//===--- PPC.h - Declare PPC target feature support -------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file declares PPC TargetInfo objects. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_LIB_BASIC_TARGETS_PPC_H #define LLVM_CLANG_LIB_BASIC_TARGETS_PPC_H #include "OSTargets.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/TargetOptions.h" #include "llvm/ADT/Triple.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/Compiler.h" namespace clang { namespace targets { // PPC abstract base class class LLVM_LIBRARY_VISIBILITY PPCTargetInfo : public TargetInfo { /// Flags for architecture specific defines. typedef enum { ArchDefineNone = 0, ArchDefineName = 1 << 0, // is substituted for arch name. ArchDefinePpcgr = 1 << 1, ArchDefinePpcsq = 1 << 2, ArchDefine440 = 1 << 3, ArchDefine603 = 1 << 4, ArchDefine604 = 1 << 5, ArchDefinePwr4 = 1 << 6, ArchDefinePwr5 = 1 << 7, ArchDefinePwr5x = 1 << 8, ArchDefinePwr6 = 1 << 9, ArchDefinePwr6x = 1 << 10, ArchDefinePwr7 = 1 << 11, ArchDefinePwr8 = 1 << 12, ArchDefinePwr9 = 1 << 13, ArchDefinePwr10 = 1 << 14, ArchDefineFuture = 1 << 15, ArchDefineA2 = 1 << 16, ArchDefineE500 = 1 << 18 } ArchDefineTypes; ArchDefineTypes ArchDefs = ArchDefineNone; static const Builtin::Info BuiltinInfo[]; static const char *const GCCRegNames[]; static const TargetInfo::GCCRegAlias GCCRegAliases[]; std::string CPU; enum PPCFloatABI { HardFloat, SoftFloat } FloatABI; // Target cpu features. bool HasAltivec = false; bool HasMMA = false; bool HasROPProtect = false; bool HasPrivileged = false; bool HasVSX = false; bool HasP8Vector = false; bool HasP8Crypto = false; bool HasDirectMove = false; bool HasHTM = false; bool HasBPERMD = false; bool HasExtDiv = false; bool HasP9Vector = false; bool HasSPE = false; bool PairedVectorMemops = false; bool HasP10Vector = false; bool HasPCRelativeMemops = false; bool HasPrefixInstrs = false; bool IsISA2_06 = false; bool IsISA2_07 = false; bool IsISA3_0 = false; bool IsISA3_1 = false; protected: std::string ABI; public: PPCTargetInfo(const llvm::Triple &Triple, const TargetOptions &) : TargetInfo(Triple) { SuitableAlign = 128; SimdDefaultAlign = 128; LongDoubleWidth = LongDoubleAlign = 128; LongDoubleFormat = &llvm::APFloat::PPCDoubleDouble(); HasStrictFP = true; HasIbm128 = true; } // Set the language option for altivec based on our value. void adjust(DiagnosticsEngine &Diags, LangOptions &Opts) override; // Note: GCC recognizes the following additional cpus: // 401, 403, 405, 405fp, 440fp, 464, 464fp, 476, 476fp, 505, 740, 801, // 821, 823, 8540, e300c2, e300c3, e500mc64, e6500, 860, cell, titan, rs64. bool isValidCPUName(StringRef Name) const override; void fillValidCPUList(SmallVectorImpl &Values) const override; bool setCPU(const std::string &Name) override { bool CPUKnown = isValidCPUName(Name); if (CPUKnown) { CPU = Name; // CPU identification. ArchDefs = (ArchDefineTypes)llvm::StringSwitch(CPU) .Case("440", ArchDefineName) .Case("450", ArchDefineName | ArchDefine440) .Case("601", ArchDefineName) .Case("602", ArchDefineName | ArchDefinePpcgr) .Case("603", ArchDefineName | ArchDefinePpcgr) .Case("603e", ArchDefineName | ArchDefine603 | ArchDefinePpcgr) .Case("603ev", ArchDefineName | ArchDefine603 | ArchDefinePpcgr) .Case("604", ArchDefineName | ArchDefinePpcgr) .Case("604e", ArchDefineName | ArchDefine604 | ArchDefinePpcgr) .Case("620", ArchDefineName | ArchDefinePpcgr) .Case("630", ArchDefineName | ArchDefinePpcgr) .Case("7400", ArchDefineName | ArchDefinePpcgr) .Case("7450", ArchDefineName | ArchDefinePpcgr) .Case("750", ArchDefineName | ArchDefinePpcgr) .Case("970", ArchDefineName | ArchDefinePwr4 | ArchDefinePpcgr | ArchDefinePpcsq) .Case("a2", ArchDefineA2) .Cases("power3", "pwr3", ArchDefinePpcgr) .Cases("power4", "pwr4", ArchDefinePwr4 | ArchDefinePpcgr | ArchDefinePpcsq) .Cases("power5", "pwr5", ArchDefinePwr5 | ArchDefinePwr4 | ArchDefinePpcgr | ArchDefinePpcsq) .Cases("power5x", "pwr5x", ArchDefinePwr5x | ArchDefinePwr5 | ArchDefinePwr4 | ArchDefinePpcgr | ArchDefinePpcsq) .Cases("power6", "pwr6", ArchDefinePwr6 | ArchDefinePwr5x | ArchDefinePwr5 | ArchDefinePwr4 | ArchDefinePpcgr | ArchDefinePpcsq) .Cases("power6x", "pwr6x", ArchDefinePwr6x | ArchDefinePwr6 | ArchDefinePwr5x | ArchDefinePwr5 | ArchDefinePwr4 | ArchDefinePpcgr | ArchDefinePpcsq) .Cases("power7", "pwr7", ArchDefinePwr7 | ArchDefinePwr6 | ArchDefinePwr5x | ArchDefinePwr5 | ArchDefinePwr4 | ArchDefinePpcgr | ArchDefinePpcsq) // powerpc64le automatically defaults to at least power8. .Cases("power8", "pwr8", "ppc64le", ArchDefinePwr8 | ArchDefinePwr7 | ArchDefinePwr6 | ArchDefinePwr5x | ArchDefinePwr5 | ArchDefinePwr4 | ArchDefinePpcgr | ArchDefinePpcsq) .Cases("power9", "pwr9", ArchDefinePwr9 | ArchDefinePwr8 | ArchDefinePwr7 | ArchDefinePwr6 | ArchDefinePwr5x | ArchDefinePwr5 | ArchDefinePwr4 | ArchDefinePpcgr | ArchDefinePpcsq) .Cases("power10", "pwr10", ArchDefinePwr10 | ArchDefinePwr9 | ArchDefinePwr8 | ArchDefinePwr7 | ArchDefinePwr6 | ArchDefinePwr5x | ArchDefinePwr5 | ArchDefinePwr4 | ArchDefinePpcgr | ArchDefinePpcsq) .Case("future", ArchDefineFuture | ArchDefinePwr10 | ArchDefinePwr9 | ArchDefinePwr8 | ArchDefinePwr7 | ArchDefinePwr6 | ArchDefinePwr5x | ArchDefinePwr5 | ArchDefinePwr4 | ArchDefinePpcgr | ArchDefinePpcsq) .Cases("8548", "e500", ArchDefineE500) .Default(ArchDefineNone); } return CPUKnown; } StringRef getABI() const override { return ABI; } ArrayRef getTargetBuiltins() const override; bool isCLZForZeroUndef() const override { return false; } void getTargetDefines(const LangOptions &Opts, MacroBuilder &Builder) const override; bool initFeatureMap(llvm::StringMap &Features, DiagnosticsEngine &Diags, StringRef CPU, const std::vector &FeaturesVec) const override; void addP10SpecificFeatures(llvm::StringMap &Features) const; void addFutureSpecificFeatures(llvm::StringMap &Features) const; bool handleTargetFeatures(std::vector &Features, DiagnosticsEngine &Diags) override; bool hasFeature(StringRef Feature) const override; void setFeatureEnabled(llvm::StringMap &Features, StringRef Name, bool Enabled) const override; ArrayRef getGCCRegNames() const override; ArrayRef getGCCRegAliases() const override; ArrayRef getGCCAddlRegNames() const override; bool validateAsmConstraint(const char *&Name, TargetInfo::ConstraintInfo &Info) const override { switch (*Name) { default: return false; case 'O': // Zero break; case 'f': // Floating point register // Don't use floating point registers on soft float ABI. if (FloatABI == SoftFloat) return false; LLVM_FALLTHROUGH; case 'b': // Base register Info.setAllowsRegister(); break; // FIXME: The following are added to allow parsing. // I just took a guess at what the actions should be. // Also, is more specific checking needed? I.e. specific registers? case 'd': // Floating point register (containing 64-bit value) case 'v': // Altivec vector register // Don't use floating point and altivec vector registers // on soft float ABI if (FloatABI == SoftFloat) return false; Info.setAllowsRegister(); break; case 'w': switch (Name[1]) { case 'd': // VSX vector register to hold vector double data case 'f': // VSX vector register to hold vector float data case 's': // VSX vector register to hold scalar double data case 'w': // VSX vector register to hold scalar double data case 'a': // Any VSX register case 'c': // An individual CR bit case 'i': // FP or VSX register to hold 64-bit integers data break; default: return false; } Info.setAllowsRegister(); Name++; // Skip over 'w'. break; case 'h': // `MQ', `CTR', or `LINK' register case 'q': // `MQ' register case 'c': // `CTR' register case 'l': // `LINK' register case 'x': // `CR' register (condition register) number 0 case 'y': // `CR' register (condition