//===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements some loop unrolling utilities for loops with run-time // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time // trip counts. // // The functions in this file are used to generate extra code when the // run-time trip count modulo the unroll factor is not 0. When this is the // case, we need to generate code to execute these 'left over' iterations. // // The current strategy generates an if-then-else sequence prior to the // unrolled loop to execute the 'left over' iterations before or after the // unrolled loop. // //===----------------------------------------------------------------------===// #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/DomTreeUpdater.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LoopIterator.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Module.h" #include "llvm/IR/ProfDataUtils.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" #include "llvm/Transforms/Utils/UnrollLoop.h" #include using namespace llvm; #define DEBUG_TYPE "loop-unroll" STATISTIC(NumRuntimeUnrolled, "Number of loops unrolled with run-time trip counts"); static cl::opt UnrollRuntimeMultiExit( "unroll-runtime-multi-exit", cl::init(false), cl::Hidden, cl::desc("Allow runtime unrolling for loops with multiple exits, when " "epilog is generated")); static cl::opt UnrollRuntimeOtherExitPredictable( "unroll-runtime-other-exit-predictable", cl::init(false), cl::Hidden, cl::desc("Assume the non latch exit block to be predictable")); /// Connect the unrolling prolog code to the original loop. /// The unrolling prolog code contains code to execute the /// 'extra' iterations if the run-time trip count modulo the /// unroll count is non-zero. /// /// This function performs the following: /// - Create PHI nodes at prolog end block to combine values /// that exit the prolog code and jump around the prolog. /// - Add a PHI operand to a PHI node at the loop exit block /// for values that exit the prolog and go around the loop. /// - Branch around the original loop if the trip count is less /// than the unroll factor. /// static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, BasicBlock *PrologExit, BasicBlock *OriginalLoopLatchExit, BasicBlock *PreHeader, BasicBlock *NewPreHeader, ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI, bool PreserveLCSSA, ScalarEvolution &SE) { // Loop structure should be the following: // Preheader // PrologHeader // ... // PrologLatch // PrologExit // NewPreheader // Header // ... // Latch // LatchExit BasicBlock *Latch = L->getLoopLatch(); assert(Latch && "Loop must have a latch"); BasicBlock *PrologLatch = cast(VMap[Latch]); // Create a PHI node for each outgoing value from the original loop // (which means it is an outgoing value from the prolog code too). // The new PHI node is inserted in the prolog end basic block. // The new PHI node value is added as an operand of a PHI node in either // the loop header or the loop exit block. for (BasicBlock *Succ : successors(Latch)) { for (PHINode &PN : Succ->phis()) { // Add a new PHI node to the prolog end block and add the // appropriate incoming values. // TODO: This code assumes that the PrologExit (or the LatchExit block for // prolog loop) contains only one predecessor from the loop, i.e. the // PrologLatch. When supporting multiple-exiting block loops, we can have // two or more blocks that have the LatchExit as the target in the // original loop. PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", PrologExit->getFirstNonPHI()); // Adding a value to the new PHI node from the original loop preheader. // This is the value that skips all the prolog code. if (L->contains(&PN)) { // Succ is loop header. NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader); } else { // Succ is LatchExit. NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader); } Value *V = PN.getIncomingValueForBlock(Latch); if (Instruction *I = dyn_cast(V)) { if (L->contains(I)) { V = VMap.lookup(I); } } // Adding a value to the new PHI node from the last prolog block // that was created. NewPN->addIncoming(V, PrologLatch); // Update the existing PHI node operand with the value from the // new PHI node. How this is done depends on if the existing // PHI node is in the original loop block, or the exit block. if (L->contains(&PN)) PN.setIncomingValueForBlock(NewPreHeader, NewPN); else PN.addIncoming(NewPN, PrologExit); SE.forgetValue(&PN); } } // Make sure that created prolog loop is in simplified form SmallVector PrologExitPreds; Loop *PrologLoop = LI->getLoopFor(PrologLatch); if (PrologLoop) { for (BasicBlock *PredBB : predecessors(PrologExit)) if (PrologLoop->contains(PredBB)) PrologExitPreds.push_back(PredBB); SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI, nullptr, PreserveLCSSA); } // Create a branch around the original loop, which is taken if there are no // iterations remaining to be executed after running the prologue. Instruction *InsertPt = PrologExit->getTerminator(); IRBuilder<> B(InsertPt); assert(Count != 0 && "nonsensical Count!"); // If BECount getType(), Count - 1)); // Split the exit to maintain loop canonicalization guarantees SmallVector Preds(predecessors(OriginalLoopLatchExit)); SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI, nullptr, PreserveLCSSA); // Add the branch to the exit block (around the unrolled loop) B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader); InsertPt->eraseFromParent(); if (DT) { auto *NewDom = DT->findNearestCommonDominator(OriginalLoopLatchExit, PrologExit); DT->changeImmediateDominator(OriginalLoopLatchExit, NewDom); } } /// Connect the unrolling epilog code to the original loop. /// The unrolling epilog code contains code to execute the /// 'extra' iterations if the run-time trip count modulo the /// unroll count is non-zero. /// /// This function performs the following: /// - Update PHI nodes at the unrolling loop exit and epilog loop exit /// - Create PHI nodes at the unrolling loop exit to combine /// values that exit the unrolling loop code and jump around it. /// - Update PHI operands in the epilog loop by the new PHI nodes /// - Branch around the epilog loop if extra iters (ModVal) is zero. /// static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, BasicBlock *Exit, BasicBlock *PreHeader, BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI, bool PreserveLCSSA, ScalarEvolution &SE) { BasicBlock *Latch = L->getLoopLatch(); assert(Latch && "Loop must have a latch"); BasicBlock *EpilogLatch = cast(VMap[Latch]); // Loop structure should be the following: // // PreHeader // NewPreHeader // Header // ... // Latch // NewExit (PN) // EpilogPreHeader // EpilogHeader // ... // EpilogLatch // Exit (EpilogPN) // Update PHI nodes at NewExit and Exit. for (PHINode &PN : NewExit->phis()) { // PN should be used in another PHI located in Exit block as // Exit was split by SplitBlockPredecessors into Exit and NewExit // Basically it should look like: // NewExit: // PN = PHI [I, Latch] // ... // Exit: // EpilogPN = PHI [PN, EpilogPreHeader], [X, Exit2], [Y, Exit2.epil] // // Exits from non-latch blocks point to the original exit block and the // epilogue edges have already been added. // // There is EpilogPreHeader incoming block instead of NewExit as // NewExit was spilt 1 more time to get EpilogPreHeader. assert(PN.hasOneUse() && "The phi should have 1 use"); PHINode *EpilogPN = cast(PN.use_begin()->getUser()); assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block"); // Add incoming PreHeader from branch around the Loop PN.addIncoming(UndefValue::get(PN.getType()), PreHeader); SE.forgetValue(&PN); Value *V = PN.getIncomingValueForBlock(Latch); Instruction *I = dyn_cast(V); if (I && L->contains(I)) // If value comes from an instruction in the loop add VMap value. V = VMap.lookup(I); // For the instruction out of the loop, constant or undefined value // insert value itself. EpilogPN->addIncoming(V, EpilogLatch); assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 && "EpilogPN should have EpilogPreHeader incoming block"); // Change EpilogPreHeader incoming block to NewExit. EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), NewExit); // Now PHIs should look like: // NewExit: // PN = PHI [I, Latch], [undef, PreHeader] // ... // Exit: // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] } // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). // Update corresponding PHI nodes in epilog loop. for (BasicBlock *Succ : successors(Latch)) { // Skip this as we already updated phis in exit blocks. if (!L->contains(Succ)) continue; for (PHINode &PN : Succ->phis()) { // Add new PHI nodes to the loop exit block and update epilog // PHIs with the new PHI values. PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", NewExit->getFirstNonPHI()); // Adding a value to the new PHI node from the unrolling loop preheader. NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader); // Adding a value to the new PHI node from the unrolling loop latch. NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch); // Update the existing PHI node operand