//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass performs various transformations related to eliminating memcpy // calls, or transforming sets of stores into memset's. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/MemCpyOptimizer.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/CaptureTracking.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/MemorySSA.h" #include "llvm/Analysis/MemorySSAUpdater.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Local.h" #include #include #include #include using namespace llvm; #define DEBUG_TYPE "memcpyopt" static cl::opt EnableMemCpyOptWithoutLibcalls( "enable-memcpyopt-without-libcalls", cl::Hidden, cl::desc("Enable memcpyopt even when libcalls are disabled")); STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); STATISTIC(NumMemSetInfer, "Number of memsets inferred"); STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy"); STATISTIC(NumCpyToSet, "Number of memcpys converted to memset"); STATISTIC(NumCallSlot, "Number of call slot optimizations performed"); namespace { /// Represents a range of memset'd bytes with the ByteVal value. /// This allows us to analyze stores like: /// store 0 -> P+1 /// store 0 -> P+0 /// store 0 -> P+3 /// store 0 -> P+2 /// which sometimes happens with stores to arrays of structs etc. When we see /// the first store, we make a range [1, 2). The second store extends the range /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the /// two ranges into [0, 3) which is memset'able. struct MemsetRange { // Start/End - A semi range that describes the span that this range covers. // The range is closed at the start and open at the end: [Start, End). int64_t Start, End; /// StartPtr - The getelementptr instruction that points to the start of the /// range. Value *StartPtr; /// Alignment - The known alignment of the first store. MaybeAlign Alignment; /// TheStores - The actual stores that make up this range. SmallVector TheStores; bool isProfitableToUseMemset(const DataLayout &DL) const; }; } // end anonymous namespace bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { // If we found more than 4 stores to merge or 16 bytes, use memset. if (TheStores.size() >= 4 || End-Start >= 16) return true; // If there is nothing to merge, don't do anything. if (TheStores.size() < 2) return false; // If any of the stores are a memset, then it is always good to extend the // memset. for (Instruction *SI : TheStores) if (!isa(SI)) return true; // Assume that the code generator is capable of merging pairs of stores // together if it wants to. if (TheStores.size() == 2) return false; // If we have fewer than 8 stores, it can still be worthwhile to do this. // For example, merging 4 i8 stores into an i32 store is useful almost always. // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the // memset will be split into 2 32-bit stores anyway) and doing so can // pessimize the llvm optimizer. // // Since we don't have perfect knowledge here, make some assumptions: assume // the maximum GPR width is the same size as the largest legal integer // size. If so, check to see whether we will end up actually reducing the // number of stores used. unsigned Bytes = unsigned(End-Start); unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8; if (MaxIntSize == 0) MaxIntSize = 1; unsigned NumPointerStores = Bytes / MaxIntSize; // Assume the remaining bytes if any are done a byte at a time. unsigned NumByteStores = Bytes % MaxIntSize; // If we will reduce the # stores (according to this heuristic), do the // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 // etc. return TheStores.size() > NumPointerStores+NumByteStores; } namespace { class MemsetRanges { using range_iterator = SmallVectorImpl::iterator; /// A sorted list of the memset ranges. SmallVector Ranges; const DataLayout &DL; public: MemsetRanges(const DataLayout &DL) : DL(DL) {} using const_iterator = SmallVectorImpl::const_iterator; const_iterator begin() const { return Ranges.begin(); } const_iterator end() const { return Ranges.end(); } bool empty() const { return Ranges.empty(); } void addInst(int64_t OffsetFromFirst, Instruction *Inst) { if (auto *SI = dyn_cast(Inst)) addStore(OffsetFromFirst, SI); else addMemSet(OffsetFromFirst, cast(Inst)); } void addStore(int64_t OffsetFromFirst, StoreInst *SI) { TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); assert(!StoreSize.isScalable() && "Can't track scalable-typed stores"); addRange(OffsetFromFirst, StoreSize.getFixedValue(), SI->getPointerOperand(), SI->getAlign(), SI); } void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { int64_t Size = cast(MSI->getLength())->getZExtValue(); addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlign(), MSI); } void addRange(int64_t Start, int64_t Size, Value *Ptr, MaybeAlign Alignment, Instruction *Inst); }; } // end anonymous namespace /// Add a new store to the MemsetRanges data structure. This adds a /// new range for the specified store at the specified offset, merging into /// existing ranges as appropriate. void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, MaybeAlign Alignment, Instruction *Inst) { int64_t End = Start+Size; range_iterator I = partition_point( Ranges, [=](const MemsetRange &O) { return O.End < Start; }); // We now know that I == E, in which case we didn't find anything to merge // with, or that Start <= I->End. If End < I->Start or I == E, then we need // to insert a new range. Handle this now. if (I == Ranges.end() || End < I->Start) { MemsetRange &R = *Ranges.insert(I, MemsetRange()); R.Start = Start; R.End = End; R.StartPtr = Ptr; R.Alignment = Alignment; R.TheStores.push_back(Inst); return; } // This store overlaps with I, add it. I->TheStores.push_back(Inst); // At this point, we may have an interval that completely contains our store. // If so, just add it to the interval and return. if (I->Start <= Start && I->End >= End) return; // Now we know that Start <= I->End and End >= I->Start so the range overlaps // but is not entirely contained within the range. // See if the range extends the start of the range. In this case, it couldn't // possibly cause it to join the prior range, because otherwise we would have // stopped on *it*. if (Start < I->Start) { I->Start = Start; I->StartPtr = Ptr; I->Alignment = Alignment; } // Now we know that Start <= I->End and Start >= I->Start (so the startpoint // is in or right at the end of I), and that End >= I->Start. Extend I out to // End. if (End > I->End) { I->End = End; range_iterator NextI = I; while (++NextI != Ranges.end() && End >= NextI->Start) { // Merge the range in. I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); if (NextI->End > I->End) I->End = NextI->End; Ranges.erase(NextI); NextI = I; } } } //===----------------------------------------------------------------------===// // MemCpyOptLegacyPass Pass //===----------------------------------------------------------------------===// namespace { class MemCpyOptLegacyPass : public FunctionPass { MemCpyOptPass Impl; public: static char ID; // Pass identification, replacement for typeid MemCpyOptLegacyPass() : FunctionPass(ID) { initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; private: // This transformation requires dominator postdominator info void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); } }; } // end anonymous namespace char MemCpyOptLegacyPass::ID = 0; /// The public interface to this file... FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); } INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", false, false) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", false, false) // Check that V is either not accessible by the caller, or unwinding cannot // occur between Start and End. static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start, Instruction *End) { assert(Start->getParent() == End->getParent() && "Must be in same block"); // Function can't unwind, so it also can't be visible through unwinding. if (Start->getFunction()->doesNotThrow()) return false; // Object is not visible on unwind. // TODO: Support RequiresNoCaptureBeforeUnwind case. bool RequiresNoCaptureBeforeUnwind; if (isNotVisibleOnUnwind(getUnderlyingObject(V), RequiresNoCaptureBeforeUnwind) && !RequiresNoCaptureBeforeUnwind) return false; // Check whether there are any unwinding instructions in the range. return any_of(make_range(Start->getIterator(), End->getIterator()), [](const Instruction &I) { return I.mayThrow(); }); } void MemCpyOptPass::eraseInstruction(Instruction *I) { MSSAU->removeMemoryAccess(I); I->eraseFromParent(); } // Check for mod or ref of Loc between Start and End, excluding both boundaries. // Start and End must be in the same block. // If SkippedLifetimeStart is provided, skip over one clobbering lifetime.start // intrinsic and store it inside SkippedLifetimeStart. static bool accessedBetween(BatchAAResults &AA, MemoryLocation Loc, const MemoryUseOrDef *Start, const MemoryUseOrDef *End, Instruction **SkippedLifetimeStart = nullptr) { assert(Start->getBlock() == End->getBlock() && "Only local supported"); for (const MemoryAccess &MA : make_range(++Start->getIterator(), End->getIterator())) { Instruction *I = cast(MA).getMemoryInst(); if (isModOrRefSet(AA.getModRefInfo(I, Loc))) { auto *II = dyn_cast(I); if (II && II->getIntrinsicID() == Intrinsic::lifetime_start && SkippedLifetimeStart && !*SkippedLifetimeStart) { *SkippedLifetimeStart = I; continue; } return true; } } return false; } // Check for mod of Loc between Start and End, excluding both boundaries. // Start and End can be in different blocks. static bool writtenBetween(MemorySSA *MSSA, BatchAAResults &AA, MemoryLocation Loc, const MemoryUseOrDef *Start, const MemoryUseOrDef *End) { if (isa(End)) { // For MemoryUses, getClobberingMemoryAccess may skip non-clobbering writes. // Manually check read accesses between Start and End, if they are in the // same block, for clobbers. Otherwise assume Loc is clobbered. return Start->getBlock() != End->getBlock() || any_of( make_range(std::next(Start->getIterator()), End->getIterator()), [&AA, Loc](const MemoryAccess &Acc) { if (isa(&Acc)) return false; Instruction *AccInst = cast(&Acc)->getMemoryInst(); return isModSet(AA.getModRefInfo(AccInst, Loc)); }); } // TODO: Only walk until we hit Start. MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( End->getDefiningAccess(), Loc, AA); return !MSSA->dominates(Clobber, Start); } /// When scanning forward over instructions, we look for some other patterns to /// fold away. In particular, this looks for stores to neighboring locations of /// memory. If it sees enough consecutive ones, it attempts to merge them /// together into a memcpy/memset. Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst, Value *StartPtr, Value *ByteVal) { const DataLayout &DL = StartInst->getModule()->getDataLayout(); // We can't track scalable types if (auto *SI = dyn_cast(StartInst)) if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable()) return nullptr; // Okay, so we now have a single store that can be splatable. Scan to find // all subsequent stores of the same value to offset from the same pointer. // Join these together into ranges, so we can decide whether contiguous blocks // are stored. MemsetRanges Ranges(DL); BasicBlock::iterator BI(StartInst); // Keeps track of the last memory use or def before the insertion point for // the new memset. The new MemoryDef for the inserted memsets will be inserted // after MemInsertPoint. It points to either LastMemDef or to the last user // before the insertion point of the memset, if there are any such users. MemoryUseOrDef *MemInsertPoint = nullptr; // Keeps track of the last MemoryDef between StartInst and the insertion point // for the new memset. This will become the defining access of the inserted // memsets. MemoryDef *LastMemDef = nullptr; for (++BI; !BI->isTerminator(); ++BI) { auto *CurrentAcc = cast_or_null( MSSAU->getMemorySSA()->getMemoryAccess(&*BI)); if (CurrentAcc) { MemInsertPoint = CurrentAcc; if (auto *CurrentDef = dyn_cast(CurrentAcc)) LastMemDef = CurrentDef; } // Calls that only access inaccessible memory do not block merging // accessible stores. if (auto *CB = dyn_cast(BI)) { if (CB->onlyAccessesInaccessibleMemory()) continue; } if (!isa(BI) && !isa(BI)) { // If the instruction is readnone, ignore it, otherwise bail out. We // don't even allow readonly here because we don't want something like: // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) break; continue; } if (auto *NextStore = dyn_cast(BI)) { // If this is a store, see if we can merge it in. if (!NextStore->isSimple()) break; Value *StoredVal = NextStore->getValueOperand(); // Don't convert stores of non-integral pointer types to memsets (which // stores integers). if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) break; // We can't track ranges involving scalable types. if (DL.getTypeStoreSize(StoredVal->getType()).isScalable()) break; // Check to see if this stored value is of the same byte-splattable value. Value *StoredByte = isBytewiseValue(StoredVal, DL); if (isa(ByteVal) && StoredByte) ByteVal = StoredByte; if (ByteVal != StoredByte) break; // Check to see if this store is to a constant offset from the start ptr. std::optional Offset = isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL); if (!Offset) break; Ranges.addStore(*Offset, NextStore); } else { auto *MSI = cast(BI); if (MSI->isVolatile() || ByteVal != MSI->getValue() || !isa(MSI->getLength())) break; // Check to see if this store is to a constant offset from the start ptr. std::optional Offset = isPointerOffset(StartPtr, MSI->getDest(), DL); if (!Offset) break; Ranges.addMemSet(*Offset, MSI); } } // If we have no ranges, then we just had