(); LLT Ty = MRI.getType(DstReg); const LLT CondTy = Ty.changeElementSize(1); // result = trunc(src); // if (src < 0.0 && src != result) // result += -1.0. auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, SrcReg, Zero, Flags); auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, SrcReg, Trunc, Flags); auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); auto AddVal = MIRBuilder.buildSITOFP(Ty, And); MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerMergeValues(MachineInstr &MI) { const unsigned NumOps = MI.getNumOperands(); Register DstReg = MI.getOperand(0).getReg(); Register Src0Reg = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(DstReg); LLT SrcTy = MRI.getType(Src0Reg); unsigned PartSize = SrcTy.getSizeInBits(); LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); for (unsigned I = 2; I != NumOps; ++I) { const unsigned Offset = (I - 1) * PartSize; Register SrcReg = MI.getOperand(I).getReg(); auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : MRI.createGenericVirtualRegister(WideTy); auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); MIRBuilder.buildOr(NextResult, ResultReg, Shl); ResultReg = NextResult; } if (DstTy.isPointer()) { if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( DstTy.getAddressSpace())) { LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); return UnableToLegalize; } MIRBuilder.buildIntToPtr(DstReg, ResultReg); } MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { const unsigned NumDst = MI.getNumOperands() - 1; Register SrcReg = MI.getOperand(NumDst).getReg(); Register Dst0Reg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(Dst0Reg); if (DstTy.isPointer()) return UnableToLegalize; // TODO SrcReg = coerceToScalar(SrcReg); if (!SrcReg) return UnableToLegalize; // Expand scalarizing unmerge as bitcast to integer and shift. LLT IntTy = MRI.getType(SrcReg); MIRBuilder.buildTrunc(Dst0Reg, SrcReg); const unsigned DstSize = DstTy.getSizeInBits(); unsigned Offset = DstSize; for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); MIRBuilder.buildTrunc(MI.getOperand(I), Shift); } MI.eraseFromParent(); return Legalized; } /// Lower a vector extract or insert by writing the vector to a stack temporary /// and reloading the element or vector. /// /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx /// => /// %stack_temp = G_FRAME_INDEX /// G_STORE %vec, %stack_temp /// %idx = clamp(%idx, %vec.getNumElements()) /// %element_ptr = G_PTR_ADD %stack_temp, %idx /// %dst = G_LOAD %element_ptr LegalizerHelper::LegalizeResult LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { Register DstReg = MI.getOperand(0).getReg(); Register SrcVec = MI.getOperand(1).getReg(); Register InsertVal; if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) InsertVal = MI.getOperand(2).getReg(); Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); LLT VecTy = MRI.getType(SrcVec); LLT EltTy = VecTy.getElementType(); unsigned NumElts = VecTy.getNumElements(); int64_t IdxVal; if (mi_match(Idx, MRI, m_ICst(IdxVal)) && IdxVal <= NumElts) { SmallVector SrcRegs; extractParts(SrcVec, EltTy, NumElts, SrcRegs); if (InsertVal) { SrcRegs[IdxVal] = MI.getOperand(2).getReg(); MIRBuilder.buildMerge(DstReg, SrcRegs); } else { MIRBuilder.buildCopy(DstReg, SrcRegs[IdxVal]); } MI.eraseFromParent(); return Legalized; } if (!EltTy.isByteSized()) { // Not implemented. LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); return UnableToLegalize; } unsigned EltBytes = EltTy.getSizeInBytes(); Align VecAlign = getStackTemporaryAlignment(VecTy); Align EltAlign; MachinePointerInfo PtrInfo; auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), VecAlign, PtrInfo); MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); // Get the pointer to the element, and be sure not to hit undefined behavior // if the index is out of bounds. Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); if (mi_match(Idx, MRI, m_ICst(IdxVal))) { int64_t Offset = IdxVal * EltBytes; PtrInfo = PtrInfo.getWithOffset(Offset); EltAlign = commonAlignment(VecAlign, Offset); } else { // We lose information with a variable offset. EltAlign = getStackTemporaryAlignment(EltTy); PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); } if (InsertVal) { // Write the inserted element MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); // Reload the whole vector. MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); } else { MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); } MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { Register DstReg = MI.getOperand(0).getReg(); Register Src0Reg = MI.getOperand(1).getReg(); Register Src1Reg = MI.getOperand(2).getReg(); LLT Src0Ty = MRI.getType(Src0Reg); LLT DstTy = MRI.getType(DstReg); LLT IdxTy = LLT::scalar(32); ArrayRef Mask = MI.getOperand(3).getShuffleMask(); if (DstTy.isScalar()) { if (Src0Ty.isVector()) return UnableToLegalize; // This is just a SELECT. assert(Mask.size() == 1 && "Expected a single mask element"); Register Val; if (Mask[0] < 0 || Mask[0] > 1) Val = MIRBuilder.buildUndef(DstTy).getReg(0); else Val = Mask[0] == 0 ? Src0Reg : Src1Reg; MIRBuilder.buildCopy(DstReg, Val); MI.eraseFromParent(); return Legalized; } Register Undef; SmallVector BuildVec; LLT EltTy = DstTy.getElementType(); for (int Idx : Mask) { if (Idx < 0) { if (!Undef.isValid()) Undef = MIRBuilder.buildUndef(EltTy).getReg(0); BuildVec.push_back(Undef); continue; } if (Src0Ty.isScalar()) { BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); } else { int NumElts = Src0Ty.getNumElements(); Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); BuildVec.push_back(Extract.getReg(0)); } } MIRBuilder.buildBuildVector(DstReg, BuildVec); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { const auto &MF = *MI.getMF(); const auto &TFI = *MF.getSubtarget().getFrameLowering(); if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) return UnableToLegalize; Register Dst = MI.getOperand(0).getReg(); Register AllocSize = MI.getOperand(1).getReg(); Align Alignment = assumeAligned(MI.getOperand(2).getImm()); LLT PtrTy = MRI.getType(Dst); LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't // have to generate an extra instruction to negate the alloc and then use // G_PTR_ADD to add the negative offset. auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); if (Alignment > Align(1)) { APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); AlignMask.negate(); auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); } SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); MIRBuilder.buildCopy(SPReg, SPTmp); MIRBuilder.buildCopy(Dst, SPTmp); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerExtract(MachineInstr &MI) { Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); unsigned Offset = MI.getOperand(2).getImm(); LLT DstTy = MRI.getType(Dst); LLT SrcTy = MRI.getType(Src); // Extract sub-vector or one element if (SrcTy.isVector()) { unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits(); unsigned DstSize = DstTy.getSizeInBits(); if ((Offset % SrcEltSize == 0) && (DstSize % SrcEltSize == 0) && (Offset + DstSize <= SrcTy.getSizeInBits())) { // Unmerge and allow access to each Src element for the artifact combiner. auto Unmerge = MIRBuilder.buildUnmerge(SrcTy.getElementType(), Src); // Take element(s) we need to extract and copy it (merge them). SmallVector SubVectorElts; for (unsigned Idx = Offset / SrcEltSize; Idx < (Offset + DstSize) / SrcEltSize; ++Idx) { SubVectorElts.push_back(Unmerge.getReg(Idx)); } if (SubVectorElts.size() == 1) MIRBuilder.buildCopy(Dst, SubVectorElts[0]); else MIRBuilder.buildMerge(Dst, SubVectorElts); MI.eraseFromParent(); return Legalized; } } if (DstTy.isScalar() && (SrcTy.isScalar() || (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { LLT SrcIntTy = SrcTy; if (!SrcTy.isScalar()) { SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); } if (Offset == 0) MIRBuilder.buildTrunc(Dst, Src); else { auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); MIRBuilder.buildTrunc(Dst, Shr); } MI.eraseFromParent(); return Legalized; } return UnableToLegalize; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); Register InsertSrc = MI.getOperand(2).getReg(); uint64_t Offset = MI.getOperand(3).getImm(); LLT DstTy = MRI.getType(Src); LLT InsertTy = MRI.getType(InsertSrc); // Insert sub-vector or one element if (DstTy.isVector() && !InsertTy.isPointer()) { LLT EltTy = DstTy.getElementType(); unsigned EltSize = EltTy.getSizeInBits(); unsigned InsertSize = InsertTy.getSizeInBits(); if ((Offset % EltSize == 0) && (InsertSize % EltSize == 0) && (Offset + InsertSize <= DstTy.getSizeInBits())) { auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, Src); SmallVector DstElts; unsigned Idx = 0; // Elements from Src before insert start Offset for (; Idx < Offset / EltSize; ++Idx) { DstElts.push_back(UnmergeSrc.getReg(Idx)); } // Replace elements in Src with elements from InsertSrc if (InsertTy.getSizeInBits() > EltSize) { auto UnmergeInsertSrc = MIRBuilder.buildUnmerge(EltTy, InsertSrc); for (unsigned i = 0; Idx < (Offset + InsertSize) / EltSize; ++Idx, ++i) { DstElts.push_back(UnmergeInsertSrc.getReg(i)); } } else { DstElts.push_back(InsertSrc); ++Idx; } // Remaining