with the value from the new PHI // node. Corresponding instruction in epilog loop should be PHI. PHINode *VPN = cast(VMap[&PN]); VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN); } } Instruction *InsertPt = NewExit->getTerminator(); IRBuilder<> B(InsertPt); Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); assert(Exit && "Loop must have a single exit block only"); // Split the epilogue exit to maintain loop canonicalization guarantees SmallVector Preds(predecessors(Exit)); SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr, PreserveLCSSA); // Add the branch to the exit block (around the unrolling loop) B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); InsertPt->eraseFromParent(); if (DT) { auto *NewDom = DT->findNearestCommonDominator(Exit, NewExit); DT->changeImmediateDominator(Exit, NewDom); } // Split the main loop exit to maintain canonicalization guarantees. SmallVector NewExitPreds{Latch}; SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr, PreserveLCSSA); } /// Create a clone of the blocks in a loop and connect them together. A new /// loop will be created including all cloned blocks, and the iterator of the /// new loop switched to count NewIter down to 0. /// The cloned blocks should be inserted between InsertTop and InsertBot. /// InsertTop should be new preheader, InsertBot new loop exit. /// Returns the new cloned loop that is created. static Loop * CloneLoopBlocks(Loop *L, Value *NewIter, const bool UseEpilogRemainder, const bool UnrollRemainder, BasicBlock *InsertTop, BasicBlock *InsertBot, BasicBlock *Preheader, std::vector &NewBlocks, LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) { StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; BasicBlock *Header = L->getHeader(); BasicBlock *Latch = L->getLoopLatch(); Function *F = Header->getParent(); LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); Loop *ParentLoop = L->getParentLoop(); NewLoopsMap NewLoops; NewLoops[ParentLoop] = ParentLoop; // For each block in the original loop, create a new copy, // and update the value map with the newly created values. for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); NewBlocks.push_back(NewBB); addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops); VMap[*BB] = NewBB; if (Header == *BB) { // For the first block, add a CFG connection to this newly // created block. InsertTop->getTerminator()->setSuccessor(0, NewBB); } if (DT) { if (Header == *BB) { // The header is dominated by the preheader. DT->addNewBlock(NewBB, InsertTop); } else { // Copy information from original loop to unrolled loop. BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock(); DT->addNewBlock(NewBB, cast(VMap[IDomBB])); } } if (Latch == *BB) { // For the last block, create a loop back to cloned head. VMap.erase((*BB)->getTerminator()); // Use an incrementing IV. Pre-incr/post-incr is backedge/trip count. // Subtle: NewIter can be 0 if we wrapped when computing the trip count, // thus we must compare the post-increment (wrapping) value. BasicBlock *FirstLoopBB = cast(VMap[Header]); BranchInst *LatchBR = cast(NewBB->getTerminator()); IRBuilder<> Builder(LatchBR); PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, suffix + ".iter", FirstLoopBB->getFirstNonPHI()); auto *Zero = ConstantInt::get(NewIdx->getType(), 0); auto *One = ConstantInt::get(NewIdx->getType(), 1); Value *IdxNext = Builder.CreateAdd(NewIdx, One, NewIdx->getName() + ".next"); Value *IdxCmp = Builder.CreateICmpNE(IdxNext, NewIter, NewIdx->getName() + ".cmp"); Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); NewIdx->addIncoming(Zero, InsertTop); NewIdx->addIncoming(IdxNext, NewBB); LatchBR->eraseFromParent(); } } // Change the incoming values to the ones defined in the preheader or // cloned loop. for (BasicBlock::iterator I = Header->begin(); isa(I); ++I) { PHINode *NewPHI = cast(VMap[&*I]); unsigned idx = NewPHI->getBasicBlockIndex(Preheader); NewPHI->setIncomingBlock(idx, InsertTop); BasicBlock *NewLatch = cast(VMap[Latch]); idx = NewPHI->getBasicBlockIndex(Latch); Value *InVal = NewPHI->getIncomingValue(idx); NewPHI->setIncomingBlock(idx, NewLatch); if (Value *V = VMap.lookup(InVal)) NewPHI->setIncomingValue(idx, V); } Loop *NewLoop = NewLoops[L]; assert(NewLoop && "L should have been cloned"); MDNode *LoopID = NewLoop->getLoopID(); // Only add loop metadata if the loop is not going to be completely // unrolled. if (UnrollRemainder) return NewLoop; std::optional NewLoopID = makeFollowupLoopID( LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder}); if (NewLoopID) { NewLoop->setLoopID(*NewLoopID); // Do not setLoopAlreadyUnrolled if loop attributes have been defined // explicitly. return NewLoop; } // Add unroll disable metadata to disable future unrolling for this loop. NewLoop->setLoopAlreadyUnrolled(); return NewLoop; } /// Returns true if we can profitably unroll the multi-exit loop L. Currently, /// we return true only if UnrollRuntimeMultiExit is set to true. static bool canProfitablyUnrollMultiExitLoop( Loop *L, SmallVectorImpl &OtherExits, BasicBlock *LatchExit, bool UseEpilogRemainder) { // Priority goes to UnrollRuntimeMultiExit if it's supplied. if (UnrollRuntimeMultiExit.getNumOccurrences()) return UnrollRuntimeMultiExit; // The main pain point with multi-exit loop unrolling is that once unrolled, // we will not be able to merge all blocks into a straight line code. // There are branches within the unrolled loop that go to the OtherExits. // The second point is the increase in code size, but this is true // irrespective of multiple exits. // Note: Both the heuristics below are coarse grained. We are essentially // enabling unrolling of loops that have a single side exit other than the // normal LatchExit (i.e. exiting into a deoptimize block). // The heuristics considered are: // 1. low number of branches in the unrolled version. // 2. high predictability of these extra branches. // We avoid unrolling loops that have more than two exiting blocks. This // limits the total number of branches in the unrolled loop to be atmost // the unroll factor (since one of the exiting blocks is the latch block). SmallVector ExitingBlocks; L->getExitingBlocks(ExitingBlocks); if (ExitingBlocks.size() > 2) return false; // Allow unrolling of loops with no non latch exit blocks. if (OtherExits.size() == 0) return true; // The second heuristic is that L has one exit other than the latchexit and // that exit is a deoptimize block. We know that deoptimize blocks are rarely // taken, which also implies the branch leading to the deoptimize block is // highly predictable. When UnrollRuntimeOtherExitPredictable is specified, we // assume the other exit branch is predictable even if it has no deoptimize // call. return (OtherExits.size() == 1 && (UnrollRuntimeOtherExitPredictable || OtherExits[0]->getTerminatingDeoptimizeCall())); // TODO: These can be fine-tuned further to consider code size or deopt states // that are captured by the deoptimize exit block. // Also, we can extend this to support more cases, if we actually // know of kinds of multiexit loops that would benefit from unrolling. } // Assign the maximum possible trip count as the back edge weight for the // remainder loop if the original loop comes with a branch weight. static void updateLatchBranchWeightsForRemainderLoop(Loop *OrigLoop, Loop *RemainderLoop, uint64_t UnrollFactor) { uint64_t TrueWeight, FalseWeight; BranchInst *LatchBR = cast(OrigLoop->getLoopLatch()->getTerminator()); if (!extractBranchWeights(*LatchBR, TrueWeight, FalseWeight)) return; uint64_t ExitWeight = LatchBR->getSuccessor(0) == OrigLoop->getHeader() ? FalseWeight : TrueWeight; assert(UnrollFactor > 1); uint64_t BackEdgeWeight = (UnrollFactor - 1) * ExitWeight; BasicBlock *Header = RemainderLoop->getHeader(); BasicBlock *Latch = RemainderLoop->getLoopLatch(); auto *RemainderLatchBR = cast(Latch->getTerminator()); unsigned HeaderIdx = (RemainderLatchBR->getSuccessor(0) == Header ? 0 : 1); MDBuilder MDB(RemainderLatchBR->getContext()); MDNode *WeightNode = HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight) : MDB.createBranchWeights(BackEdgeWeight, ExitWeight); RemainderLatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); } /// Calculate ModVal = (BECount + 1) % Count on the abstract integer domain /// accounting for the possibility of unsigned overflow in the 2s complement /// domain. Preconditions: /// 1) TripCount = BECount + 1 (allowing overflow) /// 2) Log2(Count) <= BitWidth(BECount) static Value *CreateTripRemainder(IRBuilder<> &B, Value *BECount, Value *TripCount, unsigned Count) { // Note that TripCount is BECount + 1. if (isPowerOf2_32(Count)) // If the expression is zero, then either: // 1. There are no iterations to be run in the prolog/epilog loop. // OR // 2. The addition computing TripCount overflowed. // // If (2) is true, we know that TripCount really is (1 << BEWidth) and so // the number of iterations that remain to be run in the original loop is a // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (a // precondition of this method). return B.CreateAnd(TripCount, Count - 1, "xtraiter"); // As (BECount + 1) can potentially unsigned overflow we count // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. Constant *CountC = ConstantInt::get(BECount->getType(), Count); Value *ModValTmp = B.CreateURem(BECount, CountC); Value *ModValAdd = B.CreateAdd(ModValTmp, ConstantInt::get(ModValTmp->getType(), 1)); // At that point (BECount % Count) + 1 could be equal to Count. // To handle this case we need to take mod by Count one more time. return B.CreateURem(ModValAdd, CountC, "xtraiter"); } /// Insert code in the prolog/epilog code when unrolling a loop with a /// run-time trip-count. /// /// This method assumes that the loop unroll factor is total number /// of loop bodies in the loop after unrolling. (Some folks refer /// to the unroll factor as the number of *extra* copies added). /// We assume also that the loop unroll factor is a power-of-two. So, after /// unrolling the loop, the number of loop bodies executed is 2, /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for /// the switch instruction is generated. /// /// ***Prolog case*** /// extraiters = tripcount % loopfactor /// if (extraiters == 0) jump Loop: /// else jump Prol: /// Prol: LoopBody; /// extraiters -= 1 // Omitted if unroll factor is 2. /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. /// if (tripcount < loopfactor) jump End: /// Loop: /// ... /// End: /// /// ***Epilog case*** /// extraiters = tripcount % loopfactor /// if (tripcount < loopfactor) jump LoopExit: /// unroll_iters = tripcount - extraiters /// Loop: LoopBody; (executes unroll_iter times); /// unroll_iter -= 1 /// if (unroll_iter != 0) jump Loop: /// LoopExit: /// if (extraiters == 0) jump EpilExit: /// Epil: LoopBody; (executes extraiters times) /// extraiters -= 1 // Omitted if unroll factor is 2. /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. /// EpilExit: bool llvm::UnrollRuntimeLoopRemainder( Loop *L, unsigned Count, bool AllowExpensiveTripCount, bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop) { LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n"); LLVM_DEBUG(L->dump()); LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n" : dbgs() << "Using prolog remainder.\n"); // Make sure the loop is in canonical form. if (!L->isLoopSimplifyForm()) { LLVM_DEBUG(dbgs() << "Not in simplify form!\n"); return false; } // Guaranteed by LoopSimplifyForm. BasicBlock *Latch = L->getLoopLatch(); BasicBlock *Header = L->getHeader(); BranchInst *LatchBR = cast(Latch->getTerminator()); if (!LatchBR || LatchBR->isUnconditional()) { // The loop-rotate pass can be helpful to avoid this in many cases. LLVM_DEBUG( dbgs() << "Loop latch not terminated by a conditional branch.\n"); return false; } unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0; BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex); if (L->contains(LatchExit)) { // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the // targets of the Latch be an exit block out of the loop. LLVM_DEBUG( dbgs() << "One of the loop latch successors must be the exit block.\n"); return false; } // These are exit blocks other than the target of the latch exiting block. SmallVector OtherExits; L->getUniqueNonLatchExitBlocks(OtherExits); // Support only single exit and exiting block unless multi-exit loop // unrolling is enabled. if (!L->getExitingBlock() || OtherExits.size()) { // We rely on LCSSA form being preserved when the exit blocks are transformed. // (Note that only an off-by-default mode of the old PM disables PreserveLCCA.) if (!PreserveLCSSA) return false; if (!canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, UseEpilogRemainder)) { LLVM_DEBUG( dbgs() << "Multiple exit/exiting blocks in loop and multi-exit unrolling not " "enabled!\n"); return false; } } // Use Scalar Evolution to compute the trip count. This allows more loops to // be unrolled than relying on induction var simplification. if (!SE) return false; // Only unroll loops with a computable trip count. // We calculate the backedge count by using getExitCount on the Latch block, // which is proven to be the only exiting block in this loop. This is same as // calculating getBackedgeTakenCount on the loop (which computes SCEV for all // exiting blocks). const SCEV *BECountSC = SE->getExitCount(L, Latch); if (isa(BECountSC)) { LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n"); return false; } unsigned BEWidth = cast(BECountSC->getType())->getBitWidth(); // Add 1 since the backedge count doesn't include the first loop iteration. // (Note that overflow can occur, this is handled