register) case 'z': // `XER[CA]' carry bit (part of the XER register) Info.setAllowsRegister(); break; case 'I': // Signed 16-bit constant case 'J': // Unsigned 16-bit constant shifted left 16 bits // (use `L' instead for SImode constants) case 'K': // Unsigned 16-bit constant case 'L': // Signed 16-bit constant shifted left 16 bits case 'M': // Constant larger than 31 case 'N': // Exact power of 2 case 'P': // Constant whose negation is a signed 16-bit constant case 'G': // Floating point constant that can be loaded into a // register with one instruction per word case 'H': // Integer/Floating point constant that can be loaded // into a register using three instructions break; case 'm': // Memory operand. Note that on PowerPC targets, m can // include addresses that update the base register. It // is therefore only safe to use `m' in an asm statement // if that asm statement accesses the operand exactly once. // The asm statement must also use `%U' as a // placeholder for the "update" flag in the corresponding // load or store instruction. For example: // asm ("st%U0 %1,%0" : "=m" (mem) : "r" (val)); // is correct but: // asm ("st %1,%0" : "=m" (mem) : "r" (val)); // is not. Use es rather than m if you don't want the base // register to be updated. case 'e': if (Name[1] != 's') return false; // es: A "stable" memory operand; that is, one which does not // include any automodification of the base register. Unlike // `m', this constraint can be used in asm statements that // might access the operand several times, or that might not // access it at all. Info.setAllowsMemory(); Name++; // Skip over 'e'. break; case 'Q': // Memory operand that is an offset from a register (it is // usually better to use `m' or `es' in asm statements) Info.setAllowsRegister(); LLVM_FALLTHROUGH; case 'Z': // Memory operand that is an indexed or indirect from a // register (it is usually better to use `m' or `es' in // asm statements) Info.setAllowsMemory(); break; case 'R': // AIX TOC entry case 'a': // Address operand that is an indexed or indirect from a // register (`p' is preferable for asm statements) case 'S': // Constant suitable as a 64-bit mask operand case 'T': // Constant suitable as a 32-bit mask operand case 'U': // System V Release 4 small data area reference case 't': // AND masks that can be performed by two rldic{l, r} // instructions case 'W': // Vector constant that does not require memory case 'j': // Vector constant that is all zeros. break; // End FIXME. } return true; } std::string convertConstraint(const char *&Constraint) const override { std::string R; switch (*Constraint) { case 'e': case 'w': // Two-character constraint; add "^" hint for later parsing. R = std::string("^") + std::string(Constraint, 2); Constraint++; break; default: return TargetInfo::convertConstraint(Constraint); } return R; } const char *getClobbers() const override { return ""; } int getEHDataRegisterNumber(unsigned RegNo) const override { if (RegNo == 0) return 3; if (RegNo == 1) return 4; return -1; } bool hasSjLjLowering() const override { return true; } const char *getLongDoubleMangling() const override { if (LongDoubleWidth == 64) return "e"; return LongDoubleFormat == &llvm::APFloat::PPCDoubleDouble() ? "g" : "u9__ieee128"; } const char *getFloat128Mangling() const override { return "u9__ieee128"; } const char *getIbm128Mangling() const override { return "g"; } bool hasBitIntType() const override { return true; } bool isSPRegName(StringRef RegName) const override { return RegName.equals("r1") || RegName.equals("x1"); } }; class LLVM_LIBRARY_VISIBILITY PPC32TargetInfo : public PPCTargetInfo { public: PPC32TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts) : PPCTargetInfo(Triple, Opts) { if (Triple.isOSAIX()) resetDataLayout("E-m:a-p:32:32-i64:64-n32"); else if (Triple.getArch() == llvm::Triple::ppcle) resetDataLayout("e-m:e-p:32:32-i64:64-n32"); else