//=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines analysis_warnings::[Policy,Executor]. // Together they are used by Sema to issue warnings based on inexpensive // static analysis algorithms in libAnalysis. // //===----------------------------------------------------------------------===// #include "clang/Sema/AnalysisBasedWarnings.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/EvaluatedExprVisitor.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/ParentMap.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/StmtObjC.h" #include "clang/AST/StmtVisitor.h" #include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h" #include "clang/Analysis/Analyses/CalledOnceCheck.h" #include "clang/Analysis/Analyses/Consumed.h" #include "clang/Analysis/Analyses/ReachableCode.h" #include "clang/Analysis/Analyses/ThreadSafety.h" #include "clang/Analysis/Analyses/UninitializedValues.h" #include "clang/Analysis/AnalysisDeclContext.h" #include "clang/Analysis/CFG.h" #include "clang/Analysis/CFGStmtMap.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/SourceManager.h" #include "clang/Lex/Preprocessor.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/SemaInternal.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/Casting.h" #include #include #include using namespace clang; //===----------------------------------------------------------------------===// // Unreachable code analysis. //===----------------------------------------------------------------------===// namespace { class UnreachableCodeHandler : public reachable_code::Callback { Sema &S; SourceRange PreviousSilenceableCondVal; public: UnreachableCodeHandler(Sema &s) : S(s) {} void HandleUnreachable(reachable_code::UnreachableKind UK, SourceLocation L, SourceRange SilenceableCondVal, SourceRange R1, SourceRange R2) override { // Avoid reporting multiple unreachable code diagnostics that are // triggered by the same conditional value. if (PreviousSilenceableCondVal.isValid() && SilenceableCondVal.isValid() && PreviousSilenceableCondVal == SilenceableCondVal) return; PreviousSilenceableCondVal = SilenceableCondVal; unsigned diag = diag::warn_unreachable; switch (UK) { case reachable_code::UK_Break: diag = diag::warn_unreachable_break; break; case reachable_code::UK_Return: diag = diag::warn_unreachable_return; break; case reachable_code::UK_Loop_Increment: diag = diag::warn_unreachable_loop_increment; break; case reachable_code::UK_Other: break; } S.Diag(L, diag) << R1 << R2; SourceLocation Open = SilenceableCondVal.getBegin(); if (Open.isValid()) { SourceLocation Close = SilenceableCondVal.getEnd(); Close = S.getLocForEndOfToken(Close); if (Close.isValid()) { S.Diag(Open, diag::note_unreachable_silence) << FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (") << FixItHint::CreateInsertion(Close, ")"); } } } }; } // anonymous namespace /// CheckUnreachable - Check for unreachable code. static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) { // As a heuristic prune all diagnostics not in the main file. Currently // the majority of warnings in headers are false positives. These // are largely caused by configuration state, e.g. preprocessor // defined code, etc. // // Note that this is also a performance optimization. Analyzing // headers many times can be expensive. if (!S.getSourceManager().isInMainFile(AC.getDecl()->getBeginLoc())) return; UnreachableCodeHandler UC(S); reachable_code::FindUnreachableCode(AC, S.getPreprocessor(), UC); } namespace { /// Warn on logical operator errors in CFGBuilder class LogicalErrorHandler : public CFGCallback { Sema &S; public: LogicalErrorHandler(Sema &S) : S(S) {} static bool HasMacroID(const Expr *E) { if (E->getExprLoc().isMacroID()) return true; // Recurse to children. for (const Stmt *SubStmt : E->children()) if (const Expr *SubExpr = dyn_cast_or_null(SubStmt)) if (HasMacroID(SubExpr)) return true; return false; } void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) override { if (HasMacroID(B)) return; SourceRange DiagRange = B->getSourceRange(); S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison) << DiagRange << isAlwaysTrue; } void compareBitwiseEquality(const BinaryOperator *B, bool isAlwaysTrue) override { if (HasMacroID(B)) return; SourceRange DiagRange = B->getSourceRange(); S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always) << DiagRange << isAlwaysTrue; } void compareBitwiseOr(const BinaryOperator *B) override { if (HasMacroID(B)) return; SourceRange DiagRange = B->getSourceRange(); S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_or) << DiagRange; } static bool hasActiveDiagnostics(DiagnosticsEngine &Diags, SourceLocation Loc) { return !Diags.isIgnored(diag::warn_tautological_overlap_comparison, Loc) || !Diags.isIgnored(diag::warn_comparison_bitwise_or, Loc); } }; } // anonymous namespace //===----------------------------------------------------------------------===// // Check for infinite self-recursion in functions //===----------------------------------------------------------------------===// // Returns true if the function is called anywhere within the CFGBlock. // For member functions, the additional condition of being call from the // this pointer is required. static bool hasRecursiveCallInPath(const FunctionDecl *FD, CFGBlock &Block) { // Process all the Stmt's in this block to find any calls to FD. for (const auto &B : Block) { if (B.getKind() != CFGElement::Statement) continue; const CallExpr *CE = dyn_cast(B.getAs()->getStmt()); if (!CE || !CE->getCalleeDecl() || CE->getCalleeDecl()->getCanonicalDecl() != FD) continue; // Skip function calls which are qualified with a templated class. if (const DeclRefExpr *DRE = dyn_cast(CE->getCallee()->IgnoreParenImpCasts())) { if (NestedNameSpecifier *NNS = DRE->getQualifier()) { if (NNS->getKind() == NestedNameSpecifier::TypeSpec && isa(NNS->getAsType())) { continue; } } } const CXXMemberCallExpr *MCE = dyn_cast(CE); if (!MCE || isa(MCE->getImplicitObjectArgument()) || !MCE->getMethodDecl()->isVirtual()) return true; } return false; } // Returns true if every path from the entry block passes through a call to FD. static bool checkForRecursiveFunctionCall(const FunctionDecl *FD, CFG *cfg) { llvm::SmallPtrSet Visited; llvm::SmallVector WorkList; // Keep track of whether we found at least one recursive path. bool foundRecursion = false; const unsigned ExitID = cfg->getExit().getBlockID(); // Seed the work list with the entry block. WorkList.push_back(&cfg->getEntry()); while (!WorkList.empty()) { CFGBlock *Block = WorkList.pop_back_val(); for (auto I = Block->succ_begin(), E = Block->succ_end(); I != E; ++I) { if (CFGBlock *SuccBlock = *I) { if (!Visited.insert(SuccBlock).second) continue; // Found a path to the exit node without a recursive call. if (ExitID == SuccBlock->getBlockID()) return false; // If the successor block contains a recursive call, end analysis there. if (hasRecursiveCallInPath(FD, *SuccBlock)) { foundRecursion = true; continue; } WorkList.push_back(SuccBlock); } } } return foundRecursion; } static void checkRecursiveFunction(Sema &S, const FunctionDecl *FD, const Stmt *Body, AnalysisDeclContext &AC) { FD = FD->getCanonicalDecl(); // Only run on non-templated functions and non-templated members of // templated classes. if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate && FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization) return; CFG *cfg = AC.getCFG(); if (!cfg) return; // If the exit block is unreachable, skip processing the function. if (cfg->getExit().pred_empty()) return; // Emit diagnostic if a recursive function call is detected for all paths. if (checkForRecursiveFunctionCall(FD, cfg)) S.Diag(Body->getBeginLoc(), diag::warn_infinite_recursive_function); } //===----------------------------------------------------------------------===// // Check for throw in a non-throwing function. //===----------------------------------------------------------------------===// /// Determine whether an exception thrown by E, unwinding from ThrowBlock, /// can reach ExitBlock. static bool throwEscapes(Sema &S, const CXXThrowExpr *E, CFGBlock &ThrowBlock, CFG *Body) { SmallVector Stack; llvm::BitVector Queued(Body->getNumBlockIDs()); Stack.push_back(&ThrowBlock); Queued[ThrowBlock.getBlockID()] = true; while (!Stack.empty()) { CFGBlock &UnwindBlock = *Stack.back(); Stack.pop_back(); for (auto &Succ : UnwindBlock.succs()) { if (!Succ.isReachable() || Queued[Succ->getBlockID()]) continue; if (Succ->getBlockID() == Body->getExit().getBlockID()) return true; if (auto *Catch = dyn_cast_or_null(Succ->getLabel())) { QualType Caught = Catch->getCaughtType(); if (Caught.isNull() || // catch (...) catches everything !E->getSubExpr() || // throw; is considered cuaght by any handler S.handlerCanCatch(Caught, E->getSubExpr()->getType())) // Exception doesn't escape via this path. break; } else { Stack.push_back(Succ); Queued[Succ->getBlockID()] = true; } } } return false; } static void visitReachableThrows( CFG *BodyCFG, llvm::function_ref Visit) { llvm::BitVector Reachable(BodyCFG->getNumBlockIDs()); clang::reachable_code::ScanReachableFromBlock(&BodyCFG->getEntry(), Reachable); for (CFGBlock *B : *BodyCFG) { if (!Reachable[B->getBlockID()]) continue; for (CFGElement &E : *B) { Optional S = E.getAs(); if (!S) continue; if (auto *Throw = dyn_cast(S->getStmt())) Visit(Throw, *B); } } } static void EmitDiagForCXXThrowInNonThrowingFunc(Sema &S, SourceLocation OpLoc, const FunctionDecl *FD) { if (!S.getSourceManager().isInSystemHeader(OpLoc) && FD->getTypeSourceInfo()) { S.Diag(OpLoc, diag::warn_throw_in_noexcept_func) << FD; if (S.getLangOpts().CPlusPlus11 && (isa(FD) || FD->getDeclName().getCXXOverloadedOperator() == OO_Delete || FD->getDeclName().getCXXOverloadedOperator() == OO_Array_Delete)) { if (const auto *Ty = FD->getTypeSourceInfo()->getType()-> getAs()) S.Diag(FD->getLocation(), diag::note_throw_in_dtor) << !isa(FD) << !Ty->hasExceptionSpec() << FD->getExceptionSpecSourceRange(); } else S.Diag(FD->getLocation(), diag::note_throw_in_function) << FD->getExceptionSpecSourceRange(); } } static void checkThrowInNonThrowingFunc(Sema &S, const FunctionDecl *FD, AnalysisDeclContext &AC) { CFG *BodyCFG = AC.getCFG(); if (!BodyCFG) return; if (BodyCFG->getExit().pred_empty()) return; visitReachableThrows(BodyCFG, [&](const CXXThrowExpr *Throw, CFGBlock &Block) { if (throwEscapes(S, Throw, Block, BodyCFG)) EmitDiagForCXXThrowInNonThrowingFunc(S, Throw->getThrowLoc(), FD); }); } static bool isNoexcept(const FunctionDecl *FD) { const auto *FPT = FD->getType()->castAs(); if (FPT->isNothrow() || FD->hasAttr()) return true; return false; } //===----------------------------------------------------------------------===// // Check for missing return value. //===----------------------------------------------------------------------===// enum ControlFlowKind { UnknownFallThrough, NeverFallThrough, MaybeFallThrough, AlwaysFallThrough, NeverFallThroughOrReturn }; /// CheckFallThrough - Check that we don't fall off the end of a /// Statement that should return a value. /// /// \returns AlwaysFallThrough iff we always fall off the end of the statement, /// MaybeFallThrough iff we might or might not fall off the end, /// NeverFallThroughOrReturn iff we never fall off the end of the statement or /// return. We assume NeverFallThrough iff we never fall off the end of the /// statement but we may return. We assume that functions not marked noreturn /// will return. static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) { CFG *cfg = AC.getCFG(); if (!cfg) return UnknownFallThrough; // The CFG leaves in dead things, and we don't want the dead code paths to // confuse us, so we mark all live things first. llvm::BitVector live(cfg->getNumBlockIDs()); unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(), live); bool AddEHEdges = AC.getAddEHEdges(); if (!AddEHEdges && count != cfg->getNumBlockIDs()) // When there are things remaining dead, and we didn't add EH edges // from CallExprs to the catch clauses, we have to go back and // mark them as live. for (const auto *B : *cfg) { if (!live[B->getBlockID()]) { if (B->pred_begin() == B->pred_end()) { const Stmt *Term = B->getTerminatorStmt(); if (Term && isa(Term)) // When not adding EH edges from calls, catch clauses // can otherwise seem dead. Avoid noting them as dead. count += reachable_code::ScanReachableFromBlock(B, live); continue; } } } // Now we know what is live, we check the live precessors of the exit block // and look for fall through paths, being careful to ignore normal returns, // and exceptional paths. bool HasLiveReturn = false; bool HasFakeEdge = false; bool HasPlainEdge = false; bool HasAbnormalEdge = false; // Ignore default cases that aren't likely to be reachable because all // enums in a switch(X) have explicit case statements. CFGBlock::FilterOptions FO; FO.IgnoreDefaultsWithCoveredEnums = 1; for (CFGBlock::filtered_pred_iterator I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) { const CFGBlock &B = **I; if (!live[B.getBlockID()]) continue; // Skip blocks which contain an element marked as no-return. They don't // represent actually viable edges into the exit block, so mark them as // abnormal. if (B.hasNoReturnElement()) { HasAbnormalEdge = true; continue; } // Destructors can appear after the 'return' in the CFG. This is // normal. We need to look pass the destructors for the return // statement (if it exists). CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend(); for ( ; ri != re ; ++ri) if (ri->getAs()) break; // No more CFGElements in the block? if (ri == re) { const Stmt *Term = B.getTerminatorStmt(); if (Term && (isa(Term) || isa(Term))) { HasAbnormalEdge = true; continue; } // A labeled empty statement, or the entry block... HasPlainEdge = true; continue; } CFGStmt CS = ri->castAs(); const Stmt *S = CS.getStmt(); if (isa(S) || isa(S)) { HasLiveReturn = true; continue; } if (isa(S)) { HasFakeEdge = true; continue; } if (isa(S)) { HasFakeEdge = true; continue; } if (isa(S)) { // TODO: Verify this is correct. HasFakeEdge = true; HasLiveReturn = true; continue; } if (isa(S)) { HasAbnormalEdge = true; continue; } if (!llvm::is_contained(B.succs(), &cfg->getExit())) { HasAbnormalEdge = true; continue; } HasPlainEdge = true; } if (!HasPlainEdge) { if (HasLiveReturn) return NeverFallThrough; return NeverFallThroughOrReturn; } if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn) return MaybeFallThrough; // This says AlwaysFallThrough for calls to functions that are not marked // noreturn, that don't return. If people would like this warning to be more // accurate, such functions should be marked as noreturn. return AlwaysFallThrough; } namespace { struct CheckFallThroughDiagnostics { unsigned diag_MaybeFallThrough_HasNoReturn; unsigned diag_MaybeFallThrough_ReturnsNonVoid; unsigned diag_AlwaysFallThrough_HasNoReturn; unsigned diag_AlwaysFallThrough_ReturnsNonVoid; unsigned diag_NeverFallThroughOrReturn; enum { Function, Block, Lambda, Coroutine } funMode; SourceLocation FuncLoc; static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) { CheckFallThroughDiagnostics D; D.FuncLoc = Func->getLocation(); D.diag_MaybeFallThrough_HasNoReturn = diag::warn_falloff_noreturn_function; D.diag_MaybeFallThrough_ReturnsNonVoid = diag::warn_maybe_falloff_nonvoid_function; D.diag_AlwaysFallThrough_HasNoReturn = diag::warn_falloff_noreturn_function; D.diag_AlwaysFallThrough_ReturnsNonVoid = diag::warn_falloff_nonvoid_function; // Don't suggest that virtual functions be marked "noreturn", since they // might be overridden by non-noreturn functions. bool isVirtualMethod = false; if (const CXXMethodDecl *Method = dyn_cast(Func)) isVirtualMethod = Method->isVirtual(); // Don't suggest that template instantiations be marked "noreturn" bool isTemplateInstantiation = false; if (const FunctionDecl *Function = dyn_cast(Func)) isTemplateInstantiation = Function->isTemplateInstantiation(); if (!isVirtualMethod && !isTemplateInstantiation) D.diag_NeverFallThroughOrReturn = diag::warn_suggest_noreturn_function; else D.diag_NeverFallThroughOrReturn = 0; D.funMode = Function; return D; } static CheckFallThroughDiagnostics MakeForCoroutine(const Decl *Func) { CheckFallThroughDiagnostics D; D.FuncLoc = Func->getLocation(); D.diag_MaybeFallThrough_HasNoReturn = 0; D.diag_MaybeFallThrough_ReturnsNonVoid = diag::warn_maybe_falloff_nonvoid_coroutine; D.diag_AlwaysFallThrough_HasNoReturn = 0; D.diag_AlwaysFallThrough_ReturnsNonVoid = diag::warn_falloff_nonvoid_coroutine; D.funMode = Coroutine; return D; } static CheckFallThroughDiagnostics MakeForBlock() { CheckFallThroughDiagnostics D; D.diag_MaybeFallThrough_HasNoReturn = diag::err_noreturn_block_has_return_expr; D.diag_MaybeFallThrough_ReturnsNonVoid = diag::err_maybe_falloff_nonvoid_block; D.diag_AlwaysFallThrough_HasNoReturn = diag::err_noreturn_block_has_return_expr; D.diag_AlwaysFallThrough_ReturnsNonVoid = diag::err_falloff_nonvoid_block; D.diag_NeverFallThroughOrReturn = 0; D.funMode = Block; return D; } static CheckFallThroughDiagnostics MakeForLambda() { CheckFallThroughDiagnostics D; D.diag_MaybeFallThrough_HasNoReturn = diag::err_noreturn_lambda_has_return_expr; D.diag_MaybeFallThrough_ReturnsNonVoid = diag::warn_maybe_falloff_nonvoid_lambda; D.diag_AlwaysFallThrough_HasNoReturn = diag::err_noreturn_lambda_has_return_expr; D.diag_AlwaysFallThrough_ReturnsNonVoid = diag::warn_falloff_nonvoid_lambda; D.diag_NeverFallThroughOrReturn = 0; D.funMode = Lambda; return D; } bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid, bool HasNoReturn) const { if (funMode == Function) { return (ReturnsVoid || D.isIgnored(diag::warn_maybe_falloff_nonvoid_function, FuncLoc)) && (!HasNoReturn || D.isIgnored(diag::warn_noreturn_function_has_return_expr, FuncLoc)) && (!ReturnsVoid || D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc)); } if (funMode == Coroutine) { return (ReturnsVoid || D.isIgnored(diag::warn_maybe_falloff_nonvoid_function, FuncLoc) || D.isIgnored(diag::warn_maybe_falloff_nonvoid_coroutine, FuncLoc)) && (!HasNoReturn); } // For blocks / lambdas. return ReturnsVoid && !HasNoReturn; } }; } // anonymous namespace /// CheckFallThroughForBody - Check that we don't fall off the end of a /// function that should return a value. Check that we don't fall off the end /// of a noreturn function. We assume that functions and blocks not marked /// noreturn will return. static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body, QualType BlockType, const