#pragma once /* Completely wait-free queue, multiple producers - one consumer. Strict order. The queue algorithm is using concept of virtual infinite array. A producer takes a number from a counter and atomically increments the counter. The number taken is a number of a slot for the producer to put a new message into infinite array. Then producer constructs a virtual infinite array by bidirectional linked list of blocks. Each block contains several slots. There is a hint pointer which optimistically points to the last block of the list and never goes backward. Consumer exploits the property of the hint pointer always going forward to free old blocks eventually. Consumer periodically read the hint pointer and the counter and thus deduce producers which potentially holds the pointer to a block. Consumer can free the block if all that producers filled their slots and left the queue. No producer can stop the progress for other producers. Consumer can't stop the progress for producers. Consumer can skip not-yet-filled slots and read them later. Thus no producer can stop the progress for consumer. The algorithm is virtually strictly ordered because it skips slots only if it is really does not matter in which order the slots were produced and consumed. WARNING: there is no wait¬ify mechanic for consumer, consumer receives nullptr if queue was empty. WARNING: though the algorithm itself is completely wait-free but producers and consumer could be blocked by memory allocator WARNING: copy constructors of the queue are not thread-safe */ #include #include #include #include #include "tune.h" namespace NThreading { namespace NReadAsFilledPrivate { typedef void* TMsgLink; static constexpr ui32 DEFAULT_BUNCH_SIZE = 251; struct TEmpty { }; struct TEmptyAux { TEmptyAux Retrieve() const { return TEmptyAux(); } void Store(TEmptyAux&) { } static constexpr TEmptyAux Zero() { return TEmptyAux(); } }; template struct TSlot { TMsgLink volatile Msg; TAux AuxiliaryData; inline void Store(TAux& aux) { AuxiliaryData.Store(aux); } inline TAux Retrieve() const { return AuxiliaryData.Retrieve(); } static TSlot NullElem() { return {nullptr, TAux::Zero()}; } static TSlot Pair(TMsgLink msg, TAux aux) { return {msg, std::move(aux)}; } }; template <> struct TSlot { TMsgLink volatile Msg; inline void Store(TEmptyAux&) { } inline TEmptyAux Retrieve() const { return TEmptyAux(); } static TSlot NullElem() { return {nullptr}; } static TSlot Pair(TMsgLink msg, TEmptyAux) { return {msg}; } }; enum TPushResult { PUSH_RESULT_OK, PUSH_RESULT_BACKWARD, PUSH_RESULT_FORWARD, }; template struct TMsgBunch: public TBase { static constexpr size_t RELEASE_SIZE = BUNCH_SIZE * 2; ui64 FirstSlot; TSlot LinkArray[BUNCH_SIZE]; TMsgBunch* volatile NextBunch; TMsgBunch* volatile BackLink; ui64 volatile Token; TMsgBunch* volatile NextToken; /* this push can return PUSH_RESULT_BLOCKED */ inline TPushResult Push(TMsgLink msg, ui64 slot, TAux auxiliary) { if (Y_UNLIKELY(slot < FirstSlot)) { return PUSH_RESULT_BACKWARD; } if (Y_UNLIKELY(slot >= FirstSlot + BUNCH_SIZE)) { return PUSH_RESULT_FORWARD; } LinkArray[slot - FirstSlot].Store(auxiliary); AtomicSet(LinkArray[slot - FirstSlot].Msg, msg); return PUSH_RESULT_OK; } inline bool IsSlotHere(ui64 slot) { return slot < FirstSlot + BUNCH_SIZE; } inline TMsgLink GetSlot(ui64 slot) const { return AtomicGet(LinkArray[slot - FirstSlot].Msg); } inline TSlot GetSlotAux(ui64 slot) const { auto msg = GetSlot(slot); auto aux = LinkArray[slot - FirstSlot].Retrieve(); return TSlot::Pair(msg, aux); } inline TMsgBunch* GetNextBunch() const { return AtomicGet(NextBunch); } inline bool SetNextBunch(TMsgBunch* ptr) { return AtomicCas(&NextBunch, ptr, nullptr); } inline TMsgBunch* GetBackLink() const { return AtomicGet(BackLink); } inline TMsgBunch* GetToken(ui64 slot) { return reinterpret_cast( LinkArray[slot - FirstSlot].Msg); } inline void IncrementToken() { AtomicIncrement(Token); } // the object could be destroyed after this method inline void