explicitly below) const SCEV *TripCountSC = SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); if (isa(TripCountSC)) { LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n"); return false; } BasicBlock *PreHeader = L->getLoopPreheader(); BranchInst *PreHeaderBR = cast(PreHeader->getTerminator()); const DataLayout &DL = Header->getModule()->getDataLayout(); SCEVExpander Expander(*SE, DL, "loop-unroll"); if (!AllowExpensiveTripCount && Expander.isHighCostExpansion(TripCountSC, L, SCEVCheapExpansionBudget, TTI, PreHeaderBR)) { LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n"); return false; } // This constraint lets us deal with an overflowing trip count easily; see the // comment on ModVal below. if (Log2_32(Count) > BEWidth) { LLVM_DEBUG( dbgs() << "Count failed constraint on overflow trip count calculation.\n"); return false; } // Loop structure is the following: // // PreHeader // Header // ... // Latch // LatchExit BasicBlock *NewPreHeader; BasicBlock *NewExit = nullptr; BasicBlock *PrologExit = nullptr; BasicBlock *EpilogPreHeader = nullptr; BasicBlock *PrologPreHeader = nullptr; if (UseEpilogRemainder) { // If epilog remainder // Split PreHeader to insert a branch around loop for unrolling. NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); NewPreHeader->setName(PreHeader->getName() + ".new"); // Split LatchExit to create phi nodes from branch above. NewExit = SplitBlockPredecessors(LatchExit, {Latch}, ".unr-lcssa", DT, LI, nullptr, PreserveLCSSA); // NewExit gets its DebugLoc from LatchExit, which is not part of the // original Loop. // Fix this by setting Loop's DebugLoc to NewExit. auto *NewExitTerminator = NewExit->getTerminator(); NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc()); // Split NewExit to insert epilog remainder loop. EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI); EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); // If the latch exits from multiple level of nested loops, then // by assumption there must be another loop exit which branches to the // outer loop and we must adjust the loop for the newly inserted blocks // to account for the fact that our epilogue is still in the same outer // loop. Note that this leaves loopinfo temporarily out of sync with the // CFG until the actual epilogue loop is inserted. if (auto *ParentL = L->getParentLoop()) if (LI->getLoopFor(LatchExit) != ParentL) { LI->removeBlock(NewExit); ParentL->addBasicBlockToLoop(NewExit, *LI); LI->removeBlock(EpilogPreHeader); ParentL->addBasicBlockToLoop(EpilogPreHeader, *LI); } } else { // If prolog remainder // Split the original preheader twice to insert prolog remainder loop PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); PrologPreHeader->setName(Header->getName() + ".prol.preheader"); PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), DT, LI); PrologExit->setName(Header->getName() + ".prol.loopexit"); // Split PrologExit to get NewPreHeader. NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); NewPreHeader->setName(PreHeader->getName() + ".new"); } // Loop structure should be the following: // Epilog Prolog // // PreHeader PreHeader // *NewPreHeader *PrologPreHeader // Header *PrologExit // ... *NewPreHeader // Latch Header // *NewExit ... // *EpilogPreHeader Latch // LatchExit LatchExit // Calculate conditions for branch around loop for unrolling // in epilog case and around prolog remainder loop in prolog case. // Compute the number of extra iterations required, which is: // extra iterations = run-time trip count % loop unroll factor PreHeaderBR = cast(PreHeader->getTerminator()); IRBuilder<> B(PreHeaderBR); Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), PreHeaderBR); Value *BECount; // If there are other exits before the latch, that may cause the latch exit // branch to never be executed, and the latch exit count may be poison. // In this case, freeze the TripCount and base BECount on the frozen // TripCount. We will introduce two branches using these values, and it's // important that they see a consistent value (which would not be guaranteed // if were frozen independently.) if ((!OtherExits.empty() || !SE->loopHasNoAbnormalExits(L)) && !isGuaranteedNotToBeUndefOrPoison(TripCount, AC, PreHeaderBR, DT)) { TripCount = B.CreateFreeze(TripCount); BECount = B.CreateAdd(TripCount, ConstantInt::get(TripCount->getType(), -1)); } else { // If we don't need to freeze, use SCEVExpander for BECount as well, to // allow slightly better value reuse. BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), PreHeaderBR); } Value * const ModVal = CreateTripRemainder(B, BECount, TripCount, Count); Value *BranchVal = UseEpilogRemainder ? B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)) : B.CreateIsNotNull(ModVal, "lcmp.mod"); BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; // Branch to either remainder (extra iterations) loop or unrolling loop. B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); PreHeaderBR->eraseFromParent(); if (DT) { if (UseEpilogRemainder) DT->changeImmediateDominator(NewExit, PreHeader); else DT->changeImmediateDominator(PrologExit, PreHeader); } Function *F = Header->getParent(); // Get an ordered list of blocks in the loop to help with the ordering of the // cloned blocks in the prolog/epilog code LoopBlocksDFS LoopBlocks(L); LoopBlocks.perform(LI); // // For each extra loop iteration, create a copy of the loop's basic blocks // and generate a condition that branches to the copy depending on the // number of 'left over' iterations. // std::vector NewBlocks; ValueToValueMapTy VMap; // Clone all the basic blocks in the loop. If Count is 2, we don't clone // the loop, otherwise we create a cloned loop to execute the extra // iterations. This function adds the appropriate CFG connections. BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit; BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; Loop *remainderLoop = CloneLoopBlocks( L, ModVal, UseEpilogRemainder, UnrollRemainder, InsertTop, InsertBot, NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI); // Assign the maximum possible trip count as the back edge weight for the // remainder loop if the original loop comes with a branch weight. if (remainderLoop && !UnrollRemainder) updateLatchBranchWeightsForRemainderLoop(L, remainderLoop, Count); // Insert the cloned blocks into the function. F->splice(InsertBot->getIterator(), F, NewBlocks[0]->getIterator(), F->end()); // Now the loop blocks are cloned and the other exiting blocks from the // remainder are connected to the original Loop's exit blocks. The remaining // work is to update the phi nodes in the original loop, and take in the // values from the cloned region. for (auto *BB : OtherExits) { // Given we preserve LCSSA form, we know that the values used outside the // loop will be used through these phi nodes at the exit blocks that are // transformed below. for (PHINode &PN : BB->phis()) { unsigned oldNumOperands = PN.getNumIncomingValues(); // Add the incoming values from the remainder code to the end of the phi // node. for (unsigned i = 0; i < oldNumOperands; i++){ auto *PredBB =PN.getIncomingBlock(i); if (PredBB == Latch) // The latch exit is handled seperately, see connectX continue; if (!L->contains(PredBB)) // Even if we had dedicated exits, the code above inserted an // extra branch which can reach the latch exit. continue; auto *V = PN.getIncomingValue(i); if (Instruction *I = dyn_cast(V)) if (L->contains(I)) V = VMap.lookup(I); PN.addIncoming(V, cast(VMap[PredBB])); } } #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) for (BasicBlock *SuccBB : successors(BB)) { assert(!(llvm::is_contained(OtherExits, SuccBB) || SuccBB == LatchExit) && "Breaks the definition of dedicated exits!"); } #endif } // Update the immediate dominator of the exit blocks and blocks that are // reachable from the exit blocks. This is needed because we now have paths // from both the original loop and the remainder code reaching the exit // blocks. While the IDom of these exit blocks were from the original loop, // now the IDom is the preheader (which decides whether the original loop or // remainder code should run). if (DT && !L->getExitingBlock()) { SmallVector ChildrenToUpdate; // NB! We have to examine the dom children of all loop blocks, not just // those which are the IDom of the exit blocks. This is because blocks // reachable from the exit blocks can have their IDom as the nearest common // dominator of the exit blocks. for (auto *BB : L->blocks()) { auto *DomNodeBB = DT->getNode(BB); for (auto *DomChild : DomNodeBB->children()) { auto *DomChildBB = DomChild->getBlock(); if (!L->contains(LI->getLoopFor(DomChildBB))) ChildrenToUpdate.push_back(DomChildBB); } } for (auto *BB : ChildrenToUpdate) DT->changeImmediateDominator(BB, PreHeader); } // Loop structure should be the following: // Epilog Prolog // // PreHeader PreHeader // NewPreHeader PrologPreHeader // Header PrologHeader // ... ... // Latch PrologLatch // NewExit PrologExit // EpilogPreHeader NewPreHeader // EpilogHeader Header // ... ... // EpilogLatch Latch // LatchExit LatchExit // Rewrite the cloned instruction operands to use the values created when the // clone is created. for (BasicBlock *BB : NewBlocks) { for (Instruction &I : *BB) { RemapInstruction(&I, VMap, RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); } } if (UseEpilogRemainder) { // Connect the epilog code to the original loop and update the // PHI functions. ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, EpilogPreHeader, NewPreHeader, VMap, DT, LI, PreserveLCSSA, *SE); // Update counter in loop for unrolling. // Use an incrementing IV. Pre-incr/post-incr is backedge/trip count. // Subtle: TestVal can be 0 if we wrapped when computing the trip count, // thus we must compare the post-increment (wrapping) value. IRBuilder<> B2(NewPreHeader->getTerminator()); Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); BranchInst *LatchBR = cast(Latch->getTerminator()); PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", Header->getFirstNonPHI()); B2.SetInsertPoint(LatchBR); auto *Zero = ConstantInt::get(NewIdx->getType(), 0); auto *One = ConstantInt::get(NewIdx->getType(), 1); Value *IdxNext = B2.CreateAdd(NewIdx, One, NewIdx->getName() + ".next"); auto Pred = LatchBR->getSuccessor(0) == Header ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; Value *IdxCmp = B2.CreateICmp(Pred, IdxNext, TestVal, NewIdx->getName() + ".ncmp"); NewIdx->addIncoming(Zero, NewPreHeader); NewIdx->addIncoming(IdxNext, Latch); LatchBR->setCondition(IdxCmp); } else { // Connect the prolog code to the original loop and update the // PHI functions. ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader, NewPreHeader, VMap, DT, LI, PreserveLCSSA, *SE); } // If this loop is nested, then the loop unroller changes the code in the any // of its parent loops, so the Scalar Evolution pass needs to be run again. SE->forgetTopmostLoop(L); // Verify that the Dom Tree and Loop Info are correct. #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) if (DT) { assert(DT->verify(DominatorTree::VerificationLevel::Full)); LI->verify(*DT); } #endif // For unroll factor 2 remainder loop will have 1 iteration. if (Count == 2 && DT && LI && SE) { // TODO: This code could probably be pulled out into a helper function // (e.g. breakLoopBackedgeAndSimplify) and reused in loop-deletion. BasicBlock *RemainderLatch = remainderLoop->getLoopLatch(); assert(RemainderLatch); SmallVector RemainderBlocks(remainderLoop->getBlocks().begin(), remainderLoop->getBlocks().end()); breakLoopBackedge(remainderLoop, *DT, *SE, *LI, nullptr); remainderLoop = nullptr; // Simplify loop values after breaking the backedge const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); SmallVector DeadInsts; for (BasicBlock *BB : RemainderBlocks) { for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { if (Value *V = simplifyInstruction(&Inst, {DL, nullptr, DT, AC})) if (LI->replacementPreservesLCSSAForm(&Inst, V)) Inst.replaceAllUsesWith(V); if (isInstructionTriviallyDead(&Inst)) DeadInsts.emplace_back(&Inst); } // We can't do recursive deletion until we're done iterating, as we might // have a phi which (potentially indirectly) uses instructions later in // the block we're iterating through. RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); } // Merge latch into exit block. auto *ExitBB = RemainderLatch->getSingleSuccessor(); assert(ExitBB && "required after breaking cond br backedge"); DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); MergeBlockIntoPredecessor(ExitBB, &DTU, LI); } // Canonicalize to LoopSimplifyForm both original and remainder loops. We // cannot rely on the LoopUnrollPass to do this because it only does // canonicalization for parent/subloops and not the sibling loops. if (OtherExits.size() > 0) { // Generate dedicated exit blocks for the original loop, to preserve // LoopSimplifyForm. formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA); // Generate dedicated exit blocks for the remainder loop if one exists, to // preserve LoopSimplifyForm. if (remainderLoop) formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA); } auto UnrollResult = LoopUnrollResult::Unmodified; if (remainderLoop && UnrollRemainder) { LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n"); UnrollResult = UnrollLoop(remainderLoop, {/*Count*/ Count - 1, /*Force*/ false, /*Runtime*/ false, /*AllowExpensiveTripCount*/ false, /*UnrollRemainder*/ false, ForgetAllSCEV}, LI, SE, DT, AC, TTI, /*ORE*/ nullptr, PreserveLCSSA); } if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled) *ResultLoop = remainderLoop; NumRuntimeUnrolled++; return true; }