CheckFallThroughDiagnostics &CD, AnalysisDeclContext &AC, sema::FunctionScopeInfo *FSI) { bool ReturnsVoid = false; bool HasNoReturn = false; bool IsCoroutine = FSI->isCoroutine(); if (const auto *FD = dyn_cast(D)) { if (const auto *CBody = dyn_cast(Body)) ReturnsVoid = CBody->getFallthroughHandler() != nullptr; else ReturnsVoid = FD->getReturnType()->isVoidType(); HasNoReturn = FD->isNoReturn(); } else if (const auto *MD = dyn_cast(D)) { ReturnsVoid = MD->getReturnType()->isVoidType(); HasNoReturn = MD->hasAttr(); } else if (isa(D)) { if (const FunctionType *FT = BlockType->getPointeeType()->getAs()) { if (FT->getReturnType()->isVoidType()) ReturnsVoid = true; if (FT->getNoReturnAttr()) HasNoReturn = true; } } DiagnosticsEngine &Diags = S.getDiagnostics(); // Short circuit for compilation speed. if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn)) return; SourceLocation LBrace = Body->getBeginLoc(), RBrace = Body->getEndLoc(); auto EmitDiag = [&](SourceLocation Loc, unsigned DiagID) { if (IsCoroutine) S.Diag(Loc, DiagID) << FSI->CoroutinePromise->getType(); else S.Diag(Loc, DiagID); }; // cpu_dispatch functions permit empty function bodies for ICC compatibility. if (D->getAsFunction() && D->getAsFunction()->isCPUDispatchMultiVersion()) return; // Either in a function body compound statement, or a function-try-block. switch (CheckFallThrough(AC)) { case UnknownFallThrough: break; case MaybeFallThrough: if (HasNoReturn) EmitDiag(RBrace, CD.diag_MaybeFallThrough_HasNoReturn); else if (!ReturnsVoid) EmitDiag(RBrace, CD.diag_MaybeFallThrough_ReturnsNonVoid); break; case AlwaysFallThrough: if (HasNoReturn) EmitDiag(RBrace, CD.diag_AlwaysFallThrough_HasNoReturn); else if (!ReturnsVoid) EmitDiag(RBrace, CD.diag_AlwaysFallThrough_ReturnsNonVoid); break; case NeverFallThroughOrReturn: if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) { if (const FunctionDecl *FD = dyn_cast(D)) { S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 0 << FD; } else if (const ObjCMethodDecl *MD = dyn_cast(D)) { S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 1 << MD; } else { S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn); } } break; case NeverFallThrough: break; } } //===----------------------------------------------------------------------===// // -Wuninitialized //===----------------------------------------------------------------------===// namespace { /// ContainsReference - A visitor class to search for references to /// a particular declaration (the needle) within any evaluated component of an /// expression (recursively). class ContainsReference : public ConstEvaluatedExprVisitor { bool FoundReference; const DeclRefExpr *Needle; public: typedef ConstEvaluatedExprVisitor Inherited; ContainsReference(ASTContext &Context, const DeclRefExpr *Needle) : Inherited(Context), FoundReference(false), Needle(Needle) {} void VisitExpr(const Expr *E) { // Stop evaluating if we already have a reference. if (FoundReference) return; Inherited::VisitExpr(E); } void VisitDeclRefExpr(const DeclRefExpr *E) { if (E == Needle) FoundReference = true; else Inherited::VisitDeclRefExpr(E); } bool doesContainReference() const { return FoundReference; } }; } // anonymous namespace static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) { QualType VariableTy = VD->getType().getCanonicalType(); if (VariableTy->isBlockPointerType() && !VD->hasAttr()) { S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization) << VD->getDeclName() << FixItHint::CreateInsertion(VD->getLocation(), "__block "); return true; } // Don't issue a fixit if there is already an initializer. if (VD->getInit()) return false; // Don't suggest a fixit inside macros. if (VD->getEndLoc().isMacroID()) return false; SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc()); // Suggest possible initialization (if any). std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); if (Init.empty()) return false; S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName() << FixItHint::CreateInsertion(Loc, Init); return true; } /// Create a fixit to remove an if-like statement, on the assumption that its /// condition is CondVal. static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then, const Stmt *Else, bool CondVal, FixItHint &Fixit1, FixItHint &Fixit2) { if (CondVal) { // If condition is always true, remove all but the 'then'. Fixit1 = FixItHint::CreateRemoval( CharSourceRange::getCharRange(If->getBeginLoc(), Then->getBeginLoc())); if (Else) { SourceLocation ElseKwLoc = S.getLocForEndOfToken(Then->getEndLoc()); Fixit2 = FixItHint::CreateRemoval(SourceRange(ElseKwLoc, Else->getEndLoc())); } } else { // If condition is always false, remove all but the 'else'. if (Else) Fixit1 = FixItHint::CreateRemoval(CharSourceRange::getCharRange( If->getBeginLoc(), Else->getBeginLoc())); else Fixit1 = FixItHint::CreateRemoval(If->getSourceRange()); } } /// DiagUninitUse -- Helper function to produce a diagnostic for an /// uninitialized use of a variable. static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use, bool IsCapturedByBlock) { bool Diagnosed = false; switch (Use.getKind()) { case UninitUse::Always: S.Diag(Use.getUser()->getBeginLoc(), diag::warn_uninit_var) << VD->getDeclName() << IsCapturedByBlock << Use.getUser()->getSourceRange(); return; case UninitUse::AfterDecl: case UninitUse::AfterCall: S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var) << VD->getDeclName() << IsCapturedByBlock << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5) << const_cast(VD->getLexicalDeclContext()) << VD->getSourceRange(); S.Diag(Use.getUser()->getBeginLoc(), diag::note_uninit_var_use) << IsCapturedByBlock << Use.getUser()->getSourceRange(); return; case UninitUse::Maybe: case UninitUse::Sometimes: // Carry on to report sometimes-uninitialized branches, if possible, // or a 'may be used uninitialized' diagnostic otherwise. break; } // Diagnose each branch which leads to a sometimes-uninitialized use. for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end(); I != E; ++I) { assert(Use.getKind() == UninitUse::Sometimes); const Expr *User = Use.getUser(); const Stmt *Term = I->Terminator; // Information used when building the diagnostic. unsigned DiagKind; StringRef Str; SourceRange Range; // FixIts to suppress the diagnostic by removing the dead condition. // For all binary terminators, branch 0 is taken if the condition is true, // and branch 1 is taken if the condition is false. int RemoveDiagKind = -1; const char *FixitStr = S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false") : (I->Output ? "1" : "0"); FixItHint Fixit1, Fixit2; switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) { default: // Don't know how to report this. Just fall back to 'may be used // uninitialized'. FIXME: Can this happen? continue; // "condition is true / condition is false". case Stmt::IfStmtClass: { const IfStmt *IS = cast(Term); DiagKind = 0; Str = "if"; Range = IS->getCond()->getSourceRange(); RemoveDiagKind = 0; CreateIfFixit(S, IS, IS->getThen(), IS->getElse(), I->Output, Fixit1, Fixit2); break; } case Stmt::ConditionalOperatorClass: { const ConditionalOperator *CO = cast(Term); DiagKind = 0; Str = "?:"; Range = CO->getCond()->getSourceRange(); RemoveDiagKind = 0; CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(), I->Output, Fixit1, Fixit2); break; } case Stmt::BinaryOperatorClass: { const BinaryOperator *BO = cast(Term); if (!BO->isLogicalOp()) continue; DiagKind = 0; Str = BO->getOpcodeStr(); Range = BO->getLHS()->getSourceRange(); RemoveDiagKind = 0; if ((BO->getOpcode() == BO_LAnd && I->Output) || (BO->getOpcode() == BO_LOr && !I->Output)) // true && y -> y, false || y -> y. Fixit1 = FixItHint::CreateRemoval( SourceRange(BO->getBeginLoc(), BO->getOperatorLoc())); else // false && y -> false, true || y -> true. Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr); break; } // "loop is entered / loop is exited". case Stmt::WhileStmtClass: DiagKind = 1; Str = "while"; Range = cast(Term)->getCond()->getSourceRange(); RemoveDiagKind = 1; Fixit1 = FixItHint::CreateReplacement(Range, FixitStr); break; case Stmt::ForStmtClass: DiagKind = 1; Str = "for"; Range = cast(Term)->getCond()->getSourceRange(); RemoveDiagKind = 1; if (I->Output) Fixit1 = FixItHint::CreateRemoval(Range); else Fixit1 = FixItHint::CreateReplacement(Range, FixitStr); break; case Stmt::CXXForRangeStmtClass: if (I->Output == 1) { // The use occurs if a range-based for loop's body never executes. // That may be impossible, and there's no syntactic fix for this, // so treat it as a 'may be uninitialized' case. continue; } DiagKind = 1; Str = "for"; Range = cast(Term)->getRangeInit()->getSourceRange(); break; // "condition is true / loop is exited". case Stmt::DoStmtClass: DiagKind = 2; Str = "do"; Range = cast(Term)->getCond()->getSourceRange(); RemoveDiagKind = 1; Fixit1 = FixItHint::CreateReplacement(Range, FixitStr); break; // "switch case is taken". case Stmt::CaseStmtClass: DiagKind = 3; Str = "case"; Range = cast(Term)->getLHS()->getSourceRange(); break; case Stmt::DefaultStmtClass: DiagKind = 3; Str = "default"; Range = cast(Term)->getDefaultLoc(); break; } S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var) << VD->getDeclName() << IsCapturedByBlock << DiagKind << Str << I->Output << Range; S.Diag(User->getBeginLoc(), diag::note_uninit_var_use) << IsCapturedByBlock << User->getSourceRange(); if (RemoveDiagKind != -1) S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond) << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2; Diagnosed = true; } if (!Diagnosed) S.Diag(Use.getUser()->getBeginLoc(), diag::warn_maybe_uninit_var) << VD->getDeclName() << IsCapturedByBlock << Use.getUser()->getSourceRange(); } /// Diagnose uninitialized const reference usages. static bool DiagnoseUninitializedConstRefUse(Sema &S, const VarDecl *VD, const UninitUse &Use) { S.Diag(Use.getUser()->getBeginLoc(), diag::warn_uninit_const_reference) << VD->getDeclName() << Use.getUser()->getSourceRange(); return true; } /// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an /// uninitialized variable. This manages the different forms of diagnostic /// emitted for particular types of uses. Returns true if the use was diagnosed /// as a warning. If a particular use is one we omit warnings for, returns /// false. static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD, const UninitUse &Use, bool alwaysReportSelfInit = false) { if (const DeclRefExpr *DRE = dyn_cast(Use.getUser())) { // Inspect the initializer of the variable declaration which is // being referenced prior to its initialization. We emit // specialized diagnostics for self-initialization, and we // specifically avoid warning about self references which take the // form of: // // int x = x; // // This is used to indicate to GCC that 'x' is intentionally left // uninitialized. Proven code paths which access 'x' in // an uninitialized state after this will still warn. if (const Expr *Initializer = VD->getInit()) { if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts()) return false; ContainsReference CR(S.Context, DRE); CR.Visit(Initializer); if (CR.doesContainReference()) { S.Diag(DRE->getBeginLoc(), diag::warn_uninit_self_reference_in_init) << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange(); return true; } } DiagUninitUse(S, VD, Use, false); } else { const BlockExpr *BE = cast(Use.getUser()); if (VD->getType()->isBlockPointerType() && !VD->hasAttr()) S.Diag(BE->getBeginLoc(), diag::warn_uninit_byref_blockvar_captured_by_block) << VD->getDeclName() << VD->getType().getQualifiers().hasObjCLifetime(); else DiagUninitUse(S, VD, Use, true); } // Report where the variable was declared when the use wasn't within // the initializer of that declaration & we didn't already suggest // an initialization fixit. if (!SuggestInitializationFixit(S, VD)) S.Diag(VD->getBeginLoc(), diag::note_var_declared_here) << VD->getDeclName(); return true; } namespace { class FallthroughMapper : public RecursiveASTVisitor { public: FallthroughMapper(Sema &S) : FoundSwitchStatements(false), S(S) { } bool foundSwitchStatements() const { return FoundSwitchStatements; } void markFallthroughVisited(const AttributedStmt *Stmt) { bool Found = FallthroughStmts.erase(Stmt); assert(Found); (void)Found; } typedef llvm::SmallPtrSet AttrStmts; const AttrStmts &getFallthroughStmts() const { return FallthroughStmts; } void fillReachableBlocks(CFG *Cfg) { assert(ReachableBlocks.empty() && "ReachableBlocks already filled"); std::deque BlockQueue; ReachableBlocks.insert(&Cfg->getEntry()); BlockQueue.push_back(&Cfg->getEntry()); // Mark all case blocks reachable to avoid problems with switching on // constants, covered enums, etc. // These blocks can contain fall-through annotations, and we don't want to // issue a warn_fallthrough_attr_unreachable for them. for (const auto *B : *Cfg) { const Stmt *L = B->getLabel(); if (L && isa(L) && ReachableBlocks.insert(B).second) BlockQueue.push_back(B); } while (!BlockQueue.empty()) { const CFGBlock *P = BlockQueue.front(); BlockQueue.pop_front(); for (const CFGBlock *B : P->succs()) { if (B && ReachableBlocks.insert(B).second) BlockQueue.push_back(B); } } } bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt, bool IsTemplateInstantiation) { assert(!ReachableBlocks.empty() && "ReachableBlocks empty"); int UnannotatedCnt = 0; AnnotatedCnt = 0; std::deque BlockQueue(B.pred_begin(), B.pred_end()); while (!BlockQueue.empty()) { const CFGBlock *P = BlockQueue.front(); BlockQueue.pop_front(); if (!P) continue; const Stmt *Term = P->getTerminatorStmt(); if (Term && isa(Term)) continue; // Switch statement, good. const SwitchCase *SW = dyn_cast_or_null(P->getLabel()); if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end()) continue; // Previous case label has no statements, good. const LabelStmt *L = dyn_cast_or_null(P->getLabel()); if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end()) continue; // Case label is preceded with a normal label, good. if (!ReachableBlocks.count(P)) { for (const CFGElement &Elem : llvm::reverse(*P)) { if (Optional CS = Elem.getAs()) { if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) { // Don't issue a warning for an unreachable fallthrough // attribute in template instantiations as it may not be // unreachable in all instantiations of the template. if (!IsTemplateInstantiation) S.Diag(AS->getBeginLoc(), diag::warn_unreachable_fallthrough_attr); markFallthroughVisited(AS); ++AnnotatedCnt; break; } // Don't care about other unreachable statements. } } // If there are no unreachable statements, this may be a special // case in CFG: // case X: { // A a; // A has a destructor. // break; // } // // <<<< This place is represented by a 'hanging' CFG block. // case Y: continue; } const Stmt *LastStmt = getLastStmt(*P); if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) { markFallthroughVisited(AS); ++AnnotatedCnt; continue; // Fallthrough annotation, good. } if (!LastStmt) { // This block contains no executable statements. // Traverse its predecessors. std::copy(P->pred_begin(), P->pred_end(), std::back_inserter(BlockQueue)); continue; } ++UnannotatedCnt; } return !!UnannotatedCnt; } // RecursiveASTVisitor setup. bool shouldWalkTypesOfTypeLocs() const { return false; } bool VisitAttributedStmt(AttributedStmt *S) { if (asFallThroughAttr(S)) FallthroughStmts.insert(S); return true; } bool VisitSwitchStmt(SwitchStmt *S) { FoundSwitchStatements = true; return true; } // We don't want to traverse local type declarations. We analyze their // methods separately. bool TraverseDecl(Decl *D) { return true; } // We analyze lambda bodies separately. Skip them here. bool TraverseLambdaExpr(LambdaExpr *LE) { // Traverse the captures, but not the body. for (const auto C : zip(LE->captures(), LE->capture_inits())) TraverseLambdaCapture(LE, &std::get<0>(C), std::get<1>(C)); return true; } private: static const AttributedStmt *asFallThroughAttr(const Stmt *S) { if (const AttributedStmt *AS = dyn_cast_or_null(S)) { if (hasSpecificAttr(AS->getAttrs())) return AS; } return nullptr; } static const Stmt *getLastStmt(const CFGBlock &B) { if (const Stmt *Term = B.getTerminatorStmt()) return Term; for (const CFGElement &Elem : llvm::reverse(B)) if (Optional CS = Elem.getAs()) return CS->getStmt(); // Workaround to detect a statement thrown out by CFGBuilder: // case X: {} case Y: // case X: ; case Y: if (const SwitchCase *SW = dyn_cast_or_null(B.getLabel())) if (!isa(SW->getSubStmt())) return SW->getSubStmt(); return nullptr; } bool FoundSwitchStatements; AttrStmts FallthroughStmts; Sema &S; llvm::SmallPtrSet ReachableBlocks; }; } // anonymous namespace static StringRef getFallthroughAttrSpelling(Preprocessor &PP, SourceLocation Loc) { TokenValue FallthroughTokens[] = { tok::l_square, tok::l_square, PP.getIdentifierInfo("fallthrough"), tok::r_square, tok::r_square }; TokenValue ClangFallthroughTokens[] = { tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"), tok::coloncolon, PP.getIdentifierInfo("fallthrough"), tok::r_square, tok::r_square }; bool PreferClangAttr = !PP.getLangOpts().CPlusPlus17 && !PP.getLangOpts().C2x; StringRef MacroName; if (PreferClangAttr) MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens); if (MacroName.empty()) MacroName = PP.getLastMacroWithSpelling(Loc, FallthroughTokens); if (MacroName.empty() && !PreferClangAttr) MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens); if (MacroName.empty()) { if (!PreferClangAttr) MacroName = "[[fallthrough]]"; else if (PP.getLangOpts().CPlusPlus) MacroName = "[[clang::fallthrough]]"; else MacroName = "__attribute__((fallthrough))"; } return MacroName; } static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC, bool PerFunction) { FallthroughMapper FM(S); FM.TraverseStmt(AC.getBody()); if (!FM.foundSwitchStatements()) return; if (PerFunction && FM.getFallthroughStmts().empty()) return; CFG *Cfg = AC.getCFG(); if (!Cfg) return; FM.fillReachableBlocks(Cfg); for (const CFGBlock *B : llvm::reverse(*Cfg)) { const Stmt *Label = B->getLabel(); if (!Label || !isa(Label)) continue; int AnnotatedCnt; bool IsTemplateInstantiation = false; if (const FunctionDecl *Function = dyn_cast(AC.getDecl())) IsTemplateInstantiation = Function->isTemplateInstantiation(); if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt, IsTemplateInstantiation)) continue; S.Diag(Label->getBeginLoc(), PerFunction ? diag::warn_unannotated_fallthrough_per_function : diag::warn_unannotated_fallthrough); if (!AnnotatedCnt) { SourceLocation L = Label->getBeginLoc(); if (L.isMacroID()) continue; const Stmt *Term = B->getTerminatorStmt(); // Skip empty cases. while (B->empty() && !Term && B->succ_size() == 1) { B = *B->succ_begin(); Term = B->getTerminatorStmt(); } if (!