elements from Src after insert for (; Idx < DstTy.getNumElements(); ++Idx) { DstElts.push_back(UnmergeSrc.getReg(Idx)); } MIRBuilder.buildMerge(Dst, DstElts); MI.eraseFromParent(); return Legalized; } } if (InsertTy.isVector() || (DstTy.isVector() && DstTy.getElementType() != InsertTy)) return UnableToLegalize; const DataLayout &DL = MIRBuilder.getDataLayout(); if ((DstTy.isPointer() && DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || (InsertTy.isPointer() && DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); return UnableToLegalize; } LLT IntDstTy = DstTy; if (!DstTy.isScalar()) { IntDstTy = LLT::scalar(DstTy.getSizeInBits()); Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); } if (!InsertTy.isScalar()) { const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); } Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); if (Offset != 0) { auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); } APInt MaskVal = APInt::getBitsSetWithWrap( DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); MIRBuilder.buildCast(Dst, Or); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { Register Dst0 = MI.getOperand(0).getReg(); Register Dst1 = MI.getOperand(1).getReg(); Register LHS = MI.getOperand(2).getReg(); Register RHS = MI.getOperand(3).getReg(); const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; LLT Ty = MRI.getType(Dst0); LLT BoolTy = MRI.getType(Dst1); if (IsAdd) MIRBuilder.buildAdd(Dst0, LHS, RHS); else MIRBuilder.buildSub(Dst0, LHS, RHS); // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. auto Zero = MIRBuilder.buildConstant(Ty, 0); // For an addition, the result should be less than one of the operands (LHS) // if and only if the other operand (RHS) is negative, otherwise there will // be overflow. // For a subtraction, the result should be less than one of the operands // (LHS) if and only if the other operand (RHS) is (non-zero) positive, // otherwise there will be overflow. auto ResultLowerThanLHS = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); auto ConditionRHS = MIRBuilder.buildICmp( IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { Register Res = MI.getOperand(0).getReg(); Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); LLT Ty = MRI.getType(Res); bool IsSigned; bool IsAdd; unsigned BaseOp; switch (MI.getOpcode()) { default: llvm_unreachable("unexpected addsat/subsat opcode"); case TargetOpcode::G_UADDSAT: IsSigned = false; IsAdd = true; BaseOp = TargetOpcode::G_ADD; break; case TargetOpcode::G_SADDSAT: IsSigned = true; IsAdd = true; BaseOp = TargetOpcode::G_ADD; break; case TargetOpcode::G_USUBSAT: IsSigned = false; IsAdd = false; BaseOp = TargetOpcode::G_SUB; break; case TargetOpcode::G_SSUBSAT: IsSigned = true; IsAdd = false; BaseOp = TargetOpcode::G_SUB; break; } if (IsSigned) { // sadd.sat(a, b) -> // hi = 0x7fffffff - smax(a, 0) // lo = 0x80000000 - smin(a, 0) // a + smin(smax(lo, b), hi) // ssub.sat(a, b) -> // lo = smax(a, -1) - 0x7fffffff // hi = smin(a, -1) - 0x80000000 // a - smin(smax(lo, b), hi) // TODO: AMDGPU can use a "median of 3" instruction here: // a +/- med3(lo, b, hi) uint64_t NumBits = Ty.getScalarSizeInBits(); auto MaxVal = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); auto MinVal = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); MachineInstrBuilder Hi, Lo; if (IsAdd) { auto Zero = MIRBuilder.buildConstant(Ty, 0); Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); } else { auto NegOne = MIRBuilder.buildConstant(Ty, -1); Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), MaxVal); Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), MinVal); } auto RHSClamped = MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); } else { // uadd.sat(a, b) -> a + umin(~a, b) // usub.sat(a, b) -> a - umin(a, b) Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); } MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { Register Res = MI.getOperand(0).getReg(); Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); LLT Ty = MRI.getType(Res); LLT BoolTy = Ty.changeElementSize(1); bool IsSigned; bool IsAdd; unsigned OverflowOp; switch (MI.getOpcode()) { default: llvm_unreachable("unexpected addsat/subsat opcode"); case TargetOpcode::G_UADDSAT: IsSigned = false; IsAdd = true; OverflowOp = TargetOpcode::G_UADDO; break; case TargetOpcode::G_SADDSAT: IsSigned = true; IsAdd = true; OverflowOp = TargetOpcode::G_SADDO; break; case TargetOpcode::G_USUBSAT: IsSigned = false; IsAdd = false; OverflowOp = TargetOpcode::G_USUBO; break; case TargetOpcode::G_SSUBSAT: IsSigned = true; IsAdd = false; OverflowOp = TargetOpcode::G_SSUBO; break; } auto OverflowRes = MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); Register Tmp = OverflowRes.getReg(0); Register Ov = OverflowRes.getReg(1); MachineInstrBuilder Clamp; if (IsSigned) { // sadd.sat(a, b) -> // {tmp, ov} = saddo(a, b) // ov ? (tmp >>s 31) + 0x80000000 : r // ssub.sat(a, b) -> // {tmp, ov} = ssubo(a, b) // ov ? (tmp >>s 31) + 0x80000000 : r uint64_t NumBits = Ty.getScalarSizeInBits(); auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); auto MinVal = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); } else { // uadd.sat(a, b) -> // {tmp, ov} = uaddo(a, b) // ov ? 