a single store with nothing that // could be merged in. This is a very common case of course. if (Ranges.empty()) return nullptr; // If we had at least one store that could be merged in, add the starting // store as well. We try to avoid this unless there is at least something // interesting as a small compile-time optimization. Ranges.addInst(0, StartInst); // If we create any memsets, we put it right before the first instruction that // isn't part of the memset block. This ensure that the memset is dominated // by any addressing instruction needed by the start of the block. IRBuilder<> Builder(&*BI); // Now that we have full information about ranges, loop over the ranges and // emit memset's for anything big enough to be worthwhile. Instruction *AMemSet = nullptr; for (const MemsetRange &Range : Ranges) { if (Range.TheStores.size() == 1) continue; // If it is profitable to lower this range to memset, do so now. if (!Range.isProfitableToUseMemset(DL)) continue; // Otherwise, we do want to transform this! Create a new memset. // Get the starting pointer of the block. StartPtr = Range.StartPtr; AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start, Range.Alignment); AMemSet->mergeDIAssignID(Range.TheStores); LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI : Range.TheStores) dbgs() << *SI << '\n'; dbgs() << "With: " << *AMemSet << '\n'); if (!Range.TheStores.empty()) AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); assert(LastMemDef && MemInsertPoint && "Both LastMemDef and MemInsertPoint need to be set"); auto *NewDef = cast(MemInsertPoint->getMemoryInst() == &*BI ? MSSAU->createMemoryAccessBefore( AMemSet, LastMemDef, MemInsertPoint) : MSSAU->createMemoryAccessAfter( AMemSet, LastMemDef, MemInsertPoint)); MSSAU->insertDef(NewDef, /*RenameUses=*/true); LastMemDef = NewDef; MemInsertPoint = NewDef; // Zap all the stores. for (Instruction *SI : Range.TheStores) eraseInstruction(SI); ++NumMemSetInfer; } return AMemSet; } // This method try to lift a store instruction before position P. // It will lift the store and its argument + that anything that // may alias with these. // The method returns true if it was successful. bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) { // If the store alias this position, early bail out. MemoryLocation StoreLoc = MemoryLocation::get(SI); if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc))) return false; // Keep track of the arguments of all instruction we plan to lift // so we can make sure to lift them as well if appropriate. DenseSet Args; auto AddArg = [&](Value *Arg) { auto *I = dyn_cast(Arg); if (I && I->getParent() == SI->getParent()) { // Cannot hoist user of P above P if (I == P) return false; Args.insert(I); } return true; }; if (!AddArg(SI->getPointerOperand())) return false; // Instruction to lift before P. SmallVector ToLift{SI}; // Memory locations of lifted instructions. SmallVector MemLocs{StoreLoc}; // Lifted calls. SmallVector Calls; const MemoryLocation LoadLoc = MemoryLocation::get(LI); for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) { auto *C = &*I; // Make sure hoisting does not perform a store that was not guaranteed to // happen. if (!isGuaranteedToTransferExecutionToSuccessor(C)) return false; bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, std::nullopt)); bool NeedLift = false; if (Args.erase(C)) NeedLift = true; else if (MayAlias) { NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) { return isModOrRefSet(AA->getModRefInfo(C, ML)); }); if (!NeedLift) NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) { return isModOrRefSet(AA->getModRefInfo(C, Call)); }); } if (!NeedLift) continue; if (MayAlias) { // Since LI is implicitly moved downwards past the lifted instructions, // none of them may modify its source. if (isModSet(AA->getModRefInfo(C, LoadLoc))) return false; else if (const auto *Call = dyn_cast(C)) { // If we can't lift this before P, it's game over. if (isModOrRefSet(AA->getModRefInfo(P, Call))) return false; Calls.push_back(Call); } else if (isa(C) || isa(C) || isa(C)) { // If we can't lift this before P, it's game over. auto ML = MemoryLocation::get(C); if (isModOrRefSet(AA->getModRefInfo(P, ML))) return false; MemLocs.push_back(ML); } else // We don't know how to lift this instruction. return false; } ToLift.push_back(C); for (Value *Op : C->operands()) if (!AddArg(Op)) return false; } // Find MSSA insertion point. Normally P will always have a corresponding // memory access before which we can insert. However, with non-standard AA // pipelines, there may be a mismatch between AA and MSSA, in which case we // will scan for a memory access before P. In either case, we know for sure // that at least the load will have a memory access. // TODO: Simplify this once P will be determined by MSSA, in which case the // discrepancy can no longer occur. MemoryUseOrDef *MemInsertPoint = nullptr; if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) { MemInsertPoint = cast(--MA->getIterator()); } else { const Instruction *ConstP = P; for (const Instruction &I : make_range(++ConstP->getReverseIterator(), ++LI->getReverseIterator())) { if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) { MemInsertPoint = MA; break; } } } // We made it, we need to lift. for (auto *I : llvm::reverse(ToLift)) { LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n"); I->moveBefore(P); assert(MemInsertPoint && "Must have found insert point"); if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) { MSSAU->moveAfter(MA, MemInsertPoint); MemInsertPoint = MA; } } return true; } bool MemCpyOptPass::processStoreOfLoad(StoreInst *SI, LoadInst *LI, const DataLayout &DL, BasicBlock::iterator &BBI) { if (!LI->isSimple() || !LI->hasOneUse() || LI->getParent() != SI->getParent()) return false; auto *T = LI->getType(); // Don't introduce calls to memcpy/memmove intrinsics out of thin air if // the corresponding libcalls are not available. // TODO: We should really distinguish between libcall availability and // our ability to introduce intrinsics. if (T->isAggregateType() && (EnableMemCpyOptWithoutLibcalls || (TLI->has(LibFunc_memcpy) && TLI->has(LibFunc_memmove)))) { MemoryLocation LoadLoc = MemoryLocation::get(LI); // We use alias analysis to check if an instruction may store to // the memory we load from in between the load and the store. If // such an instruction is found, we try to promote there instead // of at the store position. // TODO: Can use MSSA for this. Instruction *P = SI; for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) { if (isModSet(AA->getModRefInfo(&I, LoadLoc))) { P = &I; break; } } // We found an instruction that may write to the loaded memory. // We can try to promote at this position instead of the store // position if nothing aliases the store memory after this and the store // destination is not in the range. if (P && P != SI) { if (!moveUp(SI, P, LI)) P = nullptr; } // If a valid insertion position is found, then we can promote // the load/store pair to a memcpy. if (P) { // If we load from memory that may alias the memory we store to, // memmove must be used to preserve semantic. If not, memcpy can // be used. Also, if we load from constant memory, memcpy can be used // as the constant memory won't be modified. bool UseMemMove = false; if (isModSet(AA->getModRefInfo(SI, LoadLoc))) UseMemMove = true; uint64_t Size = DL.getTypeStoreSize(T); IRBuilder<> Builder(P); Instruction *M; if (UseMemMove) M = Builder.CreateMemMove( SI->getPointerOperand(), SI->getAlign(), LI->getPointerOperand(), LI->getAlign(), Size); else M = Builder.CreateMemCpy( SI->getPointerOperand(), SI->getAlign(), LI->getPointerOperand(), LI->getAlign(), Size); M->copyMetadata(*SI, LLVMContext::MD_DIAssignID); LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => " << *M << "\n"); auto *LastDef = cast(MSSAU->getMemorySSA()->getMemoryAccess(SI)); auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef); MSSAU->insertDef(cast(NewAccess), /*RenameUses=*/true); eraseInstruction(SI); eraseInstruction(LI); ++NumMemCpyInstr; // Make sure we do not invalidate the iterator. BBI = M->getIterator(); return true; } } // Detect cases where we're performing call slot forwarding, but // happen to be using a load-store pair to implement it, rather than // a memcpy. BatchAAResults BAA(*AA); auto GetCall = [&]() -> CallInst * { // We defer this expensive clobber walk until the cheap checks // have been done on the source inside performCallSlotOptzn. if (auto *LoadClobber = dyn_cast( MSSA->getWalker()->getClobberingMemoryAccess(LI, BAA))) return dyn_cast_or_null(LoadClobber->getMemoryInst()); return nullptr; }; bool Changed = performCallSlotOptzn( LI, SI, SI->getPointerOperand()->stripPointerCasts(), LI->getPointerOperand()->stripPointerCasts(), DL.getTypeStoreSize(SI->getOperand(0)->getType()), std::min(SI->getAlign(), LI->getAlign()), BAA, GetCall); if (Changed) { eraseInstruction(SI); eraseInstruction(LI); ++NumMemCpyInstr; return true; } return false; } bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { if (!SI->isSimple()) return false; // Avoid merging nontemporal stores since the resulting // memcpy/memset would not be able to preserve the nontemporal hint. // In theory we could teach how to propagate the !nontemporal metadata to // memset calls. However, that change would force the backend to // conservatively expand !nontemporal memset calls back to sequences of // store instructions (effectively undoing the merging). if (SI->getMetadata(LLVMContext::MD_nontemporal)) return false; const DataLayout &DL = SI->getModule()->getDataLayout(); Value *StoredVal = SI->getValueOperand(); // Not all the transforms below are correct for non-integral pointers, bail // until we've audited the individual pieces. if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) return false; // Load to store forwarding can be interpreted as memcpy. if (auto *LI = dyn_cast(StoredVal)) return processStoreOfLoad(SI, LI, DL, BBI); // The following code creates memset intrinsics out of thin air. Don't do // this if the corresponding libfunc is not available. // TODO: We should really distinguish between libcall availability and // our ability to introduce intrinsics. if (!(TLI->has(LibFunc_memset) || EnableMemCpyOptWithoutLibcalls)) return false; // There are two cases that are interesting for this code to handle: memcpy // and memset. Right now we only handle memset. // Ensure that the value being stored is something that can be memset'able a // byte at a time like "0" or "-1" or any width, as well as things like // 0xA0A0A0A0 and 0.0. auto *V = SI->getOperand(0); if (Value *ByteVal = isBytewiseValue(V, DL)) { if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), ByteVal)) { BBI = I->getIterator(); // Don't invalidate iterator. return true; } // If we have an aggregate, we try to promote it to memset regardless // of opportunity for merging as it can expose optimization opportunities // in subsequent passes. auto *T = V->getType(); if (T->isAggregateType()) { uint64_t Size = DL.getTypeStoreSize(T); IRBuilder<> Builder(SI); auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, SI->getAlign()); M->copyMetadata(*SI, LLVMContext::MD_DIAssignID); LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n"); // The newly inserted memset is immediately overwritten by the original // store, so we do not need to rename uses. auto *StoreDef = cast(MSSA->getMemoryAccess(SI)); auto *NewAccess = MSSAU->createMemoryAccessBefore( M, StoreDef->getDefiningAccess(), StoreDef); MSSAU->insertDef(cast(NewAccess), /*RenameUses=*/false); eraseInstruction(SI); NumMemSetInfer++; // Make sure we do not invalidate the iterator. BBI = M->getIterator(); return true; } } return false; } bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { // See if there is another memset or store neighboring this memset which // allows us to widen out the memset to do a single larger store. if (isa(MSI->getLength()) && !MSI->isVolatile()) if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), MSI->getValue())) { BBI = I->getIterator(); // Don't invalidate iterator. return true; } return false; } /// Takes a memcpy and a call that it depends on, /// and checks for the possibility of a call slot optimization by having /// the call write its result directly into the destination of the memcpy. bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad, Instruction *cpyStore, Value *cpyDest, Value *cpySrc, TypeSize cpySize, Align cpyDestAlign, BatchAAResults &BAA, std::function GetC) { // The general transformation to keep in mind is // // call @func(..., src, ...) // memcpy(dest, src, ...) // // -> // // memcpy(dest, src, ...) // call @func(..., dest, ...) // // Since moving the memcpy is technically awkward, we additionally check that // src only holds uninitialized values at the moment of the call, meaning that // the memcpy can be discarded rather than moved. // We can't optimize scalable types. if (cpySize.isScalable()) return false; // Require that src be an alloca. This simplifies the reasoning considerably. auto *srcAlloca = dyn_cast(cpySrc); if (!srcAlloca) return false; ConstantInt *srcArraySize = dyn_cast(srcAlloca->getArraySize()); if (!srcArraySize) return false; const DataLayout &DL = cpyLoad->getModule()->getDataLayout(); uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * srcArraySize->getZExtValue(); if (cpySize < srcSize) return false; CallInst *C = GetC(); if (!C) return false; // Lifetime marks shouldn't be operated on. if (Function *F = C->getCalledFunction()) if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start) return false; if (C->getParent() != cpyStore->getParent()) { LLVM_DEBUG(dbgs() << "Call Slot: block local restriction\n"); return