(B->empty() && Term && isa(Term))) { Preprocessor &PP = S.getPreprocessor(); StringRef AnnotationSpelling = getFallthroughAttrSpelling(PP, L); SmallString<64> TextToInsert(AnnotationSpelling); TextToInsert += "; "; S.Diag(L, diag::note_insert_fallthrough_fixit) << AnnotationSpelling << FixItHint::CreateInsertion(L, TextToInsert); } S.Diag(L, diag::note_insert_break_fixit) << FixItHint::CreateInsertion(L, "break; "); } } for (const auto *F : FM.getFallthroughStmts()) S.Diag(F->getBeginLoc(), diag::err_fallthrough_attr_invalid_placement); } static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM, const Stmt *S) { assert(S); do { switch (S->getStmtClass()) { case Stmt::ForStmtClass: case Stmt::WhileStmtClass: case Stmt::CXXForRangeStmtClass: case Stmt::ObjCForCollectionStmtClass: return true; case Stmt::DoStmtClass: { Expr::EvalResult Result; if (!cast(S)->getCond()->EvaluateAsInt(Result, Ctx)) return true; return Result.Val.getInt().getBoolValue(); } default: break; } } while ((S = PM.getParent(S))); return false; } static void diagnoseRepeatedUseOfWeak(Sema &S, const sema::FunctionScopeInfo *CurFn, const Decl *D, const ParentMap &PM) { typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy; typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap; typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector; typedef std::pair StmtUsesPair; ASTContext &Ctx = S.getASTContext(); const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses(); // Extract all weak objects that are referenced more than once. SmallVector UsesByStmt; for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end(); I != E; ++I) { const WeakUseVector &Uses = I->second; // Find the first read of the weak object. WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end(); for ( ; UI != UE; ++UI) { if (UI->isUnsafe()) break; } // If there were only writes to this object, don't warn. if (UI == UE) continue; // If there was only one read, followed by any number of writes, and the // read is not within a loop, don't warn. Additionally, don't warn in a // loop if the base object is a local variable -- local variables are often // changed in loops. if (UI == Uses.begin()) { WeakUseVector::const_iterator UI2 = UI; for (++UI2; UI2 != UE; ++UI2) if (UI2->isUnsafe()) break; if (UI2 == UE) { if (!isInLoop(Ctx, PM, UI->getUseExpr())) continue; const WeakObjectProfileTy &Profile = I->first; if (!Profile.isExactProfile()) continue; const NamedDecl *Base = Profile.getBase(); if (!Base) Base = Profile.getProperty(); assert(Base && "A profile always has a base or property."); if (const VarDecl *BaseVar = dyn_cast(Base)) if (BaseVar->hasLocalStorage() && !isa(Base)) continue; } } UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I)); } if (UsesByStmt.empty()) return; // Sort by first use so that we emit the warnings in a deterministic order. SourceManager &SM = S.getSourceManager(); llvm::sort(UsesByStmt, [&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) { return SM.isBeforeInTranslationUnit(LHS.first->getBeginLoc(), RHS.first->getBeginLoc()); }); // Classify the current code body for better warning text. // This enum should stay in sync with the cases in // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak. // FIXME: Should we use a common classification enum and the same set of // possibilities all throughout Sema? enum { Function, Method, Block, Lambda } FunctionKind; if (isa(CurFn)) FunctionKind = Block; else if (isa(CurFn)) FunctionKind = Lambda; else if (isa(D)) FunctionKind = Method; else FunctionKind = Function; // Iterate through the sorted problems and emit warnings for each. for (const auto &P : UsesByStmt) { const Stmt *FirstRead = P.first; const WeakObjectProfileTy &Key = P.second->first; const WeakUseVector &Uses = P.second->second; // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy // may not contain enough information to determine that these are different // properties. We can only be 100% sure of a repeated use in certain cases, // and we adjust the diagnostic kind accordingly so that the less certain // case can be turned off if it is too noisy. unsigned DiagKind; if (Key.isExactProfile()) DiagKind = diag::warn_arc_repeated_use_of_weak; else DiagKind = diag::warn_arc_possible_repeated_use_of_weak; // Classify the weak object being accessed for better warning text. // This enum should stay in sync with the cases in // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak. enum { Variable, Property, ImplicitProperty, Ivar } ObjectKind; const NamedDecl *KeyProp = Key.getProperty(); if (isa(KeyProp)) ObjectKind = Variable; else if (isa(KeyProp)) ObjectKind = Property; else if (isa(KeyProp)) ObjectKind = ImplicitProperty; else if (isa(KeyProp)) ObjectKind = Ivar; else llvm_unreachable("Unexpected weak object kind!"); // Do not warn about IBOutlet weak property receivers being set to null // since they are typically only used from the main thread. if (const ObjCPropertyDecl *Prop = dyn_cast(KeyProp)) if (Prop->hasAttr()) continue; // Show the first time the object was read. S.Diag(FirstRead->getBeginLoc(), DiagKind) << int(ObjectKind) << KeyProp << int(FunctionKind) << FirstRead->getSourceRange(); // Print all the other accesses as notes. for (const auto &Use : Uses) { if (Use.getUseExpr() == FirstRead) continue; S.Diag(Use.getUseExpr()->getBeginLoc(), diag::note_arc_weak_also_accessed_here) << Use.getUseExpr()->getSourceRange(); } } } namespace clang { namespace { typedef SmallVector OptionalNotes; typedef std::pair DelayedDiag; typedef std::list DiagList; struct SortDiagBySourceLocation { SourceManager &SM; SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {} bool operator()(const DelayedDiag &left, const DelayedDiag &right) { // Although this call will be slow, this is only called when outputting // multiple warnings. return SM.isBeforeInTranslationUnit(left.first.first, right.first.first); } }; } // anonymous namespace } // namespace clang namespace { class UninitValsDiagReporter : public UninitVariablesHandler { Sema &S; typedef SmallVector UsesVec; typedef llvm::PointerIntPair MappedType; // Prefer using MapVector to DenseMap, so that iteration order will be // the same as insertion order. This is needed to obtain a deterministic // order of diagnostics when calling flushDiagnostics(). typedef llvm::MapVector UsesMap; UsesMap uses; UsesMap constRefUses; public: UninitValsDiagReporter(Sema &S) : S(S) {} ~UninitValsDiagReporter() override { flushDiagnostics(); } MappedType &getUses(UsesMap &um, const VarDecl *vd) { MappedType &V = um[vd]; if (!V.getPointer()) V.setPointer(new UsesVec()); return V; } void handleUseOfUninitVariable(const VarDecl *vd, const UninitUse &use) override { getUses(uses, vd).getPointer()->push_back(use); } void handleConstRefUseOfUninitVariable(const VarDecl *vd, const UninitUse &use) override { getUses(constRefUses, vd).getPointer()->push_back(use); } void handleSelfInit(const VarDecl *vd) override { getUses(uses, vd).setInt(true); getUses(constRefUses, vd).setInt(true); } void flushDiagnostics() { for (const auto &P : uses) { const VarDecl *vd = P.first; const MappedType &V = P.second; UsesVec *vec = V.getPointer(); bool hasSelfInit = V.getInt(); // Specially handle the case where we have uses of an uninitialized // variable, but the root cause is an idiomatic self-init. We want // to report the diagnostic at the self-init since that is the root cause. if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec)) DiagnoseUninitializedUse(S, vd, UninitUse(vd->getInit()->IgnoreParenCasts(), /* isAlwaysUninit */ true), /* alwaysReportSelfInit */ true); else { // Sort the uses by their SourceLocations. While not strictly // guaranteed to produce them in line/column order, this will provide // a stable ordering. llvm::sort(vec->begin(), vec->end(), [](const UninitUse &a, const UninitUse &b) { // Prefer a more confident report over a less confident one. if (a.getKind() != b.getKind()) return a.getKind() > b.getKind(); return a.getUser()->getBeginLoc() < b.getUser()->getBeginLoc(); }); for (const auto &U : *vec) { // If we have self-init, downgrade all uses to 'may be uninitialized'. UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U; if (DiagnoseUninitializedUse(S, vd, Use)) // Skip further diagnostics for this variable. We try to warn only // on the first point at which a variable is used uninitialized. break; } } // Release the uses vector. delete vec; } uses.clear(); // Flush all const reference uses diags. for (const auto &P : constRefUses) { const VarDecl *vd = P.first; const MappedType &V = P.second; UsesVec *vec = V.getPointer(); bool hasSelfInit = V.getInt(); if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec)) DiagnoseUninitializedUse(S, vd, UninitUse(vd->getInit()->IgnoreParenCasts(), /* isAlwaysUninit */ true), /* alwaysReportSelfInit */ true); else { for (const auto &U : *vec) { if (DiagnoseUninitializedConstRefUse(S, vd, U)) break; } } // Release the uses vector. delete vec; } constRefUses.clear(); } private: static