//===- lib/CodeGen/GlobalISel/LegacyLegalizerInfo.cpp - Legalizer ---------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Implement an interface to specify and query how an illegal operation on a // given type should be expanded. // // Issues to be resolved: // + Make it fast. // + Support weird types like i3, <7 x i3>, ... // + Operations with more than one type (ICMP, CMPXCHG, intrinsics, ...) // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GlobalISel/LegacyLegalizerInfo.h" #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" #include using namespace llvm; using namespace LegacyLegalizeActions; #define DEBUG_TYPE "legalizer-info" raw_ostream &llvm::operator<<(raw_ostream &OS, LegacyLegalizeAction Action) { switch (Action) { case Legal: OS << "Legal"; break; case NarrowScalar: OS << "NarrowScalar"; break; case WidenScalar: OS << "WidenScalar"; break; case FewerElements: OS << "FewerElements"; break; case MoreElements: OS << "MoreElements"; break; case Bitcast: OS << "Bitcast"; break; case Lower: OS << "Lower"; break; case Libcall: OS << "Libcall"; break; case Custom: OS << "Custom"; break; case Unsupported: OS << "Unsupported"; break; case NotFound: OS << "NotFound"; break; } return OS; } LegacyLegalizerInfo::LegacyLegalizerInfo() { // Set defaults. // FIXME: these two (G_ANYEXT and G_TRUNC?) can be legalized to the // fundamental load/store Jakob proposed. Once loads & stores are supported. setScalarAction(TargetOpcode::G_ANYEXT, 1, {{1, Legal}}); setScalarAction(TargetOpcode::G_ZEXT, 1, {{1, Legal}}); setScalarAction(TargetOpcode::G_SEXT, 1, {{1, Legal}}); setScalarAction(TargetOpcode::G_TRUNC, 0, {{1, Legal}}); setScalarAction(TargetOpcode::G_TRUNC, 1, {{1, Legal}}); setScalarAction(TargetOpcode::G_INTRINSIC, 0, {{1, Legal}}); setScalarAction(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS, 0, {{1, Legal}}); setLegalizeScalarToDifferentSizeStrategy( TargetOpcode::G_IMPLICIT_DEF, 0, narrowToSmallerAndUnsupportedIfTooSmall); setLegalizeScalarToDifferentSizeStrategy( TargetOpcode::G_ADD, 0, widenToLargerTypesAndNarrowToLargest); setLegalizeScalarToDifferentSizeStrategy( TargetOpcode::G_OR, 0, widenToLargerTypesAndNarrowToLargest); setLegalizeScalarToDifferentSizeStrategy( TargetOpcode::G_LOAD, 0, narrowToSmallerAndUnsupportedIfTooSmall); setLegalizeScalarToDifferentSizeStrategy( TargetOpcode::G_STORE, 0, narrowToSmallerAndUnsupportedIfTooSmall); setLegalizeScalarToDifferentSizeStrategy( TargetOpcode::G_BRCOND, 0, widenToLargerTypesUnsupportedOtherwise); setLegalizeScalarToDifferentSizeStrategy( TargetOpcode::G_INSERT, 0, narrowToSmallerAndUnsupportedIfTooSmall); setLegalizeScalarToDifferentSizeStrategy( TargetOpcode::G_EXTRACT, 0, narrowToSmallerAndUnsupportedIfTooSmall); setLegalizeScalarToDifferentSizeStrategy( TargetOpcode::G_EXTRACT, 1, narrowToSmallerAndUnsupportedIfTooSmall); setScalarAction(TargetOpcode::G_FNEG, 0, {{1, Lower}}); } void LegacyLegalizerInfo::computeTables() { assert(TablesInitialized == false); for (unsigned OpcodeIdx = 0; OpcodeIdx <= LastOp - FirstOp; ++OpcodeIdx) { const unsigned Opcode = FirstOp + OpcodeIdx; for (unsigned TypeIdx = 0; TypeIdx != SpecifiedActions[OpcodeIdx].size(); ++TypeIdx) { // 0. Collect information specified through the setAction API, i.e. // for specific bit sizes. // For scalar types: SizeAndActionsVec ScalarSpecifiedActions; // For pointer types: std::map AddressSpace2SpecifiedActions; // For vector types: std::map ElemSize2SpecifiedActions; for (auto LLT2Action : SpecifiedActions[OpcodeIdx][TypeIdx]) { const LLT Type = LLT2Action.first; const LegacyLegalizeAction Action = LLT2Action.second; auto SizeAction = std::make_pair(Type.getSizeInBits(), Action); if (Type.isPointer()) AddressSpace2SpecifiedActions[Type.getAddressSpace()].push_back( SizeAction); else if (Type.isVector()) ElemSize2SpecifiedActions[Type.getElementType().getSizeInBits()] .push_back(SizeAction); else ScalarSpecifiedActions.push_back(SizeAction); } // 1. Handle scalar types { // Decide how to handle bit sizes for which no explicit specification // was given. SizeChangeStrategy S = &unsupportedForDifferentSizes; if (TypeIdx < ScalarSizeChangeStrategies[OpcodeIdx].size() && ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr) S = ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx]; llvm::sort(ScalarSpecifiedActions); checkPartialSizeAndActionsVector(ScalarSpecifiedActions); setScalarAction(Opcode, TypeIdx, S(ScalarSpecifiedActions)); } // 2. Handle