resetDataLayout("E-m:e-p:32:32-i64:64-n32"); switch (getTriple().getOS()) { case llvm::Triple::Linux: case llvm::Triple::FreeBSD: case llvm::Triple::NetBSD: SizeType = UnsignedInt; PtrDiffType = SignedInt; IntPtrType = SignedInt; break; case llvm::Triple::AIX: SizeType = UnsignedLong; PtrDiffType = SignedLong; IntPtrType = SignedLong; LongDoubleWidth = 64; LongDoubleAlign = DoubleAlign = 32; LongDoubleFormat = &llvm::APFloat::IEEEdouble(); break; default: break; } if (Triple.isOSFreeBSD() || Triple.isOSNetBSD() || Triple.isOSOpenBSD() || Triple.isMusl()) { LongDoubleWidth = LongDoubleAlign = 64; LongDoubleFormat = &llvm::APFloat::IEEEdouble(); } // PPC32 supports atomics up to 4 bytes. MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 32; } BuiltinVaListKind getBuiltinVaListKind() const override { // This is the ELF definition, and is overridden by the Darwin sub-target return TargetInfo::PowerABIBuiltinVaList; } }; // Note: ABI differences may eventually require us to have a separate // TargetInfo for little endian. class LLVM_LIBRARY_VISIBILITY PPC64TargetInfo : public PPCTargetInfo { public: PPC64TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts) : PPCTargetInfo(Triple, Opts) { LongWidth = LongAlign = PointerWidth = PointerAlign = 64; IntMaxType = SignedLong; Int64Type = SignedLong; std::string DataLayout; if (Triple.isOSAIX()) { // TODO: Set appropriate ABI for AIX platform. DataLayout = "E-m:a-i64:64-n32:64"; LongDoubleWidth = 64; LongDoubleAlign = DoubleAlign = 32; LongDoubleFormat = &llvm::APFloat::IEEEdouble(); } else if ((Triple.getArch() == llvm::Triple::ppc64le)) { DataLayout = "e-m:e-i64:64-n32:64"; ABI = "elfv2"; } else { DataLayout = "E-m:e-i64:64-n32:64"; ABI = "elfv1"; } if (Triple.isOSFreeBSD() || Triple.isOSOpenBSD() || Triple.isMusl()) { LongDoubleWidth = LongDoubleAlign = 64; LongDoubleFormat = &llvm::APFloat::IEEEdouble(); } if (Triple.isOSAIX() || Triple.isOSLinux()) DataLayout += "-S128-v256:256:256-v512:512:512"; resetDataLayout(DataLayout); // PPC64 supports atomics up to 8 bytes. MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 64; } BuiltinVaListKind getBuiltinVaListKind() const override { return TargetInfo::CharPtrBuiltinVaList; } // PPC64 Linux-specific ABI options. bool setABI(const std::string &Name) override { if (Name == "elfv1" || Name == "elfv2") { ABI = Name; return true; } return false; } CallingConvCheckResult checkCallingConvention(CallingConv CC) const override { switch (CC) { case CC_Swift: return CCCR_OK; case CC_SwiftAsync: return CCCR_Error; default: return CCCR_Warning; } } }; class LLVM_LIBRARY_VISIBILITY DarwinPPC32TargetInfo : public DarwinTargetInfo { public: DarwinPPC32TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts) : DarwinTargetInfo(Triple, Opts) { HasAlignMac68kSupport = true; BoolWidth = BoolAlign = 32; // XXX support -mone-byte-bool? PtrDiffType = SignedInt; // for http://llvm.org/bugs/show_bug.cgi?id=15726 LongLongAlign = 32; resetDataLayout("E-m:o-p:32:32-f64:32:64-n32", "_"); } BuiltinVaListKind getBuiltinVaListKind() const override { return TargetInfo::CharPtrBuiltinVaList; } }; class LLVM_LIBRARY_VISIBILITY DarwinPPC64TargetInfo : public DarwinTargetInfo { public: DarwinPPC64TargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts) : DarwinTargetInfo(Triple, Opts) { HasAlignMac68kSupport = true; resetDataLayout("E-m:o-i64:64-n32:64", "_"); } }; class LLVM_LIBRARY_VISIBILITY AIXPPC32TargetInfo : public AIXTargetInfo { public: using AIXTargetInfo::AIXTargetInfo; BuiltinVaListKind getBuiltinVaListKind() const override { return TargetInfo::CharPtrBuiltinVaList; } }; class LLVM_LIBRARY_VISIBILITY AIXPPC64TargetInfo : public AIXTargetInfo { public: using AIXTargetInfo::AIXTargetInfo; }; } // namespace targets } // namespace clang #endif // LLVM_CLANG_LIB_BASIC_TARGETS_PPC_H