DecrementToken() { if (Y_UNLIKELY(AtomicDecrement(Token) == RELEASE_SIZE)) { Release(this); AtomicGet(NextToken)->DecrementToken(); // this could be invalid here } } // the object could be destroyed after this method inline void SetNextToken(TMsgBunch* next) { AtomicSet(NextToken, next); if (Y_UNLIKELY(AtomicAdd(Token, RELEASE_SIZE) == RELEASE_SIZE)) { Release(this); next->DecrementToken(); } // this could be invalid here } TMsgBunch(ui64 start, TMsgBunch* backLink) { AtomicSet(FirstSlot, start); memset(&LinkArray, 0, sizeof(LinkArray)); AtomicSet(NextBunch, nullptr); AtomicSet(BackLink, backLink); AtomicSet(Token, 1); AtomicSet(NextToken, nullptr); } static void Release(TMsgBunch* block) { auto backLink = AtomicGet(block->BackLink); if (backLink == nullptr) { return; } AtomicSet(block->BackLink, nullptr); do { auto bbackLink = backLink->BackLink; delete backLink; backLink = bbackLink; } while (backLink != nullptr); } void Destroy() { for (auto tail = BackLink; tail != nullptr;) { auto next = tail->BackLink; delete tail; tail = next; } for (auto next = this; next != nullptr;) { auto nnext = next->NextBunch; delete next; next = nnext; } } }; template class TWriteBucket { public: using TUsingAux = TAux; // for TReadBucket binding using TBunch = TMsgBunch; TWriteBucket(TBunch* bunch = new TBunch(0, nullptr)) { AtomicSet(LastBunch, bunch); AtomicSet(SlotCounter, 0); } TWriteBucket(TWriteBucket&& move) : LastBunch(move.LastBunch) , SlotCounter(move.SlotCounter) { move.LastBunch = nullptr; } ~TWriteBucket() { if (LastBunch != nullptr) { LastBunch->Destroy(); } } inline void Push(TMsgLink msg, TAux aux) { ui64 pushSlot = AtomicGetAndIncrement(SlotCounter); TBunch* hintBunch = GetLastBunch(); for (;;) { auto hint = hintBunch->Push(msg, pushSlot, aux); if (Y_LIKELY(hint == PUSH_RESULT_OK)) { return; } HandleHint(hintBunch, hint); } } protected: template class> friend class TReadBucket; TBunch* volatile LastBunch; // Hint volatile ui64 SlotCounter; inline TBunch* GetLastBunch() const { return AtomicGet(LastBunch); } void HandleHint(TBunch*& hintBunch, TPushResult hint) { if (Y_UNLIKELY(hint == PUSH_RESULT_BACKWARD)) { hintBunch = hintBunch->GetBackLink(); return; } // PUSH_RESULT_FORWARD auto nextBunch = hintBunch->GetNextBunch(); if (nextBunch == nullptr) { auto first = hintBunch->FirstSlot + BUNCH_SIZE; nextBunch = new TBunch(first, hintBunch); if (Y_UNLIKELY(!hintBunch->SetNextBunch(nextBunch))) { delete nextBunch; nextBunch = hintBunch->GetNextBunch(); } } // hintBunch could not be freed here so it cannot be reused // it's alright if this CAS was not succeeded, // it means that other thread did that recently AtomicCas(&LastBunch, nextBunch, hintBunch); hintBunch = nextBunch; } }; template , template class TContainer = TDeque> class TReadBucket { public: using TAux = typename TWBucket::TUsingAux; using TBunch = typename TWBucket::TBunch; static constexpr int MAX_NUMBER_OF_TRIES_TO_READ = 5; TReadBucket(TWBucket* writer) : Writer(writer) , ReadBunch(writer->GetLastBunch()) , LastKnownPushBunch(writer->GetLastBunch()) { ReadBunch->DecrementToken(); // no previous token } TReadBucket(TReadBucket toCopy, TWBucket* writer) : TReadBucket(std::move(toCopy)) { Writer = writer; } ui64 ReadyCount() const { return AtomicGet(Writer->SlotCounter) - ReadSlot; } TMsgLink Pop() { return PopAux().Msg; } TMsgLink Peek() { return PeekAux().Msg; } TSlot PopAux() { for (;;) { if (Y_UNLIKELY(ReadNow.size() != 0)) { auto result = PopSkipped(); if (Y_LIKELY(result.Msg != nullptr)) { return result; } } if (Y_UNLIKELY(ReadSlot == LastKnownPushSlot)) { if (Y_LIKELY(!RereadPushSlot())) { return TSlot::NullElem(); } continue; } if (Y_UNLIKELY(!ReadBunch->IsSlotHere(ReadSlot))) { if (Y_UNLIKELY(!SwitchToNextBunch())) { return TSlot::NullElem(); } } auto result = ReadBunch->GetSlotAux(ReadSlot); if (Y_LIKELY(result.Msg != nullptr)) { ++ReadSlot; return result; } result = StubbornPop(); if (Y_LIKELY(result.Msg != nullptr)) { return result; } } } TSlot PeekAux() { for (;;) { if (Y_UNLIKELY(ReadNow.size() != 0)) { auto result = PeekSkipped(); if (Y_LIKELY(result.Msg != nullptr)) { return result; } } if (Y_UNLIKELY(ReadSlot == LastKnownPushSlot)) { if (Y_LIKELY(!RereadPushSlot())) { return TSlot::NullElem(); } continue; } if (Y_UNLIKELY(!ReadBunch->IsSlotHere(ReadSlot))) { if (Y_UNLIKELY(!SwitchToNextBunch())) { return TSlot::NullElem(); } } auto result = ReadBunch->GetSlotAux(ReadSlot); if (Y_LIKELY(result.Msg != nullptr)) { return result; } result = StubbornPeek(); if (Y_LIKELY(result.Msg != nullptr)) { return result; } } } private: TWBucket* Writer; TBunch* ReadBunch; ui64 ReadSlot = 0; TBunch* LastKnownPushBunch; ui64 LastKnownPushSlot = 0; struct TSkipItem { TBunch* Bunch; ui64 Slot; TBunch* Token; }; TContainer ReadNow; TContainer ReadLater; void AddToReadLater() { ReadLater.push_back({ReadBunch, ReadSlot, LastKnownPushBunch}); LastKnownPushBunch->IncrementToken(); ++ReadSlot; } // MUST BE: ReadSlot == LastKnownPushSlot bool RereadPushSlot() { ReadNow = std::move(ReadLater); ReadLater.clear(); auto oldSlot = LastKnownPushSlot; auto currentPushBunch = Writer->GetLastBunch(); auto currentPushSlot = AtomicGet(Writer->SlotCounter); if (currentPushBunch != LastKnownPushBunch) { // LastKnownPushBunch could be invalid after this line LastKnownPushBunch->SetNextToken(currentPushBunch); } LastKnownPushBunch = currentPushBunch; LastKnownPushSlot = currentPushSlot; return oldSlot != LastKnownPushSlot; } bool SwitchToNextBunch() { for (int q = 0; q < MAX_NUMBER_OF_TRIES_TO_READ; ++q) { auto next = ReadBunch->GetNextBunch(); if (next != nullptr) { ReadBunch = next; return true; } SpinLockPause(); } return false; } TSlot StubbornPop() { for (int q = 0; q < MAX_NUMBER_OF_TRIES_TO_READ; ++q) { auto result = ReadBunch->GetSlotAux(ReadSlot); if (Y_LIKELY(result.Msg != nullptr)) { ++ReadSlot; return result; } SpinLockPause(); } AddToReadLater(); return TSlot::NullElem(); } TSlot StubbornPeek() { for (int q = 0; q < MAX_NUMBER_OF_TRIES_TO_READ; ++q) { auto result = ReadBunch->GetSlotAux(ReadSlot); if (Y_LIKELY(result.Msg != nullptr)) { return result; } SpinLockPause(); } AddToReadLater(); return TSlot::NullElem(); } TSlot PopSkipped() { do { auto elem = ReadNow.front(); ReadNow.pop_front(); auto result = elem.Bunch->GetSlotAux(elem.Slot); if (Y_LIKELY(result.Msg != nullptr)) { elem.Token->DecrementToken(); return result; } ReadLater.emplace_back(elem); } while (ReadNow.size() > 0); return TSlot::NullElem(); } TSlot PeekSkipped() { do { auto elem = ReadNow.front(); auto result = elem.Bunch->GetSlotAux(elem.Slot); if (Y_LIKELY(result.Msg != nullptr)) { return result; } ReadNow.pop_front(); ReadLater.emplace_back(elem); } while (ReadNow.size() > 0); return TSlot::NullElem(); } }; struct TDefaultParams { static constexpr ui32 BUNCH_SIZE = DEFAULT_BUNCH_SIZE; using TBunchBase = TEmpty; template using TContainer = TDeque; static constexpr bool DeleteItems = true; }; } //namespace NReadAsFilledPrivate DeclareTuneValueParam(TRaFQueueBunchSize, ui32, BUNCH_SIZE); DeclareTuneTypeParam(TRaFQueueBunchBase, TBunchBase); DeclareTuneContainer(TRaFQueueSkipContainer, TContainer); DeclareTuneValueParam(TRaFQueueDeleteItems, bool, DeleteItems); template class TReadAsFilledQueue { private: using TTuned = TTune; static constexpr ui32 BUNCH_SIZE = TTuned::BUNCH_SIZE; using TBunchBase = typename TTuned::TBunchBase; template using TContainer = typename TTuned::template TContainer; using TWriteBucket = NReadAsFilledPrivate::TWriteBucket; using TReadBucket = NReadAsFilledPrivate::TReadBucket; public: TReadAsFilledQueue() : RBucket(&WBucket) { } ~TReadAsFilledQueue() { if (TTuned::DeleteItems) { for (;;) { auto msg = Pop(); if (msg == nullptr) { break; } TDelete::Destroy(msg); } } } void Push(TItem* msg) { WBucket.Push((void*)msg, NReadAsFilledPrivate::TEmptyAux()); } TItem* Pop() { return (TItem*)RBucket.Pop(); } TItem* Peek() { return (TItem*)RBucket.Peek(); } protected: TWriteBucket WBucket; TReadBucket RBucket; }; }