bool hasAlwaysUninitializedUse(const UsesVec* vec) { return llvm::any_of(*vec, [](const UninitUse &U) { return U.getKind() == UninitUse::Always || U.getKind() == UninitUse::AfterCall || U.getKind() == UninitUse::AfterDecl; }); } }; /// Inter-procedural data for the called-once checker. class CalledOnceInterProceduralData { public: // Add the delayed warning for the given block. void addDelayedWarning(const BlockDecl *Block, PartialDiagnosticAt &&Warning) { DelayedBlockWarnings[Block].emplace_back(std::move(Warning)); } // Report all of the warnings we've gathered for the given block. void flushWarnings(const BlockDecl *Block, Sema &S) { for (const PartialDiagnosticAt &Delayed : DelayedBlockWarnings[Block]) S.Diag(Delayed.first, Delayed.second); discardWarnings(Block); } // Discard all of the warnings we've gathered for the given block. void discardWarnings(const BlockDecl *Block) { DelayedBlockWarnings.erase(Block); } private: using DelayedDiagnostics = SmallVector; llvm::DenseMap DelayedBlockWarnings; }; class CalledOnceCheckReporter : public CalledOnceCheckHandler { public: CalledOnceCheckReporter(Sema &S, CalledOnceInterProceduralData &Data) : S(S), Data(Data) {} void handleDoubleCall(const ParmVarDecl *Parameter, const Expr *Call, const Expr *PrevCall, bool IsCompletionHandler, bool Poised) override { auto DiagToReport = IsCompletionHandler ? diag::warn_completion_handler_called_twice : diag::warn_called_once_gets_called_twice; S.Diag(Call->getBeginLoc(), DiagToReport) << Parameter; S.Diag(PrevCall->getBeginLoc(), diag::note_called_once_gets_called_twice) << Poised; } void handleNeverCalled(const ParmVarDecl *Parameter, bool IsCompletionHandler) override { auto DiagToReport = IsCompletionHandler ? diag::warn_completion_handler_never_called : diag::warn_called_once_never_called; S.Diag(Parameter->getBeginLoc(), DiagToReport) << Parameter << /* Captured */ false; } void handleNeverCalled(const ParmVarDecl *Parameter, const Decl *Function, const Stmt *Where, NeverCalledReason Reason, bool IsCalledDirectly, bool IsCompletionHandler) override { auto DiagToReport = IsCompletionHandler ? diag::warn_completion_handler_never_called_when : diag::warn_called_once_never_called_when; PartialDiagnosticAt Warning(Where->getBeginLoc(), S.PDiag(DiagToReport) << Parameter << IsCalledDirectly << (unsigned)Reason); if (const auto *Block = dyn_cast(Function)) { // We shouldn't report these warnings on blocks immediately Data.addDelayedWarning(Block, std::move(Warning)); } else { S.Diag(Warning.first, Warning.second); } } void handleCapturedNeverCalled(const ParmVarDecl *Parameter, const Decl *Where, bool IsCompletionHandler) override { auto DiagToReport = IsCompletionHandler ? diag::warn_completion_handler_never_called : diag::warn_called_once_never_called; S.Diag(Where->getBeginLoc(), DiagToReport) << Parameter << /* Captured */ true; } void handleBlockThatIsGuaranteedToBeCalledOnce(const BlockDecl *Block) override { Data.flushWarnings(Block, S); } void handleBlockWithNoGuarantees(const BlockDecl *Block) override { Data.discardWarnings(Block); } private: Sema &S; CalledOnceInterProceduralData &Data; }; constexpr unsigned CalledOnceWarnings[] = { diag::warn_called_once_never_called, diag::warn_called_once_never_called_when, diag::warn_called_once_gets_called_twice}; constexpr unsigned CompletionHandlerWarnings[]{ diag::warn_completion_handler_never_called, diag::warn_completion_handler_never_called_when, diag::warn_completion_handler_called_twice}; bool shouldAnalyzeCalledOnceImpl(llvm::ArrayRef DiagIDs, const DiagnosticsEngine &Diags, SourceLocation At) { return llvm::any_of(DiagIDs, [&Diags, At](unsigned DiagID) { return !Diags.isIgnored(DiagID, At); }); } bool shouldAnalyzeCalledOnceConventions(const DiagnosticsEngine &Diags, SourceLocation At) { return shouldAnalyzeCalledOnceImpl(CompletionHandlerWarnings, Diags, At); } bool shouldAnalyzeCalledOnceParameters(const DiagnosticsEngine &Diags, SourceLocation At) { return shouldAnalyzeCalledOnceImpl(CalledOnceWarnings, Diags, At) || shouldAnalyzeCalledOnceConventions(Diags, At); } } // anonymous namespace //===----------------------------------------------------------------------===// // -Wthread-safety //===----------------------------------------------------------------------===// namespace clang { namespace threadSafety { namespace { class ThreadSafetyReporter : public clang::threadSafety::ThreadSafetyHandler { Sema &S; DiagList Warnings; SourceLocation FunLocation, FunEndLocation; const FunctionDecl *CurrentFunction; bool Verbose; OptionalNotes getNotes() const { if (Verbose && CurrentFunction) { PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(), S.PDiag(diag::note_thread_warning_in_fun) << CurrentFunction); return OptionalNotes(1, FNote); } return OptionalNotes(); } OptionalNotes getNotes(const PartialDiagnosticAt &Note) const { OptionalNotes ONS(1, Note); if (Verbose && CurrentFunction) { PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(), S.PDiag(diag::note_thread_warning_in_fun) << CurrentFunction); ONS.push_back(std::move(FNote)); } return ONS; } OptionalNotes getNotes(const PartialDiagnosticAt &Note1, const PartialDiagnosticAt &Note2) const { OptionalNotes ONS; ONS.push_back(Note1); ONS.push_back(Note2); if (Verbose && CurrentFunction) { PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(), S.PDiag(diag::note_thread_warning_in_fun) << CurrentFunction); ONS.push_back(std::move(FNote)); } return ONS; } OptionalNotes makeLockedHereNote(SourceLocation LocLocked, StringRef Kind) { return LocLocked.isValid() ? getNotes(PartialDiagnosticAt( LocLocked, S.PDiag(diag::note_locked_here) << Kind)) : getNotes(); } OptionalNotes makeUnlockedHereNote(SourceLocation LocUnlocked, StringRef Kind) { return LocUnlocked.isValid() ? getNotes(PartialDiagnosticAt( LocUnlocked, S.PDiag(diag::note_unlocked_here) << Kind)) : getNotes(); } public: ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL) : S(S), FunLocation(FL), FunEndLocation(FEL), CurrentFunction(nullptr), Verbose(false) {} void setVerbose(bool b) { Verbose = b; } /// Emit all buffered diagnostics in order of sourcelocation. /// We need to output diagnostics produced while iterating through /// the lockset in deterministic order, so this function orders diagnostics /// and outputs them. void emitDiagnostics() { Warnings.sort(SortDiagBySourceLocation(S.getSourceManager())); for (const auto &Diag : Warnings) { S.Diag(Diag.first.first, Diag.first.second); for (const auto &Note : Diag.second) S.Diag(Note.first, Note.second); } } void handleInvalidLockExp(StringRef Kind, SourceLocation Loc) override { PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock) << Loc); Warnings.emplace_back(std::move(Warning), getNotes()); } void handleUnmatchedUnlock(StringRef Kind, Name LockName, SourceLocation Loc, SourceLocation LocPreviousUnlock) override { if (Loc.isInvalid()) Loc = FunLocation; PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_but_no_lock) << Kind << LockName); Warnings.emplace_back(std::move(Warning), makeUnlockedHereNote(LocPreviousUnlock, Kind)); } void handleIncorrectUnlockKind(StringRef Kind, Name LockName, LockKind Expected, LockKind Received, SourceLocation LocLocked, SourceLocation LocUnlock) override { if (LocUnlock.isInvalid()) LocUnlock = FunLocation; PartialDiagnosticAt Warning( LocUnlock, S.PDiag(diag::warn_unlock_kind_mismatch) << Kind << LockName << Received << Expected); Warnings.emplace_back(std::move(Warning), makeLockedHereNote(LocLocked, Kind)); } void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation LocLocked, SourceLocation LocDoubleLock) override { if (LocDoubleLock.isInvalid()) LocDoubleLock = FunLocation; PartialDiagnosticAt Warning(LocDoubleLock, S.PDiag(diag::warn_double_lock) << Kind << LockName); Warnings.emplace_back(std::move(Warning), makeLockedHereNote(LocLocked, Kind)); } void handleMutexHeldEndOfScope(StringRef Kind, Name LockName, SourceLocation LocLocked, SourceLocation LocEndOfScope, LockErrorKind LEK) override { unsigned DiagID = 0; switch (LEK) { case LEK_LockedSomePredecessors: DiagID = diag::warn_lock_some_predecessors; break; case LEK_LockedSomeLoopIterations: DiagID = diag::warn_expecting_lock_held_on_loop; break; case LEK_LockedAtEndOfFunction: DiagID = diag::warn_no_unlock; break; case LEK_NotLockedAtEndOfFunction: DiagID = diag::warn_expecting_locked; break; } if (LocEndOfScope.isInvalid()) LocEndOfScope = FunEndLocation; PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << Kind << LockName); Warnings.emplace_back(std::move(Warning), makeLockedHereNote(LocLocked, Kind)); } void handleExclusiveAndShared(StringRef Kind, Name LockName, SourceLocation Loc1, SourceLocation Loc2) override { PartialDiagnosticAt Warning(Loc1, S.PDiag(diag::warn_lock_exclusive_and_shared) << Kind << LockName); PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared) << Kind << LockName); Warnings.emplace_back(std::move(Warning), getNotes(Note)); } void handleNoMutexHeld(StringRef Kind, const NamedDecl *D, ProtectedOperationKind POK, AccessKind AK, SourceLocation Loc) override { assert((POK == POK_VarAccess || POK == POK_VarDereference) && "Only works for variables"); unsigned DiagID = POK == POK_VarAccess? diag::warn_variable_requires_any_lock: diag::warn_var_deref_requires_any_lock; PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << D << getLockKindFromAccessKind(AK)); Warnings.emplace_back(std::move(Warning), getNotes()); } void handleMutexNotHeld(StringRef Kind, const NamedDecl *D, ProtectedOperationKind POK, Name LockName, LockKind LK, SourceLocation Loc, Name *PossibleMatch) override { unsigned DiagID = 0; if (PossibleMatch) { switch (POK) { case POK_VarAccess: DiagID = diag::warn_variable_requires_lock_precise; break; case POK_VarDereference: DiagID = diag::warn_var_deref_requires_lock_precise; break; case POK_FunctionCall: DiagID = diag::warn_fun_requires_lock_precise; break; case POK_PassByRef: DiagID = diag::warn_guarded_pass_by_reference; break; case POK_PtPassByRef: DiagID = diag::warn_pt_guarded_pass_by_reference; break; } PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind << D << LockName << LK); PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match) << *PossibleMatch); if (Verbose && POK == POK_VarAccess) { PartialDiagnosticAt VNote(D->getLocation(), S.PDiag(diag::note_guarded_by_declared_here) << D->getDeclName()); Warnings.emplace_back(std::move(Warning), getNotes(Note, VNote)); } else Warnings.emplace_back(std::move(Warning), getNotes(Note)); } else { switch (POK) { case POK_VarAccess: DiagID = diag::warn_variable_requires_lock; break; case POK_VarDereference: DiagID = diag::warn_var_deref_requires_lock; break; case POK_FunctionCall: DiagID = diag::warn_fun_requires_lock; break; case POK_PassByRef: DiagID = diag::warn_guarded_pass_by_reference; break; case POK_PtPassByRef: DiagID = diag::warn_pt_guarded_pass_by_reference; break; } PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind << D << LockName << LK); if (Verbose && POK == POK_VarAccess) { PartialDiagnosticAt Note(D->getLocation(), S.PDiag(diag::note_guarded_by_declared_here)); Warnings.emplace_back(std::move(Warning), getNotes(Note)); } else Warnings.emplace_back(std::move(Warning), getNotes()); } } void handleNegativeNotHeld(StringRef Kind, Name LockName, Name Neg, SourceLocation Loc) override { PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_acquire_requires_negative_cap) << Kind << LockName << Neg); Warnings.emplace_back(std::move(Warning), getNotes()); } void handleNegativeNotHeld(const NamedDecl *D, Name LockName, SourceLocation Loc) override { PartialDiagnosticAt Warning( Loc, S.PDiag(diag::warn_fun_requires_negative_cap) << D << LockName); Warnings.emplace_back(std::move(Warning), getNotes()); } void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName, SourceLocation Loc) override { PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex) << Kind << FunName << LockName); Warnings.emplace_back(std::move(Warning), getNotes()); } void handleLockAcquiredBefore(StringRef Kind, Name L1Name, Name L2Name, SourceLocation Loc) override { PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_acquired_before) << Kind << L1Name << L2Name); Warnings.emplace_back(std::move(Warning), getNotes()); } void handleBeforeAfterCycle(Name L1Name, SourceLocation Loc) override { PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_acquired_before_after_cycle) << L1Name); Warnings.emplace_back(std::move(Warning), getNotes()); } void enterFunction(const FunctionDecl* FD) override { CurrentFunction = FD; } void leaveFunction(const FunctionDecl* FD) override { CurrentFunction = nullptr; } }; } // anonymous namespace } // namespace threadSafety } // namespace clang //===----------------------------------------------------------------------===// // -Wconsumed //===----------------------------------------------------------------------===// namespace clang { namespace consumed { namespace { class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase { Sema &S; DiagList Warnings; public: ConsumedWarningsHandler(Sema &S) : S(S) {} void emitDiagnostics() override { Warnings.sort(SortDiagBySourceLocation(S.getSourceManager())); for (const auto &Diag : Warnings) { S.Diag(Diag.first.first, Diag.first.second); for (const auto &Note : Diag.second) S.Diag(Note.first, Note.second); } } void warnLoopStateMismatch(SourceLocation Loc, StringRef VariableName) override { PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) << VariableName); Warnings.emplace_back(std::move(Warning), OptionalNotes()); } void warnParamReturnTypestateMismatch(SourceLocation Loc, StringRef VariableName, StringRef ExpectedState, StringRef ObservedState) override { PartialDiagnosticAt Warning(Loc, S.PDiag( diag::warn_param_return_typestate_mismatch) << VariableName << ExpectedState << ObservedState); Warnings.emplace_back(std::move(Warning), OptionalNotes()); } void warnParamTypestateMismatch(SourceLocation Loc, StringRef ExpectedState, StringRef ObservedState) override { PartialDiagnosticAt Warning(Loc, S.PDiag( diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState); Warnings.emplace_back(std::move(Warning), OptionalNotes()); } void warnReturnTypestateForUnconsumableType(SourceLocation Loc, StringRef TypeName) override { PartialDiagnosticAt Warning(Loc, S.PDiag( diag::warn_return_typestate_for_unconsumable_type) << TypeName); Warnings.emplace_back(std::move(Warning), OptionalNotes()); } void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState, StringRef ObservedState) override { PartialDiagnosticAt Warning(Loc, S.PDiag( diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState); Warnings.emplace_back(std::move(Warning), OptionalNotes()); } void warnUseOfTempInInvalidState(StringRef MethodName, StringRef State, SourceLocation Loc) override { PartialDiagnosticAt Warning(Loc, S.PDiag( diag::warn_use_of_temp_in_invalid_state) << MethodName << State); Warnings.emplace_back(std::move(Warning), OptionalNotes()); } void warnUseInInvalidState(StringRef MethodName, StringRef VariableName, StringRef State, SourceLocation Loc) override { PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) << MethodName << VariableName << State); Warnings.emplace_back(std::move(Warning), OptionalNotes()); } }; } // anonymous namespace } // namespace consumed } // namespace clang //===----------------------------------------------------------------------===// // AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based // warnings on a function, method, or block. //===----------------------------------------------------------------------===// sema::AnalysisBasedWarnings::Policy::Policy() { enableCheckFallThrough = 1; enableCheckUnreachable = 0; enableThreadSafetyAnalysis = 0; enableConsumedAnalysis = 0; } /// InterProceduralData aims to be a storage of whatever data should be passed /// between analyses of different functions. /// /// At the moment, its primary goal is to make the information gathered during /// the analysis of the blocks available during the analysis of the enclosing /// function. This is important due to the fact that blocks are analyzed before /// the enclosed function is even parsed fully, so it is not viable to access /// anything in the outer scope while analyzing the block. On the other hand, /// re-building CFG for blocks and re-analyzing them when we do have all the /// information (i.e. during the analysis of the enclosing function) seems to be /// ill-designed. class sema::AnalysisBasedWarnings::InterProceduralData { public: // It is important to analyze blocks within functions because it's a very // common pattern to capture completion handler parameters by blocks. CalledOnceInterProceduralData CalledOnceData; }; static unsigned isEnabled(DiagnosticsEngine &D, unsigned diag) { return (unsigned)!D.isIgnored(diag, SourceLocation()); } sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s) : S(s), IPData(std::make_unique()), NumFunctionsAnalyzed(0), NumFunctionsWithBadCFGs(0), NumCFGBlocks(0), MaxCFGBlocksPerFunction(0), NumUninitAnalysisFunctions(0), NumUninitAnalysisVariables(0), MaxUninitAnalysisVariablesPerFunction(0), NumUninitAnalysisBlockVisits(0), MaxUninitAnalysisBlockVisitsPerFunction(0) { using namespace diag; DiagnosticsEngine &D = S.getDiagnostics(); DefaultPolicy.enableCheckUnreachable = isEnabled(D, warn_unreachable) || isEnabled(D, warn_unreachable_break) || isEnabled(D, warn_unreachable_return) || isEnabled(D, warn_unreachable_loop_increment); DefaultPolicy.enableThreadSafetyAnalysis = isEnabled(D, warn_double_lock); DefaultPolicy.enableConsumedAnalysis = isEnabled(D, warn_use_in_invalid_state); } // We need this here for unique_ptr with forward declared class. sema::AnalysisBasedWarnings::~AnalysisBasedWarnings() = default; static void flushDiagnostics(Sema &S, const sema::FunctionScopeInfo *fscope) { for (const auto &D : fscope->PossiblyUnreachableDiags) S.Diag(D.Loc, D.PD); } void clang::sema::AnalysisBasedWarnings::IssueWarnings( sema::AnalysisBasedWarnings::Policy P, sema::FunctionScopeInfo *fscope, const Decl *D, QualType BlockType) { // We avoid doing analysis-based warnings when there are errors for // two reasons: // (1) The CFGs often can't be constructed (if the body is invalid), so // don't bother trying. // (2) The code already has problems; running the analysis just takes more // time. DiagnosticsEngine &Diags = S.getDiagnostics(); // Do not do any analysis if we are going to just ignore them. if (Diags.getIgnoreAllWarnings() || (Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemHeader(D->getLocation()))) return; // For code in dependent contexts, we'll do this at instantiation time. if (cast(D)->isDependentContext()) return; if (S.hasUncompilableErrorOccurred()) { // Flush out any possibly unreachable diagnostics. flushDiagnostics(S, fscope); return; } const Stmt *Body = D->getBody(); assert(Body); // Construct the analysis context with the specified CFG build options. AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptr, D); // Don't generate EH edges for CallExprs as we'd like to avoid the n^2 // explosion for destructors that can result and the compile time hit. AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true; AC.getCFGBuildOptions().AddEHEdges = false; AC.getCFGBuildOptions().AddInitializers = true; AC.getCFGBuildOptions().AddImplicitDtors = true; AC.getCFGBuildOptions().AddTemporaryDtors = true; AC.getCFGBuildOptions().AddCXXNewAllocator = false; AC.getCFGBuildOptions().AddCXXDefaultInitExprInCtors = true; // Force that certain expressions appear as CFGElements in the CFG. This // is used to speed up various analyses. // FIXME: This isn't the right factoring. This is here for initial // prototyping, but we need a way for analyses to say what expressions they // expect to always be CFGElements and then fill in the BuildOptions // appropriately. This is essentially a layering violation. if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis || P.enableConsumedAnalysis) { // Unreachable code analysis and thread safety require a linearized CFG. AC.getCFGBuildOptions().setAllAlwaysAdd(); } else { AC.getCFGBuildOptions() .setAlwaysAdd(Stmt::BinaryOperatorClass) .setAlwaysAdd(Stmt::CompoundAssignOperatorClass) .setAlwaysAdd(Stmt::BlockExprClass) .setAlwaysAdd(Stmt::CStyleCastExprClass) .setAlwaysAdd(Stmt::DeclRefExprClass) .setAlwaysAdd(Stmt::ImplicitCastExprClass) .setAlwaysAdd(Stmt::UnaryOperatorClass); } // Install the logical handler. llvm::Optional LEH; if (LogicalErrorHandler::hasActiveDiagnostics(Diags, D->getBeginLoc())) { LEH.emplace(S); AC.getCFGBuildOptions().Observer = &*LEH; } // Emit delayed diagnostics. if (!fscope->PossiblyUnreachableDiags.empty()) { bool analyzed = false; // Register the expressions with the CFGBuilder. for (const auto &D : fscope->PossiblyUnreachableDiags) { for (const Stmt *S : D.Stmts) AC.registerForcedBlockExpression(S); } if (AC.getCFG()) { analyzed = true; for (const auto &D : fscope->PossiblyUnreachableDiags) { bool AllReachable = true; for (const Stmt *S : D.Stmts) { const CFGBlock *block = AC.getBlockForRegisteredExpression(S); CFGReverseBlockReachabilityAnalysis *cra = AC.getCFGReachablityAnalysis(); // FIXME: We should be able to assert that block is non-null, but // the CFG analysis can skip potentially-evaluated expressions in // edge cases; see test/Sema/vla-2.c. if (block && cra) { // Can this block be reached from the entrance? if (!cra->isReachable(&AC.getCFG()->getEntry(), block)) { AllReachable = false; break; } } // If we cannot map to a basic block, assume the statement is // reachable. } if (AllReachable) S.Diag(D.Loc, D.PD); } } if (!analyzed) flushDiagnostics(S, fscope); } // Warning: check missing 'return' if (P.enableCheckFallThrough) { const CheckFallThroughDiagnostics &CD = (isa(D) ? CheckFallThroughDiagnostics::MakeForBlock() : (isa(D) && cast(D)->getOverloadedOperator() == OO_Call && cast(D)->getParent()->isLambda()) ? CheckFallThroughDiagnostics::MakeForLambda() : (fscope->isCoroutine() ? CheckFallThroughDiagnostics::MakeForCoroutine(D) : CheckFallThroughDiagnostics::MakeForFunction(D))); CheckFallThroughForBody(S, D, Body, BlockType, CD, AC, fscope); } // Warning: check for unreachable code if (P.enableCheckUnreachable) { // Only check for unreachable code on non-template instantiations. // Different template instantiations can effectively change the control-flow // and it is very difficult to prove that a snippet of code in a template // is unreachable for all instantiations. bool isTemplateInstantiation = false; if (const FunctionDecl *Function = dyn_cast(D)) isTemplateInstantiation = Function->isTemplateInstantiation(); if (!isTemplateInstantiation) CheckUnreachable(S, AC); } // Check for thread safety violations if (P.enableThreadSafetyAnalysis) { SourceLocation FL = AC.getDecl()->getLocation(); SourceLocation FEL = AC.getDecl()->getEndLoc(); threadSafety::ThreadSafetyReporter Reporter(S, FL, FEL); if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getBeginLoc())) Reporter.setIssueBetaWarnings(true); if (!Diags.isIgnored(diag::warn_thread_safety_verbose, D->getBeginLoc())) Reporter.setVerbose(true); threadSafety::runThreadSafetyAnalysis(AC, Reporter, &S.ThreadSafetyDeclCache); Reporter.emitDiagnostics(); } // Check for violations of consumed properties. if (P.enableConsumedAnalysis) { consumed::ConsumedWarningsHandler WarningHandler(S); consumed::ConsumedAnalyzer Analyzer(WarningHandler); Analyzer.run(AC); } if (!Diags.isIgnored(diag::warn_uninit_var, D->getBeginLoc()) || !Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getBeginLoc()) || !Diags.isIgnored(diag::warn_maybe_uninit_var, D->getBeginLoc()) || !Diags.isIgnored(diag::warn_uninit_const_reference, D->getBeginLoc())) { if (CFG *cfg = AC.getCFG()) { UninitValsDiagReporter reporter(S); UninitVariablesAnalysisStats stats; std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats)); runUninitializedVariablesAnalysis(*cast(D), *cfg, AC, reporter, stats); if (S.CollectStats && stats.NumVariablesAnalyzed > 0) { ++NumUninitAnalysisFunctions; NumUninitAnalysisVariables += stats.NumVariablesAnalyzed; NumUninitAnalysisBlockVisits += stats.NumBlockVisits; MaxUninitAnalysisVariablesPerFunction = std::max(MaxUninitAnalysisVariablesPerFunction, stats.NumVariablesAnalyzed); MaxUninitAnalysisBlockVisitsPerFunction = std::max(MaxUninitAnalysisBlockVisitsPerFunction, stats.NumBlockVisits); } } } // Check for violations of "called once" parameter properties. if (S.getLangOpts().ObjC && !S.getLangOpts().CPlusPlus && shouldAnalyzeCalledOnceParameters(Diags, D->getBeginLoc())) { if (AC.getCFG()) { CalledOnceCheckReporter Reporter(S, IPData->CalledOnceData); checkCalledOnceParameters( AC, Reporter, shouldAnalyzeCalledOnceConventions(Diags, D->getBeginLoc())); } } bool FallThroughDiagFull = !Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getBeginLoc()); bool FallThroughDiagPerFunction = !Diags.isIgnored( diag::warn_unannotated_fallthrough_per_function, D->getBeginLoc()); if (FallThroughDiagFull || FallThroughDiagPerFunction || fscope->HasFallthroughStmt) { DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull); } if (S.getLangOpts().ObjCWeak && !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getBeginLoc())) diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap()); // Check for infinite self-recursion in functions if (!Diags.isIgnored(diag::warn_infinite_recursive_function, D->getBeginLoc())) { if (const FunctionDecl *FD = dyn_cast(D)) { checkRecursiveFunction(S, FD, Body, AC); } } // Check for throw out of non-throwing function. if (!Diags.isIgnored(diag::warn_throw_in_noexcept_func, D->getBeginLoc())) if (const FunctionDecl *FD = dyn_cast(D)) if (S.getLangOpts().CPlusPlus && isNoexcept(FD)) checkThrowInNonThrowingFunc(S, FD, AC); // If none of the previous checks caused a CFG build, trigger one here // for the logical error handler. if (LogicalErrorHandler::hasActiveDiagnostics(Diags, D->getBeginLoc())) { AC.getCFG(); } // Collect statistics about the CFG if it was built. if (S.CollectStats && AC.isCFGBuilt()) { ++NumFunctionsAnalyzed; if (CFG *cfg = AC.getCFG()) { // If we successfully built a CFG for this context, record some more // detail information about it. NumCFGBlocks += cfg->getNumBlockIDs(); MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction, cfg->getNumBlockIDs()); } else { ++NumFunctionsWithBadCFGs; } } } void clang::sema::AnalysisBasedWarnings::PrintStats() const { llvm::errs() << "\n*** Analysis Based Warnings Stats:\n"; unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs; unsigned AvgCFGBlocksPerFunction = !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt; llvm::errs() << NumFunctionsAnalyzed << " functions analyzed (" << NumFunctionsWithBadCFGs << " w/o CFGs).\n" << " " << NumCFGBlocks << " CFG blocks built.\n" << " " << AvgCFGBlocksPerFunction << " average CFG blocks per function.\n" << " " << MaxCFGBlocksPerFunction << " max CFG blocks per function.\n"; unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0 : NumUninitAnalysisVariables/NumUninitAnalysisFunctions; unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0 : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions; llvm::errs() << NumUninitAnalysisFunctions << " functions analyzed for uninitialiazed variables\n" << " " << NumUninitAnalysisVariables << " variables analyzed.\n" << " " << AvgUninitVariablesPerFunction << " average variables per function.\n" << " " << MaxUninitAnalysisVariablesPerFunction << " max variables per function.\n" << " " << NumUninitAnalysisBlockVisits << " block visits.\n" << " " << AvgUninitBlockVisitsPerFunction << " average block visits per function.\n" << " " << MaxUninitAnalysisBlockVisitsPerFunction << " max block visits per function.\n"; }