//===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Eliminate conditions based on constraints collected from dominating // conditions. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/ConstraintElimination.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/ConstraintSystem.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/DebugCounter.h" #include "llvm/Support/MathExtras.h" #include #include using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "constraint-elimination" STATISTIC(NumCondsRemoved, "Number of instructions removed"); DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", "Controls which conditions are eliminated"); static cl::opt MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, cl::desc("Maximum number of rows to keep in constraint system")); static int64_t MaxConstraintValue = std::numeric_limits::max(); static int64_t MinSignedConstraintValue = std::numeric_limits::min(); // A helper to multiply 2 signed integers where overflowing is allowed. static int64_t multiplyWithOverflow(int64_t A, int64_t B) { int64_t Result; MulOverflow(A, B, Result); return Result; } // A helper to add 2 signed integers where overflowing is allowed. static int64_t addWithOverflow(int64_t A, int64_t B) { int64_t Result; AddOverflow(A, B, Result); return Result; } namespace { class ConstraintInfo; struct StackEntry { unsigned NumIn; unsigned NumOut; bool IsSigned = false; /// Variables that can be removed from the system once the stack entry gets /// removed. SmallVector ValuesToRelease; StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, SmallVector ValuesToRelease) : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), ValuesToRelease(ValuesToRelease) {} }; /// Struct to express a pre-condition of the form %Op0 Pred %Op1. struct PreconditionTy { CmpInst::Predicate Pred; Value *Op0; Value *Op1; PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) : Pred(Pred), Op0(Op0), Op1(Op1) {} }; struct ConstraintTy { SmallVector Coefficients; SmallVector Preconditions; SmallVector> ExtraInfo; bool IsSigned = false; bool IsEq = false; ConstraintTy() = default; ConstraintTy(SmallVector Coefficients, bool IsSigned) : Coefficients(Coefficients), IsSigned(IsSigned) {} unsigned size() const { return Coefficients.size(); } unsigned empty() const { return Coefficients.empty(); } /// Returns true if all preconditions for this list of constraints are /// satisfied given \p CS and the corresponding \p Value2Index mapping. bool isValid(const ConstraintInfo &Info) const; }; /// Wrapper encapsulating separate constraint systems and corresponding value /// mappings for both unsigned and signed information. Facts are added to and /// conditions are checked against the corresponding system depending on the /// signed-ness of their predicates. While the information is kept separate /// based on signed-ness, certain conditions can be transferred between the two /// systems. class ConstraintInfo { DenseMap UnsignedValue2Index; DenseMap SignedValue2Index; ConstraintSystem UnsignedCS; ConstraintSystem SignedCS; const DataLayout &DL; public: ConstraintInfo(const DataLayout &DL) : DL(DL) {} DenseMap &getValue2Index(bool Signed) { return Signed ? SignedValue2Index : UnsignedValue2Index; } const DenseMap &getValue2Index(bool Signed) const { return Signed ? SignedValue2Index : UnsignedValue2Index; } ConstraintSystem &getCS(bool Signed) { return Signed ? SignedCS : UnsignedCS; } const ConstraintSystem &getCS(bool Signed) const { return Signed ? SignedCS : UnsignedCS; } void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } void popLastNVariables(bool Signed, unsigned N) { getCS(Signed).popLastNVariables(N); } bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, unsigned NumOut, SmallVectorImpl &DFSInStack); /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of /// constraints, using indices from the corresponding constraint system. /// New variables that need to be added to the system are collected in /// \p NewVariables. ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, SmallVectorImpl &NewVariables) const; /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of /// constraints using getConstraint. Returns an empty constraint if the result /// cannot be used to query the existing constraint system, e.g. because it /// would require adding new variables. Also tries to convert signed /// predicates to unsigned ones if possible to allow using the unsigned system /// which increases the effectiveness of the signed <-> unsigned transfer /// logic. ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, Value *Op1) const; /// Try to add information from \p A \p Pred \p B to the unsigned/signed /// system if \p Pred is signed/unsigned. void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, unsigned NumOut, SmallVectorImpl &DFSInStack); }; /// Represents a (Coefficient * Variable) entry after IR decomposition. struct DecompEntry { int64_t Coefficient; Value *Variable; /// True if the variable is known positive in the current constraint. bool IsKnownNonNegative; DecompEntry(int64_t Coefficient, Value *Variable, bool IsKnownNonNegative = false) : Coefficient(Coefficient), Variable(Variable), IsKnownNonNegative(IsKnownNonNegative) {} }; /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. struct Decomposition { int64_t Offset = 0; SmallVector Vars; Decomposition(int64_t Offset) : Offset(Offset) {} Decomposition(Value *V, bool IsKnownNonNegative = false) { Vars.emplace_back(1, V, IsKnownNonNegative); } Decomposition(int64_t Offset, ArrayRef Vars) : Offset(Offset), Vars(Vars) {} void add(int64_t OtherOffset) { Offset = addWithOverflow(Offset, OtherOffset); } void add(const Decomposition &Other) { add(Other.Offset); append_range(Vars, Other.Vars); } void mul(int64_t Factor) { Offset = multiplyWithOverflow(Offset, Factor); for (auto &Var : Vars) Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); } }; } // namespace static Decomposition decompose(Value *V, SmallVectorImpl &Preconditions, bool IsSigned, const DataLayout &DL); static bool canUseSExt(ConstantInt *CI) { const APInt &Val = CI->getValue(); return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); } static Decomposition decomposeGEP(GetElementPtrInst &GEP, SmallVectorImpl &Preconditions, bool IsSigned, const DataLayout &DL) { // Do not reason about pointers where the index size is larger than 64 bits, // as the coefficients used to encode constraints are 64 bit integers. if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) return &GEP; if (!GEP.isInBounds()) return &GEP; assert(!IsSigned && "The logic below only supports decomposition for " "unsinged predicates at the moment."); Type *PtrTy = GEP.getType()->getScalarType(); unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); MapVector VariableOffsets; APInt ConstantOffset(BitWidth, 0); if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) return &GEP; // Handle the (gep (gep ....), C) case by incrementing the constant // coefficient of the inner GEP, if C is a constant. auto *InnerGEP = dyn_cast(GEP.getPointerOperand()); if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) { auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL); Result.add(ConstantOffset.getSExtValue()); if (ConstantOffset.isNegative()) { unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType()); int64_t ConstantOffsetI = ConstantOffset.getSExtValue(); if (ConstantOffsetI % Scale != 0) return &GEP; // Add pre-condition ensuring the GEP is increasing monotonically and // can be de-composed. // Both sides are normalized by being divided by Scale. Preconditions.emplace_back( CmpInst::ICMP_SGE, InnerGEP->getOperand(1), ConstantInt::get(InnerGEP->getOperand(1)->getType(), -1 * (ConstantOffsetI / Scale))); } return Result; } Decomposition Result(ConstantOffset.getSExtValue(), DecompEntry(1, GEP.getPointerOperand())); for (auto [Index, Scale] : VariableOffsets) { auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); IdxResult.mul(Scale.getSExtValue()); Result.add(IdxResult); // If Op0 is signed non-negative, the GEP is increasing monotonically and // can be de-composed. if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, ConstantInt::get(Index->getType(), 0)); } return Result; } // Decomposes \p V into a constant offset + list of pairs { Coefficient, // Variable } where Coefficient * Variable. The sum of the constant offset and // pairs equals \p V. static Decomposition decompose(Value *V, SmallVectorImpl &Preconditions, bool IsSigned, const DataLayout &DL) { auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, bool IsSignedB) { auto ResA = decompose(A, Preconditions, IsSigned, DL); auto ResB = decompose(B, Preconditions, IsSignedB, DL); ResA.add(ResB); return ResA; }; // Decompose \p V used with a signed predicate. if (IsSigned) { if (auto *CI = dyn_cast(V)) { if (canUseSExt(CI)) return CI->getSExtValue(); } Value *Op0; Value *Op1; if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) return MergeResults(Op0, Op1, IsSigned); return V; } if (auto *CI = dyn_cast(V)) { if (CI->uge(MaxConstraintValue)) return V; return int64_t(CI->getZExtValue()); } if (auto *GEP = dyn_cast(V)) return decomposeGEP(*GEP, Preconditions, IsSigned, DL); Value *Op0; bool IsKnownNonNegative = false; if (match(V, m_ZExt(m_Value(Op0)))) { IsKnownNonNegative = true; V = Op0; } Value *Op1; ConstantInt *CI; if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { return MergeResults(Op0, Op1, IsSigned); } if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, ConstantInt::get(Op0->getType(), 0)); if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, ConstantInt::get(Op1->getType(), 0)); return MergeResults(Op0, Op1, IsSigned); } if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && canUseSExt(CI)) { Preconditions.emplace_back( CmpInst::ICMP_UGE, Op0, ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); return MergeResults(Op0, CI, true); } if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { int64_t Mult = int64_t(std::pow(int64_t(2), CI->getSExtValue())); auto Result = decompose(Op1, Preconditions, IsSigned, DL); Result.mul(Mult); return