0xffffffff : tmp // usub.sat(a, b) -> // {tmp, ov} = usubo(a, b) // ov ? 0 : tmp Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); } MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerShlSat(MachineInstr &MI) { assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || MI.getOpcode() == TargetOpcode::G_USHLSAT) && "Expected shlsat opcode!"); bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; Register Res = MI.getOperand(0).getReg(); Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); LLT Ty = MRI.getType(Res); LLT BoolTy = Ty.changeElementSize(1); unsigned BW = Ty.getScalarSizeInBits(); auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) : MIRBuilder.buildLShr(Ty, Result, RHS); MachineInstrBuilder SatVal; if (IsSigned) { auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, MIRBuilder.buildConstant(Ty, 0)); SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); } else { SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); } auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); MIRBuilder.buildSelect(Res, Ov, SatVal, Result); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerBswap(MachineInstr &MI) { Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); const LLT Ty = MRI.getType(Src); unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; // Swap most and least significant byte, set remaining bytes in Res to zero. auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); // Set i-th high/low byte in Res to i-th low/high byte from Src. for (unsigned i = 1; i < SizeInBytes / 2; ++i) { // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); auto Mask = MIRBuilder.buildConstant(Ty, APMask); auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); } Res.getInstr()->getOperand(0).setReg(Dst); MI.eraseFromParent(); return Legalized; } //{ (Src & Mask) >> N } | { (Src << N) & Mask } static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, MachineInstrBuilder Src, APInt Mask) { const LLT Ty = Dst.getLLTTy(*B.getMRI()); MachineInstrBuilder C_N = B.buildConstant(Ty, N); MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); return B.buildOr(Dst, LHS, RHS); } LegalizerHelper::LegalizeResult LegalizerHelper::lowerBitreverse(MachineInstr &MI) { Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); const LLT Ty = MRI.getType(Src); unsigned Size = Ty.getSizeInBits(); MachineInstrBuilder BSWAP = MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] MachineInstrBuilder Swap4 = SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] MachineInstrBuilder Swap2 = SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { MachineFunction &MF = MIRBuilder.getMF(); bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; int NameOpIdx = IsRead ? 1 : 0; int ValRegIndex = IsRead ? 0 : 1; Register ValReg = MI.getOperand(ValRegIndex).getReg(); const LLT Ty = MRI.getType(ValReg); const MDString *RegStr = cast( cast(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); if (!PhysReg.isValid()) return UnableToLegalize; if (IsRead) MIRBuilder.buildCopy(ValReg, PhysReg); else MIRBuilder.buildCopy(PhysReg, ValReg); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; Register Result = MI.getOperand(0).getReg(); LLT OrigTy = MRI.getType(Result); auto SizeInBits = OrigTy.getScalarSizeInBits(); LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); MIRBuilder.buildTrunc(Result, Shifted); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { // Implement vector G_SELECT in terms of XOR, AND, OR. Register DstReg = MI.getOperand(0).getReg(); Register MaskReg = MI.getOperand(1).getReg(); Register Op1Reg = MI.getOperand(2).getReg(); Register Op2Reg = MI.getOperand(3).getReg(); LLT DstTy = MRI.getType(DstReg); LLT MaskTy = MRI.getType(MaskReg); LLT Op1Ty = MRI.getType(Op1Reg); if (!DstTy.isVector()) return UnableToLegalize; // Vector selects can have a scalar predicate. If so, splat into a vector and // finish for later legalization attempts to try again. if (MaskTy.isScalar()) { Register MaskElt = MaskReg; if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); // Generate a vector splat idiom to be pattern matched later. auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); Observer.changingInstr(MI); MI.getOperand(1).setReg(ShufSplat.getReg(0)); Observer.changedInstr(MI); return Legalized; } if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { return UnableToLegalize; } auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) { // Split DIVREM into individual instructions. unsigned Opcode = MI.getOpcode(); MIRBuilder.buildInstr( Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV : TargetOpcode::G_UDIV, {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); MIRBuilder.buildInstr( Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM : TargetOpcode::G_UREM, {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) { // Expand %res = G_ABS %a into: // %v1 = G_ASHR %a, scalar_size-1 // %v2 = G_ADD %a, %v1 // %res = G_XOR %v2, %v1 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); Register OpReg = MI.getOperand(1).getReg(); auto ShiftAmt = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) { // Expand %res = G_ABS %a into: // %v1 = G_CONSTANT 0 // %v2 = G_SUB %v1, %a // %res = G_SMAX %a, %v2 Register SrcReg = MI.getOperand(1).getReg(); LLT Ty = MRI.getType(SrcReg); auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0); auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0); MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerVectorReduction(MachineInstr &MI) { Register SrcReg = MI.getOperand(1).getReg(); LLT SrcTy = MRI.getType(SrcReg); LLT DstTy = MRI.getType(SrcReg); // The source could be a scalar if the IR type was <1 x sN>. if (SrcTy.isScalar()) { if (DstTy.getSizeInBits() > SrcTy.getSizeInBits()) return UnableToLegalize; // FIXME: handle extension. // This can be just a plain copy. Observer.changingInstr(MI); MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY)); Observer.changedInstr(MI); return Legalized; } return UnableToLegalize;; } static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { // On Darwin, -Os means optimize for size without hurting performance, so // only really optimize for size when -Oz (MinSize) is used. if (MF.getTarget().getTargetTriple().isOSDarwin()) return MF.getFunction().hasMinSize(); return MF.getFunction().hasOptSize(); } // Returns a list of types to use for memory op lowering in MemOps. A partial // port of findOptimalMemOpLowering in TargetLowering. static bool findGISelOptimalMemOpLowering(std::vector &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes, const TargetLowering &TLI) { if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) return false; LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); if (Ty == LLT()) { // Use the largest scalar type whose alignment constraints are satisfied. // We only need to check DstAlign here as SrcAlign is always greater or // equal to DstAlign (or zero). Ty = LLT::scalar(64); if (Op.isFixedDstAlign()) while (Op.getDstAlign() < Ty.getSizeInBytes() && !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) Ty = LLT::scalar(Ty.getSizeInBytes()); assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); // FIXME: check for the largest legal type we can load/store to. } unsigned NumMemOps = 0; uint64_t Size = Op.size(); while (Size) { unsigned TySize = Ty.getSizeInBytes(); while (TySize > Size) { // For now, only use non-vector load / store's for the left-over pieces. LLT NewTy = Ty; // FIXME: check for mem op safety and legality of the types. Not all of // SDAGisms map cleanly to GISel concepts. if (NewTy.isVector()) NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); unsigned NewTySize = NewTy.getSizeInBytes(); assert(NewTySize > 0 && "Could not find appropriate type"); // If the new LLT cannot cover all of the remaining bits, then consider // issuing a (or a pair of) unaligned and overlapping load / store. bool Fast; // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). MVT VT = getMVTForLLT(Ty); if (NumMemOps && Op.allowOverlap() && NewTySize < Size && TLI.allowsMisalignedMemoryAccesses( VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), MachineMemOperand::MONone, &Fast) && Fast) TySize = Size; else { Ty = NewTy; TySize = NewTySize; } } if (++NumMemOps > Limit) return false; MemOps.push_back(Ty); Size -= TySize; } return true; } static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { if (Ty.isVector()) return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), Ty.getNumElements()); return IntegerType::get(C, Ty.getSizeInBits()); } // Get a vectorized representation