pointer types for (auto PointerSpecifiedActions : AddressSpace2SpecifiedActions) { llvm::sort(PointerSpecifiedActions.second); checkPartialSizeAndActionsVector(PointerSpecifiedActions.second); // For pointer types, we assume that there isn't a meaningfull way // to change the number of bits used in the pointer. setPointerAction( Opcode, TypeIdx, PointerSpecifiedActions.first, unsupportedForDifferentSizes(PointerSpecifiedActions.second)); } // 3. Handle vector types SizeAndActionsVec ElementSizesSeen; for (auto VectorSpecifiedActions : ElemSize2SpecifiedActions) { llvm::sort(VectorSpecifiedActions.second); const uint16_t ElementSize = VectorSpecifiedActions.first; ElementSizesSeen.push_back({ElementSize, Legal}); checkPartialSizeAndActionsVector(VectorSpecifiedActions.second); // For vector types, we assume that the best way to adapt the number // of elements is to the next larger number of elements type for which // the vector type is legal, unless there is no such type. In that case, // legalize towards a vector type with a smaller number of elements. SizeAndActionsVec NumElementsActions; for (SizeAndAction BitsizeAndAction : VectorSpecifiedActions.second) { assert(BitsizeAndAction.first % ElementSize == 0); const uint16_t NumElements = BitsizeAndAction.first / ElementSize; NumElementsActions.push_back({NumElements, BitsizeAndAction.second}); } setVectorNumElementAction( Opcode, TypeIdx, ElementSize, moreToWiderTypesAndLessToWidest(NumElementsActions)); } llvm::sort(ElementSizesSeen); SizeChangeStrategy VectorElementSizeChangeStrategy = &unsupportedForDifferentSizes; if (TypeIdx < VectorElementSizeChangeStrategies[OpcodeIdx].size() && VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr) VectorElementSizeChangeStrategy = VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx]; setScalarInVectorAction( Opcode, TypeIdx, VectorElementSizeChangeStrategy(ElementSizesSeen)); } } TablesInitialized = true; } // FIXME: inefficient implementation for now. Without ComputeValueVTs we're // probably going to need specialized lookup structures for various types before // we have any hope of doing well with something like <13 x i3>. Even the common // cases should do better than what we have now. std::pair LegacyLegalizerInfo::getAspectAction(const InstrAspect &Aspect) const { assert(TablesInitialized && "backend forgot to call computeTables"); // These *have* to be implemented for now, they're the fundamental basis of // how everything else is transformed. if (Aspect.Type.isScalar() || Aspect.Type.isPointer()) return findScalarLegalAction(Aspect); assert(Aspect.Type.isVector()); return findVectorLegalAction(Aspect); } LegacyLegalizerInfo::SizeAndActionsVec LegacyLegalizerInfo::increaseToLargerTypesAndDecreaseToLargest( const SizeAndActionsVec &v, LegacyLegalizeAction IncreaseAction, LegacyLegalizeAction DecreaseAction) { SizeAndActionsVec result; unsigned LargestSizeSoFar = 0; if (v.size() >= 1 && v[0].first != 1) result.push_back({1, IncreaseAction}); for (size_t i = 0; i < v.size(); ++i) { result.push_back(v[i]); LargestSizeSoFar = v[i].first; if (i + 1 < v.size() && v[i + 1].first != v[i].first + 1) { result.push_back({LargestSizeSoFar + 1, IncreaseAction}); LargestSizeSoFar = v[i].first + 1; } } result.push_back({LargestSizeSoFar + 1, DecreaseAction}); return result; } LegacyLegalizerInfo::SizeAndActionsVec LegacyLegalizerInfo::decreaseToSmallerTypesAndIncreaseToSmallest( const SizeAndActionsVec &v, LegacyLegalizeAction DecreaseAction, LegacyLegalizeAction IncreaseAction) { SizeAndActionsVec result; if (v.size() == 0 || v[0].first != 1) result.push_back({1, IncreaseAction}); for (size_t i = 0; i < v.size(); ++i) { result.push_back(v[i]); if (i + 1 == v.size() || v[i + 1].first != v[i].first + 1) { result.push_back({v[i].first + 1, DecreaseAction}); } } return result; } LegacyLegalizerInfo::SizeAndAction LegacyLegalizerInfo::findAction(const SizeAndActionsVec &Vec, const uint32_t Size) { assert(Size >= 1); // Find the last element in Vec that has a bitsize equal to or smaller than // the requested bit size. // That is the element just before the first element that is bigger than Size. auto It = partition_point( Vec, [=](const SizeAndAction &A) { return A.first <= Size; }); assert(It != Vec.begin() && "Does Vec not start with size 1?"); int VecIdx = It - Vec.begin() - 1; LegacyLegalizeAction Action = Vec[VecIdx].second; switch (Action) { case Legal: case Bitcast: case Lower: case Libcall: case