Result; } if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && (!CI->isNegative())) { auto Result = decompose(Op1, Preconditions, IsSigned, DL); Result.mul(CI->getSExtValue()); return Result; } if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) return {-1 * CI->getSExtValue(), {{1, Op0}}}; if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) return {0, {{1, Op0}, {-1, Op1}}}; return {V, IsKnownNonNegative}; } ConstraintTy ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, SmallVectorImpl &NewVariables) const { assert(NewVariables.empty() && "NewVariables must be empty when passed in"); bool IsEq = false; // Try to convert Pred to one of ULE/SLT/SLE/SLT. switch (Pred) { case CmpInst::ICMP_UGT: case CmpInst::ICMP_UGE: case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: { Pred = CmpInst::getSwappedPredicate(Pred); std::swap(Op0, Op1); break; } case CmpInst::ICMP_EQ: if (match(Op1, m_Zero())) { Pred = CmpInst::ICMP_ULE; } else { IsEq = true; Pred = CmpInst::ICMP_ULE; } break; case CmpInst::ICMP_NE: if (!match(Op1, m_Zero())) return {}; Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); std::swap(Op0, Op1); break; default: break; } if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) return {}; SmallVector Preconditions; bool IsSigned = CmpInst::isSigned(Pred); auto &Value2Index = getValue2Index(IsSigned); auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), Preconditions, IsSigned, DL); auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), Preconditions, IsSigned, DL); int64_t Offset1 = ADec.Offset; int64_t Offset2 = BDec.Offset; Offset1 *= -1; auto &VariablesA = ADec.Vars; auto &VariablesB = BDec.Vars; // First try to look up \p V in Value2Index and NewVariables. Otherwise add a // new entry to NewVariables. DenseMap NewIndexMap; auto GetOrAddIndex = [&Value2Index, &NewVariables, &NewIndexMap](Value *V) -> unsigned { auto V2I = Value2Index.find(V); if (V2I != Value2Index.end()) return V2I->second; auto Insert = NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); if (Insert.second) NewVariables.push_back(V); return Insert.first->second; }; // Make sure all variables have entries in Value2Index or NewVariables. for (const auto &KV : concat(VariablesA, VariablesB)) GetOrAddIndex(KV.Variable); // Build result constraint, by first adding all coefficients from A and then // subtracting all coefficients from B. ConstraintTy Res( SmallVector(Value2Index.size() + NewVariables.size() + 1, 0), IsSigned); // Collect variables that are known to be positive in all uses in the // constraint. DenseMap KnownNonNegativeVariables; Res.IsEq = IsEq; auto &R = Res.Coefficients; for (const auto &KV : VariablesA) { R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; auto I = KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); I.first->second &= KV.IsKnownNonNegative; } for (const auto &KV : VariablesB) { R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient; auto I = KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); I.first->second &= KV.IsKnownNonNegative; } int64_t OffsetSum; if (AddOverflow(Offset1, Offset2, OffsetSum)) return {}; if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) return {}; R[0] = OffsetSum; Res.Preconditions = std::move(Preconditions); // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new // variables. while (!NewVariables.empty()) { int64_t Last = R.back(); if (Last != 0) break; R.pop_back(); Value *RemovedV = NewVariables.pop_back_val(); NewIndexMap.erase(RemovedV); } // Add extra constraints for variables that are known positive. for (auto &KV : KnownNonNegativeVariables) { if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() && NewIndexMap.find(KV.first) == NewIndexMap.end())) continue; SmallVector C(Value2Index.size() + NewVariables.size() + 1, 0); C[GetOrAddIndex(KV.first)] = -1; Res.ExtraInfo.push_back(C); } return Res; } ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, Value *Op1) const { // If both operands are known to be non-negative, change signed predicates to // unsigned ones. This increases the reasoning effectiveness in combination // with the signed <-> unsigned transfer logic. if (CmpInst::isSigned(Pred) && isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) Pred = CmpInst::getUnsignedPredicate(Pred); SmallVector NewVariables; ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); if (R.IsEq || !NewVariables.empty()) return {}; return R; } bool ConstraintTy::isValid(const ConstraintInfo &Info) const { return Coefficients.size() > 0 && all_of(Preconditions, [&Info](const PreconditionTy &C) { return Info.doesHold(C.Pred, C.Op0, C.Op1); }); } bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const { auto R = getConstraintForSolving(Pred, A, B); return R.Preconditions.empty() && !R.empty() && getCS(R.IsSigned).isConditionImplied(R.Coefficients); } void ConstraintInfo::transferToOtherSystem( CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, unsigned NumOut, SmallVectorImpl &DFSInStack) { // Check if we can combine facts from the signed and unsigned systems to // derive additional