false; } MemoryLocation DestLoc = isa(cpyStore) ? MemoryLocation::get(cpyStore) : MemoryLocation::getForDest(cast(cpyStore)); // Check that nothing touches the dest of the copy between // the call and the store/memcpy. Instruction *SkippedLifetimeStart = nullptr; if (accessedBetween(BAA, DestLoc, MSSA->getMemoryAccess(C), MSSA->getMemoryAccess(cpyStore), &SkippedLifetimeStart)) { LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer modified after call\n"); return false; } // If we need to move a lifetime.start above the call, make sure that we can // actually do so. If the argument is bitcasted for example, we would have to // move the bitcast as well, which we don't handle. if (SkippedLifetimeStart) { auto *LifetimeArg = dyn_cast(SkippedLifetimeStart->getOperand(1)); if (LifetimeArg && LifetimeArg->getParent() == C->getParent() && C->comesBefore(LifetimeArg)) return false; } // Check that accessing the first srcSize bytes of dest will not cause a // trap. Otherwise the transform is invalid since it might cause a trap // to occur earlier than it otherwise would. if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize), DL, C, AC, DT)) { LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer not dereferenceable\n"); return false; } // Make sure that nothing can observe cpyDest being written early. There are // a number of cases to consider: // 1. cpyDest cannot be accessed between C and cpyStore as a precondition of // the transform. // 2. C itself may not access cpyDest (prior to the transform). This is // checked further below. // 3. If cpyDest is accessible to the caller of this function (potentially // captured and not based on an alloca), we need to ensure that we cannot // unwind between C and cpyStore. This is checked here. // 4. If cpyDest is potentially captured, there may be accesses to it from // another thread. In this case, we need to check that cpyStore is // guaranteed to be executed if C is. As it is a non-atomic access, it // renders accesses from other threads undefined. // TODO: This is currently not checked. if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore)) { LLVM_DEBUG(dbgs() << "Call Slot: Dest may be visible through unwinding\n"); return false; } // Check that dest points to memory that is at least as aligned as src. Align srcAlign = srcAlloca->getAlign(); bool isDestSufficientlyAligned = srcAlign <= cpyDestAlign; // If dest is not aligned enough and we can't increase its alignment then // bail out. if (!isDestSufficientlyAligned && !isa(cpyDest)) { LLVM_DEBUG(dbgs() << "Call Slot: Dest not sufficiently aligned\n"); return false; } // Check that src is not accessed except via the call and the memcpy. This // guarantees that it holds only undefined values when passed in (so the final // memcpy can be dropped), that it is not read or written between the call and // the memcpy, and that writing beyond the end of it is undefined. SmallVector srcUseList(srcAlloca->users()); while (!srcUseList.empty()) { User *U = srcUseList.pop_back_val(); if (isa(U) || isa(U)) { append_range(srcUseList, U->users()); continue; } if (const auto *G = dyn_cast(U)) { if (!G->hasAllZeroIndices()) return false; append_range(srcUseList, U->users()); continue; } if (const auto *IT = dyn_cast(U)) if (IT->isLifetimeStartOrEnd()) continue; if (U != C && U != cpyLoad) return false; } // Check whether src is captured by the called function, in which case there // may be further indirect uses of src. bool SrcIsCaptured = any_of(C->args(), [&](Use &U) { return U->stripPointerCasts() == cpySrc && !C->doesNotCapture(C->getArgOperandNo(&U)); }); // If src is captured, then check whether there are any potential uses of // src through the captured pointer before the lifetime of src ends, either // due to a lifetime.end or a return from the function. if (SrcIsCaptured) { // Check that dest is not captured before/at the call. We have already // checked that src is not captured before it. If either had been captured, // then the call might be comparing the argument against the captured dest // or src pointer. Value *DestObj = getUnderlyingObject(cpyDest); if (!isIdentifiedFunctionLocal(DestObj) || PointerMayBeCapturedBefore(DestObj, /* ReturnCaptures */ true, /* StoreCaptures */ true, C, DT, /* IncludeI */ true)) return false; MemoryLocation SrcLoc = MemoryLocation(srcAlloca, LocationSize::precise(srcSize)); for (Instruction &I : make_range(++C->getIterator(), C->getParent()->end())) { // Lifetime of srcAlloca ends at lifetime.end. if (auto *II = dyn_cast(&I)) { if (II->getIntrinsicID() == Intrinsic::lifetime_end && II->getArgOperand(1)->stripPointerCasts() == srcAlloca && cast(II->getArgOperand(0))->uge(srcSize)) break; } // Lifetime of srcAlloca ends at return. if (isa(&I)) break; // Ignore the direct read of src in the load. if (&I == cpyLoad) continue; // Check whether this instruction may mod/ref src through the captured // pointer (we have already any direct mod/refs in the loop above). // Also bail if we hit a terminator, as we don't want to scan into other // blocks. if (isModOrRefSet(BAA.getModRefInfo(&I, SrcLoc)) || I.isTerminator()) return false; } } // Since we're changing the parameter to the callsite, we need to make sure // that what would be the new parameter dominates the callsite. if (!DT->dominates(cpyDest, C)) { // Support moving a constant index GEP before the call. auto *GEP = dyn_cast(cpyDest); if (GEP && GEP->hasAllConstantIndices() && DT->dominates(GEP->getPointerOperand(), C)) GEP->moveBefore(C); else return false; } // In addition to knowing that the call does not access src in some // unexpected manner, for example via a global, which we deduce from // the use analysis, we also need to know that it does not sneakily // access dest. We rely on AA to figure this out for us. MemoryLocation DestWithSrcSize(cpyDest, LocationSize::precise(srcSize)); ModRefInfo MR = BAA.getModRefInfo(C, DestWithSrcSize); // If necessary, perform additional analysis. if (isModOrRefSet(MR)) MR = BAA.callCapturesBefore(C, DestWithSrcSize, DT); if (isModOrRefSet(MR)) return false; // We can't create address space casts here because we don't know if they're // safe for the target. if (cpySrc->getType()->getPointerAddressSpace() != cpyDest->getType()->getPointerAddressSpace()) return false; for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc && cpySrc->getType()->getPointerAddressSpace() != C->getArgOperand(ArgI)->getType()->getPointerAddressSpace()) return false; // All the checks have passed, so do the transformation. bool changedArgument = false; for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) { Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), cpyDest->getName(), C); changedArgument = true; if (C->getArgOperand(ArgI)->getType() == Dest->getType()) C->setArgOperand(ArgI, Dest); else