//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements sparse conditional constant propagation and merging: // // Specifically, this: // * Assumes values are constant unless proven otherwise // * Assumes BasicBlocks are dead unless proven otherwise // * Proves values to be constant, and replaces them with constants // * Proves conditional branches to be unconditional // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/SCCP.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/DomTreeUpdater.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/SCCPSolver.h" #include #include #include using namespace llvm; #define DEBUG_TYPE "sccp" STATISTIC(NumInstRemoved, "Number of instructions removed"); STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); STATISTIC(NumInstReplaced, "Number of instructions replaced with (simpler) instruction"); // runSCCP() - Run the Sparse Conditional Constant Propagation algorithm, // and return true if the function was modified. static bool runSCCP(Function &F, const DataLayout &DL, const TargetLibraryInfo *TLI, DomTreeUpdater &DTU) { LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n"); SCCPSolver Solver( DL, [TLI](Function &F) -> const TargetLibraryInfo & { return *TLI; }, F.getContext()); // Mark the first block of the function as being executable. Solver.markBlockExecutable(&F.front()); // Mark all arguments to the function as being overdefined. for (Argument &AI : F.args()) Solver.markOverdefined(&AI); // Solve for constants. bool ResolvedUndefs = true; while (ResolvedUndefs) { Solver.solve(); LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n"); ResolvedUndefs = Solver.resolvedUndefsIn(F); } bool MadeChanges = false; // If we decided that there are basic blocks that are dead in this function, // delete their contents now. Note that we cannot actually delete the blocks, // as we cannot modify the CFG of the function. SmallPtrSet InsertedValues; SmallVector BlocksToErase; for (BasicBlock &BB : F) { if (!Solver.isBlockExecutable(&BB)) { LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB); ++NumDeadBlocks; BlocksToErase.push_back(&BB); MadeChanges = true; continue; } MadeChanges |= Solver.simplifyInstsInBlock(BB, InsertedValues, NumInstRemoved, NumInstReplaced); } // Remove unreachable blocks and non-feasible edges. for (BasicBlock *DeadBB : BlocksToErase) NumInstRemoved += changeToUnreachable(DeadBB->getFirstNonPHI(), /*PreserveLCSSA=*/false, &DTU); BasicBlock *NewUnreachableBB = nullptr; for (BasicBlock &BB : F) MadeChanges |= Solver.removeNonFeasibleEdges(&BB, DTU, NewUnreachableBB); for (BasicBlock *DeadBB : BlocksToErase) if (!DeadBB->hasAddressTaken()) DTU.deleteBB(DeadBB); return MadeChanges; } PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) { const DataLayout &DL = F.getParent()->getDataLayout(); auto &TLI = AM.getResult(F); auto *DT = AM.getCachedResult(F); DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); if (!runSCCP(F, DL, &TLI, DTU)) return PreservedAnalyses::all(); auto PA = PreservedAnalyses(); PA.preserve(); return PA; } namespace { //===--------------------------------------------------------------------===// // /// SCCP Class - This class uses the SCCPSolver to implement a per-function /// Sparse Conditional Constant Propagator. /// class SCCPLegacyPass : public FunctionPass { public: // Pass identification, replacement for typeid static char ID; SCCPLegacyPass() : FunctionPass(ID) { initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addPreserved(); AU.addPreserved(); } // runOnFunction - Run the Sparse Conditional Constant Propagation // algorithm, and return true if the function was modified. bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; const DataLayout &DL = F.getParent()->getDataLayout(); const TargetLibraryInfo *TLI = &getAnalysis().getTLI(F); auto *DTWP = getAnalysisIfAvailable(); DomTreeUpdater DTU(DTWP ? &DTWP->getDomTree() : nullptr, DomTreeUpdater::UpdateStrategy::Lazy); return runSCCP(F, DL, TLI, DTU); } }; } // end anonymous namespace char SCCPLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp", "Sparse Conditional Constant Propagation", false, false) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_END(SCCPLegacyPass, "sccp", "Sparse Conditional Constant Propagation", false, false) // createSCCPPass - This is the public interface to this file. FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); }