of the memset value operand, GISel edition. static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { MachineRegisterInfo &MRI = *MIB.getMRI(); unsigned NumBits = Ty.getScalarSizeInBits(); auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); if (!Ty.isVector() && ValVRegAndVal) { APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8); APInt SplatVal = APInt::getSplat(NumBits, Scalar); return MIB.buildConstant(Ty, SplatVal).getReg(0); } // Extend the byte value to the larger type, and then multiply by a magic // value 0x010101... in order to replicate it across every byte. // Unless it's zero, in which case just emit a larger G_CONSTANT 0. if (ValVRegAndVal && ValVRegAndVal->Value == 0) { return MIB.buildConstant(Ty, 0).getReg(0); } LLT ExtType = Ty.getScalarType(); auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); if (NumBits > 8) { APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); auto MagicMI = MIB.buildConstant(ExtType, Magic); Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); } // For vector types create a G_BUILD_VECTOR. if (Ty.isVector()) Val = MIB.buildSplatVector(Ty, Val).getReg(0); return Val; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerMemset(MachineInstr &MI, Register Dst, Register Val, uint64_t KnownLen, Align Alignment, bool IsVolatile) { auto &MF = *MI.getParent()->getParent(); const auto &TLI = *MF.getSubtarget().getTargetLowering(); auto &DL = MF.getDataLayout(); LLVMContext &C = MF.getFunction().getContext(); assert(KnownLen != 0 && "Have a zero length memset length!"); bool DstAlignCanChange = false; MachineFrameInfo &MFI = MF.getFrameInfo(); bool OptSize = shouldLowerMemFuncForSize(MF); MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) DstAlignCanChange = true; unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); std::vector MemOps; const auto &DstMMO = **MI.memoperands_begin(); MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; if (!findGISelOptimalMemOpLowering(MemOps, Limit, MemOp::Set(KnownLen, DstAlignCanChange, Alignment, /*IsZeroMemset=*/IsZeroVal, /*IsVolatile=*/IsVolatile), DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes(), TLI)) return UnableToLegalize; if (DstAlignCanChange) { // Get an estimate of the type from the LLT. Type *IRTy = getTypeForLLT(MemOps[0], C); Align NewAlign = DL.getABITypeAlign(IRTy); if (NewAlign > Alignment) { Alignment = NewAlign; unsigned FI = FIDef->getOperand(1).getIndex(); // Give the stack frame object a larger alignment if needed. if (MFI.getObjectAlign(FI) < Alignment) MFI.setObjectAlignment(FI, Alignment); } } MachineIRBuilder MIB(MI); // Find the largest store and generate the bit pattern for it. LLT LargestTy = MemOps[0]; for (unsigned i = 1; i < MemOps.size(); i++) if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) LargestTy = MemOps[i]; // The memset stored value is always defined as an s8, so in order to make it // work with larger store types we need to repeat the bit pattern across the // wider type. Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); if (!MemSetValue) return UnableToLegalize; // Generate the stores. For each store type in the list, we generate the // matching store of that type to the destination address. LLT PtrTy = MRI.getType(Dst); unsigned DstOff = 0; unsigned Size = KnownLen; for (unsigned I = 0; I < MemOps.size(); I++) { LLT Ty = MemOps[I]; unsigned TySize = Ty.getSizeInBytes(); if (TySize > Size) { // Issuing an unaligned load / store pair that overlaps with the previous // pair. Adjust the offset accordingly. assert(I == MemOps.size() - 1 && I != 0); DstOff -= TySize - Size; } // If this store is smaller than the largest store see whether we can get // the smaller value for free with a truncate. Register Value = MemSetValue; if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { MVT VT = getMVTForLLT(Ty); MVT LargestVT = getMVTForLLT(LargestTy); if (!LargestTy.isVector() && !Ty.isVector() && TLI.isTruncateFree(LargestVT, VT)) Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); else Value = getMemsetValue(Val, Ty, MIB); if (!Value) return UnableToLegalize; } auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty); Register Ptr = Dst; if (DstOff != 0) { auto Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); } MIB.buildStore(Value, Ptr, *StoreMMO); DstOff += Ty.getSizeInBytes(); Size -= TySize; } MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerMemcpyInline(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); Register Len = MI.getOperand(2).getReg(); const auto *MMOIt = MI.memoperands_begin(); const MachineMemOperand *MemOp = *MMOIt; bool