C->setArgOperand(ArgI, CastInst::CreatePointerCast( Dest, C->getArgOperand(ArgI)->getType(), Dest->getName(), C)); } if (!changedArgument) return false; // If the destination wasn't sufficiently aligned then increase its alignment. if (!isDestSufficientlyAligned) { assert(isa(cpyDest) && "Can only increase alloca alignment!"); cast(cpyDest)->setAlignment(srcAlign); } if (SkippedLifetimeStart) { SkippedLifetimeStart->moveBefore(C); MSSAU->moveBefore(MSSA->getMemoryAccess(SkippedLifetimeStart), MSSA->getMemoryAccess(C)); } // Update AA metadata // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be // handled here, but combineMetadata doesn't support them yet unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, LLVMContext::MD_noalias, LLVMContext::MD_invariant_group, LLVMContext::MD_access_group}; combineMetadata(C, cpyLoad, KnownIDs, true); if (cpyLoad != cpyStore) combineMetadata(C, cpyStore, KnownIDs, true); ++NumCallSlot; return true; } /// We've found that the (upward scanning) memory dependence of memcpy 'M' is /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep, BatchAAResults &BAA) { // We can only transforms memcpy's where the dest of one is the source of the // other. if (M->getSource() != MDep->getDest() || MDep->isVolatile()) return false; // If dep instruction is reading from our current input, then it is a noop // transfer and substituting the input won't change this instruction. Just // ignore the input and let someone else zap MDep. This handles cases like: // memcpy(a <- a) // memcpy(b <- a) if (M->getSource() == MDep->getSource()) return false; // Second, the length of the memcpy's must be the same, or the preceding one // must be larger than the following one. if (MDep->getLength() != M->getLength()) { auto *MDepLen = dyn_cast(MDep->getLength()); auto *MLen = dyn_cast(M->getLength()); if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) return false; } // Verify that the copied-from memory doesn't change in between the two // transfers. For example, in: // memcpy(a <- b) // *b = 42; // memcpy(c <- a) // It would be invalid to transform the second memcpy into memcpy(c <- b). // // TODO: If the code between M and MDep is transparent to the destination "c", // then we could still perform the xform by moving M up to the first memcpy. // TODO: It would be sufficient to check the MDep source up to the memcpy // size of M, rather than MDep. if (writtenBetween(MSSA, BAA, MemoryLocation::getForSource(MDep), MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M))) return false; // If the dest of the second might alias the source of the first, then the // source and dest might overlap. In addition, if the source of the first // points to constant memory, they won't overlap by definition. Otherwise, we // still want to eliminate the intermediate value, but we have to generate a // memmove instead of memcpy. bool UseMemMove = false; if (isModSet(BAA.getModRefInfo(M, MemoryLocation::getForSource(MDep)))) UseMemMove = true; // If all checks passed, then we can transform M. LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n" << *MDep << '\n' << *M << '\n'); // TODO: Is this worth it if we're creating a less aligned memcpy? For // example we could be moving from movaps -> movq on x86. IRBuilder<> Builder(M); Instruction *NewM; if (UseMemMove) NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(), MDep->getRawSource(), MDep->getSourceAlign(), M->getLength(), M->isVolatile()); else if (isa(M)) { // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is // never allowed since that would allow the latter to be lowered as a call // to an external function. NewM = Builder.CreateMemCpyInline( M->getRawDest(), M->getDestAlign(), MDep->getRawSource(), MDep->getSourceAlign(), M->getLength(), M->isVolatile()); } else NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(), MDep->getRawSource(), MDep->getSourceAlign(), M->getLength(), M->isVolatile()); NewM->copyMetadata(*M, LLVMContext::MD_DIAssignID); assert(isa(MSSAU->getMemorySSA()->getMemoryAccess(M))); auto *LastDef = cast(MSSAU->getMemorySSA()->getMemoryAccess(M)); auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); MSSAU->insertDef(cast(NewAccess), /*RenameUses=*/true); // Remove the instruction we're replacing. eraseInstruction(M); ++NumMemCpyInstr; return true; } /// We've found that the (upward scanning) memory dependence of \p MemCpy is /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that /// weren't copied over by \p MemCpy. /// /// In other words, transform: /// \code /// memset(dst, c, dst_size); /// memcpy(dst, src, src_size); /// \endcode /// into: /// \code /// memcpy(dst, src, src_size); /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); /// \endcode bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy, MemSetInst *MemSet, BatchAAResults &BAA) { // We can only transform memset/memcpy with the same destination. if (!BAA.isMustAlias(MemSet->getDest(), MemCpy->getDest())) return false; // Check that src and dst of the memcpy aren't the same. While memcpy // operands cannot partially overlap, exact equality is allowed. if (isModSet(BAA.getModRefInfo(MemCpy, MemoryLocation::getForSource(MemCpy)))) return false; // We know that dst up to src_size is not written. We now need to make sure // that dst up to dst_size is not accessed. (If we did not move the memset, // checking for reads would be sufficient.) if (accessedBetween(BAA, MemoryLocation::getForDest(MemSet), MSSA->getMemoryAccess(MemSet), MSSA->getMemoryAccess(MemCpy))) return false; // Use the same i8* dest as the memcpy, killing the memset dest if different. Value *Dest = MemCpy->getRawDest(); Value *DestSize = MemSet->getLength(); Value *SrcSize = MemCpy->getLength(); if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy)) return false; // If the sizes are the same, simply drop the memset instead of generating // a replacement with zero size. if (DestSize == SrcSize) { eraseInstruction(MemSet); return true; } // By default, create an unaligned memset. Align Alignment = Align(1); // If Dest is aligned, and SrcSize is constant, use the minimum alignment // of the sum. const Align DestAlign = std::max(MemSet->getDestAlign().valueOrOne(), MemCpy->getDestAlign().valueOrOne()); if (DestAlign > 1) if (auto *SrcSizeC = dyn_cast(SrcSize)) Alignment = commonAlignment(DestAlign, SrcSizeC->getZExtValue()); IRBuilder<> Builder(MemCpy); // If the sizes have different types, zext the smaller one. if (DestSize->getType() != SrcSize->getType()) { if (DestSize->getType()->getIntegerBitWidth() > SrcSize->getType()->getIntegerBitWidth()) SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); else DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); } Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize); Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize); Value *MemsetLen = Builder.CreateSelect( Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff); unsigned