Custom: return {Size, Action}; case FewerElements: // FIXME: is this special case still needed and correct? // Special case for scalarization: if (Vec == SizeAndActionsVec({{1, FewerElements}})) return {1, FewerElements}; LLVM_FALLTHROUGH; case NarrowScalar: { // The following needs to be a loop, as for now, we do allow needing to // go over "Unsupported" bit sizes before finding a legalizable bit size. // e.g. (s8, WidenScalar), (s9, Unsupported), (s32, Legal). if Size==8, // we need to iterate over s9, and then to s32 to return (s32, Legal). // If we want to get rid of the below loop, we should have stronger asserts // when building the SizeAndActionsVecs, probably not allowing // "Unsupported" unless at the ends of the vector. for (int i = VecIdx - 1; i >= 0; --i) if (!needsLegalizingToDifferentSize(Vec[i].second) && Vec[i].second != Unsupported) return {Vec[i].first, Action}; llvm_unreachable(""); } case WidenScalar: case MoreElements: { // See above, the following needs to be a loop, at least for now. for (std::size_t i = VecIdx + 1; i < Vec.size(); ++i) if (!needsLegalizingToDifferentSize(Vec[i].second) && Vec[i].second != Unsupported) return {Vec[i].first, Action}; llvm_unreachable(""); } case Unsupported: return {Size, Unsupported}; case NotFound: llvm_unreachable("NotFound"); } llvm_unreachable("Action has an unknown enum value"); } std::pair LegacyLegalizerInfo::findScalarLegalAction(const InstrAspect &Aspect) const { assert(Aspect.Type.isScalar() || Aspect.Type.isPointer()); if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp) return {NotFound, LLT()}; const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode); if (Aspect.Type.isPointer() && AddrSpace2PointerActions[OpcodeIdx].find(Aspect.Type.getAddressSpace()) == AddrSpace2PointerActions[OpcodeIdx].end()) { return {NotFound, LLT()}; } const SmallVector &Actions = Aspect.Type.isPointer() ? AddrSpace2PointerActions[OpcodeIdx] .find(Aspect.Type.getAddressSpace()) ->second : ScalarActions[OpcodeIdx]; if (Aspect.Idx >= Actions.size()) return {NotFound, LLT()}; const SizeAndActionsVec &Vec = Actions[Aspect.Idx]; // FIXME: speed up this search, e.g. by using a results cache for repeated // queries? auto SizeAndAction = findAction(Vec, Aspect.Type.getSizeInBits()); return {SizeAndAction.second, Aspect.Type.isScalar() ? LLT::scalar(SizeAndAction.first) : LLT::pointer(Aspect.Type.getAddressSpace(), SizeAndAction.first)}; } std::pair LegacyLegalizerInfo::findVectorLegalAction(const InstrAspect &Aspect) const { assert(Aspect.Type.isVector()); // First legalize the vector element size, then legalize the number of // lanes in the vector. if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp) return {NotFound, Aspect.Type}; const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode); const unsigned TypeIdx = Aspect.Idx; if (TypeIdx >= ScalarInVectorActions[OpcodeIdx].size()) return {NotFound, Aspect.Type}; const SizeAndActionsVec &ElemSizeVec = ScalarInVectorActions[OpcodeIdx][TypeIdx]; LLT IntermediateType; auto ElementSizeAndAction = findAction(ElemSizeVec, Aspect.Type.getScalarSizeInBits()); IntermediateType = LLT::fixed_vector(Aspect.Type.getNumElements(), ElementSizeAndAction.first); if (ElementSizeAndAction.second != Legal) return {ElementSizeAndAction.second, IntermediateType}; auto i = NumElements2Actions[OpcodeIdx].find( IntermediateType.getScalarSizeInBits()); if (i == NumElements2Actions[OpcodeIdx].end()) { return {NotFound, IntermediateType}; } const SizeAndActionsVec &NumElementsVec = (*i).second[TypeIdx]; auto NumElementsAndAction = findAction(NumElementsVec, IntermediateType.getNumElements()); return {NumElementsAndAction.second, LLT::fixed_vector(NumElementsAndAction.first, IntermediateType.getScalarSizeInBits())}; } unsigned LegacyLegalizerInfo::getOpcodeIdxForOpcode(unsigned Opcode) const { assert(Opcode >= FirstOp && Opcode <= LastOp && "Unsupported opcode"); return Opcode - FirstOp; } LegacyLegalizeActionStep LegacyLegalizerInfo::getAction(const LegalityQuery &Query) const { for (unsigned i = 0; i < Query.Types.size(); ++i) { auto Action = getAspectAction({Query.Opcode, i, Query.Types[i]}); if (Action.first != Legal) { LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Action=" << Action.first << ", " << Action.second << "\n"); return {Action.first, i, Action.second}; } else LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Legal\n"); } LLVM_DEBUG(dbgs() << ".. (legacy) Legal\n"); return {Legal, 0, LLT{}}; }