IsVolatile = MemOp->isVolatile(); // See if this is a constant length copy auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); // FIXME: support dynamically sized G_MEMCPY_INLINE assert(LenVRegAndVal.hasValue() && "inline memcpy with dynamic size is not yet supported"); uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); if (KnownLen == 0) { MI.eraseFromParent(); return Legalized; } const auto &DstMMO = **MI.memoperands_begin(); const auto &SrcMMO = **std::next(MI.memoperands_begin()); Align DstAlign = DstMMO.getBaseAlign(); Align SrcAlign = SrcMMO.getBaseAlign(); return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); } LegalizerHelper::LegalizeResult LegalizerHelper::lowerMemcpyInline(MachineInstr &MI, Register Dst, Register Src, uint64_t KnownLen, Align DstAlign, Align SrcAlign, bool IsVolatile) { assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); return lowerMemcpy(MI, Dst, Src, KnownLen, std::numeric_limits::max(), DstAlign, SrcAlign, IsVolatile); } LegalizerHelper::LegalizeResult LegalizerHelper::lowerMemcpy(MachineInstr &MI, Register Dst, Register Src, uint64_t KnownLen, uint64_t Limit, Align DstAlign, Align SrcAlign, bool IsVolatile) { auto &MF = *MI.getParent()->getParent(); const auto &TLI = *MF.getSubtarget().getTargetLowering(); auto &DL = MF.getDataLayout(); LLVMContext &C = MF.getFunction().getContext(); assert(KnownLen != 0 && "Have a zero length memcpy length!"); bool DstAlignCanChange = false; MachineFrameInfo &MFI = MF.getFrameInfo(); Align Alignment = commonAlignment(DstAlign, SrcAlign); MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) DstAlignCanChange = true; // FIXME: infer better src pointer alignment like SelectionDAG does here. // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining // if the memcpy is in a tail call position. std::vector MemOps; const auto &DstMMO = **MI.memoperands_begin(); const auto &SrcMMO = **std::next(MI.memoperands_begin()); MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); if (!findGISelOptimalMemOpLowering( MemOps, Limit, MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, IsVolatile), DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes(), TLI)) return UnableToLegalize; if (DstAlignCanChange) { // Get an estimate of the type from the LLT. Type *IRTy = getTypeForLLT(MemOps[0], C); Align NewAlign = DL.getABITypeAlign(IRTy); // Don't promote to an alignment that would require dynamic stack // realignment. const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); if (!TRI->hasStackRealignment(MF)) while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) NewAlign = NewAlign / 2; if (NewAlign > Alignment) { Alignment = NewAlign; unsigned FI = FIDef->getOperand(1).getIndex(); // Give the stack frame object a larger alignment if needed. if (MFI.getObjectAlign(FI) < Alignment) MFI.setObjectAlignment(FI, Alignment); } } LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); MachineIRBuilder MIB(MI); // Now we need to emit a pair of load and stores for each of the types we've // collected. I.e. for each type, generate a load from the source pointer of // that type width, and then generate a corresponding store to the dest buffer // of that value loaded. This can result in a sequence of loads and stores // mixed types, depending on what the target specifies as good types to use. unsigned CurrOffset = 0; unsigned Size = KnownLen; for (auto CopyTy : MemOps) { // Issuing an unaligned load / store pair that overlaps with the previous // pair. Adjust the offset accordingly. if (CopyTy.getSizeInBytes() > Size) CurrOffset -= CopyTy.getSizeInBytes() - Size; // Construct MMOs for the accesses. auto *LoadMMO = MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); // Create the load. Register LoadPtr = Src; Register Offset; if (CurrOffset != 0) { LLT SrcTy = MRI.getType(Src); Offset = MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset) .getReg(0); LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); } auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); // Create the store. Register StorePtr = Dst; if (CurrOffset != 0) { LLT DstTy = MRI.getType(Dst); StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); } MIB.buildStore(LdVal, StorePtr, *StoreMMO); CurrOffset += CopyTy.getSizeInBytes(); Size -= CopyTy.getSizeInBytes(); } MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerMemmove(MachineInstr &MI, Register Dst, Register Src, uint64_t KnownLen, Align DstAlign, Align SrcAlign, bool IsVolatile) { auto &MF = *MI.getParent()->getParent(); const auto &TLI = *MF.getSubtarget().getTargetLowering(); auto &DL = MF.getDataLayout(); LLVMContext &C = MF.getFunction().getContext(); assert(KnownLen != 0 && "Have a zero length memmove length!"); bool DstAlignCanChange = false; MachineFrameInfo &MFI = MF.getFrameInfo(); bool OptSize = shouldLowerMemFuncForSize(MF); Align Alignment = commonAlignment(DstAlign, SrcAlign); MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) DstAlignCanChange = true; unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); std::vector MemOps; const auto &DstMMO = **MI.memoperands_begin(); const auto &SrcMMO = **std::next(MI.memoperands_begin()); MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due // to a bug in it's findOptimalMemOpLowering implementation. For now do the // same thing here. if (!findGISelOptimalMemOpLowering( MemOps, Limit, MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, /*IsVolatile*/ true), DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes(), TLI)) return UnableToLegalize; if (DstAlignCanChange) { // Get an estimate of the type from the LLT. Type *IRTy = getTypeForLLT(MemOps[0], C); Align NewAlign = DL.getABITypeAlign(IRTy); // Don't promote to an alignment that would require dynamic stack // realignment. const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); if (!TRI->hasStackRealignment(MF)) while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) NewAlign = NewAlign / 2; if (NewAlign > Alignment) { Alignment = NewAlign; unsigned FI = FIDef->getOperand(1).getIndex(); // Give the stack frame object a larger alignment if needed. if (MFI.getObjectAlign(FI) < Alignment) MFI.setObjectAlignment(FI, Alignment); } } LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); MachineIRBuilder MIB(MI); // Memmove requires that we perform the loads first before issuing the stores. // Apart from that, this loop is pretty much doing the same thing as the // memcpy codegen function. unsigned CurrOffset = 0; SmallVector LoadVals; for (auto CopyTy : MemOps) { // Construct MMO for the load. auto *LoadMMO = MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); // Create the load. Register LoadPtr = Src; if (CurrOffset != 0) { LLT SrcTy = MRI.getType(Src); auto Offset = MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset); LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); } LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); CurrOffset += CopyTy.getSizeInBytes(); } CurrOffset = 0; for (unsigned I = 0; I < MemOps.size(); ++I) { LLT CopyTy = MemOps[I]; // Now store the values loaded. auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); Register StorePtr = Dst; if (CurrOffset != 0) { LLT DstTy = MRI.getType(Dst); auto Offset = MIB.buildConstant(LLT::scalar(DstTy.getSizeInBits()), CurrOffset); StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); } MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); CurrOffset += CopyTy.getSizeInBytes(); } MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { const unsigned Opc = MI.getOpcode(); // This combine is fairly complex so it's not written with a separate // matcher function. assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction"); auto MMOIt = MI.memoperands_begin(); const MachineMemOperand *MemOp = *MMOIt; Align DstAlign = MemOp->getBaseAlign(); Align SrcAlign; Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); Register Len = MI.getOperand(2).getReg(); if (Opc != TargetOpcode::G_MEMSET) { assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); MemOp = *(++MMOIt); SrcAlign = MemOp->getBaseAlign(); } // See if this is a constant length copy auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); if (!LenVRegAndVal) return UnableToLegalize; uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); if (KnownLen == 0) { MI.eraseFromParent(); return Legalized; } bool IsVolatile = MemOp->isVolatile(); if (Opc == TargetOpcode::G_MEMCPY_INLINE) return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); // Don't try to optimize volatile. if (IsVolatile) return UnableToLegalize; if (MaxLen && KnownLen > MaxLen) return UnableToLegalize; if (Opc == TargetOpcode::G_MEMCPY) { auto &MF = *MI.getParent()->getParent(); const auto &TLI = *MF.getSubtarget().getTargetLowering(); bool OptSize = shouldLowerMemFuncForSize(MF); uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize); return lowerMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign, IsVolatile); } if (Opc == TargetOpcode::G_MEMMOVE) return lowerMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); if (Opc == TargetOpcode::G_MEMSET) return lowerMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); return UnableToLegalize; }