DestAS = Dest->getType()->getPointerAddressSpace(); Instruction *NewMemSet = Builder.CreateMemSet( Builder.CreateGEP( Builder.getInt8Ty(), Builder.CreatePointerCast(Dest, Builder.getInt8PtrTy(DestAS)), SrcSize), MemSet->getOperand(1), MemsetLen, Alignment); assert(isa(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) && "MemCpy must be a MemoryDef"); // The new memset is inserted after the memcpy, but it is known that its // defining access is the memset about to be removed which immediately // precedes the memcpy. auto *LastDef = cast(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); auto *NewAccess = MSSAU->createMemoryAccessBefore( NewMemSet, LastDef->getDefiningAccess(), LastDef); MSSAU->insertDef(cast(NewAccess), /*RenameUses=*/true); eraseInstruction(MemSet); return true; } /// Determine whether the instruction has undefined content for the given Size, /// either because it was freshly alloca'd or started its lifetime. static bool hasUndefContents(MemorySSA *MSSA, BatchAAResults &AA, Value *V, MemoryDef *Def, Value *Size) { if (MSSA->isLiveOnEntryDef(Def)) return isa(getUnderlyingObject(V)); if (auto *II = dyn_cast_or_null(Def->getMemoryInst())) { if (II->getIntrinsicID() == Intrinsic::lifetime_start) { auto *LTSize = cast(II->getArgOperand(0)); if (auto *CSize = dyn_cast(Size)) { if (AA.isMustAlias(V, II->getArgOperand(1)) && LTSize->getZExtValue() >= CSize->getZExtValue()) return true; } // If the lifetime.start covers a whole alloca (as it almost always // does) and we're querying a pointer based on that alloca, then we know // the memory is definitely undef, regardless of how exactly we alias. // The size also doesn't matter, as an out-of-bounds access would be UB. if (auto *Alloca = dyn_cast(getUnderlyingObject(V))) { if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) { const DataLayout &DL = Alloca->getModule()->getDataLayout(); if (std::optional AllocaSize = Alloca->getAllocationSize(DL)) if (*AllocaSize == LTSize->getValue()) return true; } } } } return false; } /// Transform memcpy to memset when its source was just memset. /// In other words, turn: /// \code /// memset(dst1, c, dst1_size); /// memcpy(dst2, dst1, dst2_size); /// \endcode /// into: /// \code /// memset(dst1, c, dst1_size); /// memset(dst2, c, dst2_size); /// \endcode /// When dst2_size <= dst1_size. bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, MemSetInst *MemSet, BatchAAResults &BAA) { // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and // memcpying from the same address. Otherwise it is hard to reason about. if (!BAA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource())) return false; Value *MemSetSize = MemSet->getLength(); Value *CopySize = MemCpy->getLength(); if (MemSetSize != CopySize) { // Make sure the memcpy doesn't read any more than what the memset wrote. // Don't worry about sizes larger than i64. // A known memset size is required. auto *CMemSetSize = dyn_cast(MemSetSize); if (!CMemSetSize) return false; // A known memcpy size is also required. auto *CCopySize = dyn_cast(CopySize); if (!CCopySize) return false; if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) { // If the memcpy is larger than the memset, but the memory was undef prior // to the memset, we can just ignore the tail. Technically we're only // interested in the bytes from MemSetSize..CopySize here, but as we can't // easily represent this location, we use the full 0..CopySize range. MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy); bool CanReduceSize = false; MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet); MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( MemSetAccess->getDefiningAccess(), MemCpyLoc, BAA); if (auto *MD = dyn_cast(Clobber)) if (hasUndefContents(MSSA, BAA, MemCpy->getSource(), MD, CopySize)) CanReduceSize = true; if (!CanReduceSize) return false; CopySize = MemSetSize; } } IRBuilder<> Builder(MemCpy); Instruction *NewM = Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), CopySize, MemCpy->getDestAlign()); auto *LastDef = cast(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); MSSAU->insertDef(cast(NewAccess), /*RenameUses=*/true); return true; } /// Perform simplification of memcpy's. If we have memcpy A /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite /// B to be a memcpy from X to Z (or potentially a memmove, depending on /// circumstances). This allows later passes to remove the first memcpy /// altogether. bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) { // We can only optimize non-volatile memcpy's. if (M->isVolatile()) return false; // If the source and destination of the memcpy are the same, then zap it. if (M->getSource() == M->getDest()) { ++BBI; eraseInstruction(M); return true; } // If copying from a constant, try to turn the memcpy into a memset. if (auto *GV = dyn_cast(M->getSource())) if (GV->isConstant() && GV->hasDefinitiveInitializer()) if (Value *ByteVal = isBytewiseValue(GV->getInitializer(), M->getModule()->getDataLayout())) { IRBuilder<> Builder(M); Instruction *NewM = Builder.CreateMemSet( M->getRawDest(), ByteVal, M->getLength(), M->getDestAlign(), false); auto *LastDef = cast(MSSAU->getMemorySSA()->getMemoryAccess(M)); auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); MSSAU->insertDef(cast(NewAccess), /*RenameUses=*/true); eraseInstruction(M); ++NumCpyToSet; return true; } BatchAAResults BAA(*AA); MemoryUseOrDef *MA = MSSA->getMemoryAccess(M); // FIXME: Not using getClobberingMemoryAccess() here due to PR54682. MemoryAccess *AnyClobber = MA->getDefiningAccess(); MemoryLocation DestLoc = MemoryLocation::getForDest(M); const MemoryAccess *DestClobber = MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc, BAA); // Try to turn a partially redundant memset + memcpy into // memcpy + smaller memset. We don't need the memcpy size for this. // The memcpy most post-dom the memset, so limit this to the same basic // block. A non-local generalization is likely not worthwhile. if (auto *MD = dyn_cast(DestClobber)) if (auto *MDep = dyn_cast_or_null(MD->getMemoryInst())) if (DestClobber->getBlock() == M->getParent()) if (processMemSetMemCpyDependence(M, MDep, BAA)) return true; MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess( AnyClobber, MemoryLocation::getForSource(M), BAA); // There are four possible optimizations we can do for memcpy: // a) memcpy-memcpy xform which exposes redundance for DSE. // b) call-memcpy xform for return slot optimization. // c) memcpy from freshly alloca'd space or space that has just started // its lifetime copies undefined data, and we can therefore eliminate // the memcpy in favor of the data that was already at the destination. // d) memcpy from a just-memset'd source can be turned into memset. if (auto *MD = dyn_cast(SrcClobber)) { if (Instruction *MI = MD->getMemoryInst()) { if (auto *CopySize = dyn_cast(M->getLength())) { if (auto *C = dyn_cast(MI)) { if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(), TypeSize::getFixed(CopySize->getZExtValue()), M->getDestAlign().valueOrOne(), BAA, [C]() -> CallInst * { return C; })) { LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n" << " call: " << *C << "\n" << " memcpy: " << *M << "\n"); eraseInstruction(M); ++NumMemCpyInstr; return true; } } } if (auto *MDep = dyn_cast(MI)) return processMemCpyMemCpyDependence(M, MDep, BAA); if (auto *MDep = dyn_cast(MI)) { if (performMemCpyToMemSetOptzn(M, MDep, BAA)) { LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n"); eraseInstruction(M); ++NumCpyToSet; return true; } } } if (hasUndefContents(MSSA, BAA, M->getSource(), MD, M->getLength())) { LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n"); eraseInstruction(M); ++NumMemCpyInstr; return true; } } return false; } /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed /// not to alias. bool MemCpyOptPass::processMemMove(MemMoveInst *M) { // See if the source could be modified by this memmove potentially. if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(M)))) return false; LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M << "\n"); // If not, then we know we can transform this. Type *ArgTys[3] = { M->getRawDest()->getType(), M->getRawSource()->getType(), M->getLength()->getType() }; M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(), Intrinsic::memcpy, ArgTys)); // For MemorySSA nothing really changes (except that memcpy may imply stricter // aliasing guarantees). ++NumMoveToCpy; return true; } /// This is called on every byval argument in call sites. bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) { const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout(); // Find out what feeds this byval argument. Value *ByValArg = CB.getArgOperand(ArgNo); Type *ByValTy = CB.getParamByValType(ArgNo); TypeSize ByValSize = DL.getTypeAllocSize(ByValTy); MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize)); MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB); if (!CallAccess) return false; MemCpyInst *MDep = nullptr; BatchAAResults BAA(*AA); MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( CallAccess->getDefiningAccess(), Loc, BAA); if (auto *MD = dyn_cast(Clobber)) MDep = dyn_cast_or_null(MD->getMemoryInst()); // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by // a memcpy, see if we can byval from the source of the memcpy instead of the // result. if (!MDep || MDep->isVolatile() || ByValArg->stripPointerCasts() != MDep->getDest()) return false; // The length of the memcpy must be larger or equal to the size of the byval. auto *C1 = dyn_cast(MDep->getLength()); if (!C1 || !TypeSize::isKnownGE( TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize)) return false; // Get the alignment of the byval. If the call doesn't specify the alignment, // then it is some target specific value that we can't know. MaybeAlign ByValAlign = CB.getParamAlign(ArgNo); if (!ByValAlign) return false; // If it is greater than the memcpy, then we check to see if we can force the // source of the memcpy to the alignment we need. If we fail, we bail out. MaybeAlign MemDepAlign = MDep->getSourceAlign(); if ((!MemDepAlign || *MemDepAlign < *ByValAlign) && getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC, DT) < *ByValAlign) return false; // The address space of the memcpy source must match the byval argument if (MDep->getSource()->getType()->getPointerAddressSpace() != ByValArg->getType()->getPointerAddressSpace()) return false; // Verify that the copied-from memory doesn't change in between the memcpy and // the byval call. // memcpy(a <- b) // *b = 42; // foo(*a) // It would be invalid to transform the second memcpy into foo(*b). if (writtenBetween(MSSA, BAA, MemoryLocation::getForSource(MDep), MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB))) return false; Value *TmpCast = MDep->getSource(); if (MDep->getSource()->getType() != ByValArg->getType()) { BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), "tmpcast", &CB); // Set the tmpcast's DebugLoc to MDep's TmpBitCast->setDebugLoc(MDep->getDebugLoc()); TmpCast = TmpBitCast; } LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n" << " " << *MDep << "\n" << " " << CB << "\n"); // Otherwise we're good! Update the byval argument. CB.setArgOperand(ArgNo, TmpCast); ++NumMemCpyInstr; return true; } /// Executes one iteration of MemCpyOptPass. bool MemCpyOptPass::iterateOnFunction(Function &F) { bool MadeChange = false; // Walk all instruction in the function. for (BasicBlock &BB : F) { // Skip unreachable blocks. For example processStore assumes that an // instruction in a BB can't be dominated by a later instruction in the // same BB (which is a scenario that can happen for an unreachable BB that // has itself as a predecessor). if (!DT->isReachableFromEntry(&BB)) continue; for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { // Avoid invalidating the iterator. Instruction *I = &*BI++; bool RepeatInstruction = false; if (auto *SI = dyn_cast(I)) MadeChange |= processStore(SI, BI); else if (auto *M = dyn_cast(I)) RepeatInstruction = processMemSet(M, BI); else if (auto *M = dyn_cast(I)) RepeatInstruction = processMemCpy(M, BI); else if (auto *M = dyn_cast(I)) RepeatInstruction = processMemMove(M); else if (auto *CB = dyn_cast(I)) { for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) if (CB->isByValArgument(i)) MadeChange |= processByValArgument(*CB, i); } // Reprocess the instruction if desired. if (RepeatInstruction) { if (BI != BB.begin()) --BI; MadeChange = true; } } } return MadeChange; } PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) { auto &TLI = AM.getResult(F); auto *AA = &AM.getResult(F); auto *AC = &AM.getResult(F); auto *DT = &AM.getResult(F); auto *MSSA = &AM.getResult(F); bool MadeChange = runImpl(F, &TLI, AA, AC, DT, &MSSA->getMSSA()); if (!MadeChange) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserveSet(); PA.preserve(); return PA; } bool MemCpyOptPass::runImpl(Function &F, TargetLibraryInfo *TLI_, AliasAnalysis *AA_, AssumptionCache *AC_, DominatorTree *DT_, MemorySSA *MSSA_) { bool MadeChange = false; TLI = TLI_; AA = AA_; AC = AC_; DT = DT_; MSSA = MSSA_; MemorySSAUpdater MSSAU_(MSSA_); MSSAU = &MSSAU_; while (true) { if (!iterateOnFunction(F)) break; MadeChange = true; } if (VerifyMemorySSA) MSSA_->verifyMemorySSA(); return MadeChange; } /// This is the main transformation entry point for a function. bool MemCpyOptLegacyPass::runOnFunction(Function &F) { if (skipFunction(F)) return false; auto *TLI = &getAnalysis().getTLI(F); auto *AA = &getAnalysis().getAAResults(); auto *AC = &getAnalysis().getAssumptionCache(F); auto *DT = &getAnalysis().getDomTree(); auto *MSSA = &getAnalysis().getMSSA(); return Impl.runImpl(F, TLI, AA, AC, DT, MSSA); }