facts. if (!A->getType()->isIntegerTy()) return; // FIXME: This currently depends on the order we add facts. Ideally we // would first add all known facts and only then try to add additional // facts. switch (Pred) { default: break; case CmpInst::ICMP_ULT: // If B is a signed positive constant, A >=s 0 and A getType(), 0))) { addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, NumOut, DFSInStack); addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack); } break; case CmpInst::ICMP_SLT: if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); break; case CmpInst::ICMP_SGT: if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, NumOut, DFSInStack); break; case CmpInst::ICMP_SGE: if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); } break; } } namespace { /// Represents either /// * a condition that holds on entry to a block (=conditional fact) /// * an assume (=assume fact) /// * an instruction to simplify. /// It also tracks the Dominator DFS in and out numbers for each entry. struct FactOrCheck { Instruction *Inst; unsigned NumIn; unsigned NumOut; bool IsCheck; bool Not; FactOrCheck(DomTreeNode *DTN, Instruction *Inst, bool IsCheck, bool Not) : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsCheck(IsCheck), Not(Not) {} static FactOrCheck getFact(DomTreeNode *DTN, Instruction *Inst, bool Not = false) { return FactOrCheck(DTN, Inst, false, Not); } static FactOrCheck getCheck(DomTreeNode *DTN, Instruction *Inst) { return FactOrCheck(DTN, Inst, true, false); } bool isAssumeFact() const { if (!IsCheck && isa(Inst)) { assert(match(Inst, m_Intrinsic())); return true; } return false; } bool isConditionFact() const { return !IsCheck && isa(Inst); } }; /// Keep state required to build worklist. struct State { DominatorTree &DT; SmallVector WorkList; State(DominatorTree &DT) : DT(DT) {} /// Process block \p BB and add known facts to work-list. void addInfoFor(BasicBlock &BB); /// Returns true if we can add a known condition from BB to its successor /// block Succ. bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); } }; } // namespace #ifndef NDEBUG static void dumpWithNames(const ConstraintSystem &CS, DenseMap &Value2Index) { SmallVector Names(Value2Index.size(), ""); for (auto &KV : Value2Index) { Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); } CS.dump(Names); } static void dumpWithNames(ArrayRef C, DenseMap &Value2Index) { ConstraintSystem CS; CS.addVariableRowFill(C); dumpWithNames(CS, Value2Index); } #endif void State::addInfoFor(BasicBlock &BB) { // True as long as long as the current instruction is guaranteed to execute. bool GuaranteedToExecute = true; // Queue conditions and assumes. for (Instruction &I : BB) { if (auto Cmp = dyn_cast(&I)) { WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), Cmp)); continue; } if (match(&I, m_Intrinsic())) { WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), &I)); continue; } Value *Cond; // For now, just handle assumes with a single compare as condition. if (match(&I, m_Intrinsic(m_Value(Cond))) && isa(Cond)) { if (GuaranteedToExecute) { // The assume is guaranteed to execute when BB is entered, hence Cond // holds on entry to BB. WorkList.emplace_back(FactOrCheck::getFact(DT.getNode(I.getParent()), cast(Cond))); } else { WorkList.emplace_back( FactOrCheck::getFact(DT.getNode(I.getParent()), &I)); } } GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); } auto *Br = dyn_cast(BB.getTerminator()); if (!Br || !Br->isConditional()) return; Value *Cond = Br->getCondition(); // If the condition is a chain of ORs/AND and the successor only has the // current block as predecessor, queue conditions for the successor. Value *Op0, *Op1; if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { bool IsOr = match(Cond, m_LogicalOr()); bool IsAnd = match(Cond, m_LogicalAnd()); // If there's a select that matches both AND and OR, we need to commit to // one of the options. Arbitrarily pick OR. if (IsOr && IsAnd) IsAnd = false; BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); if (canAddSuccessor(BB, Successor)) { SmallVector CondWorkList; SmallPtrSet SeenCond; auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { if (SeenCond.insert(V).second) CondWorkList.push_back(V); }; QueueValue(Op1); QueueValue(Op0); while (!CondWorkList.empty()) { Value *Cur = CondWorkList.pop_back_val(); if (auto *Cmp = dyn_cast(Cur)) { WorkList.emplace_back( FactOrCheck::getFact(DT.getNode(Successor), Cmp, IsOr)); continue; } if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { QueueValue(Op1); QueueValue(Op0); continue; } if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { QueueValue(Op1); QueueValue(Op0); continue; } } } return; } auto *CmpI = dyn_cast(Br->getCondition()); if (!CmpI) return; if (canAddSuccessor(BB, Br->getSuccessor(0))) WorkList.emplace_back( FactOrCheck::getFact(DT.getNode(Br->getSuccessor(0)), CmpI)); if (canAddSuccessor(BB, Br->getSuccessor(1))) WorkList.emplace_back( FactOrCheck::getFact(DT.getNode(Br->getSuccessor(1)), CmpI, true)); } static bool checkAndReplaceCondition(CmpInst *Cmp, ConstraintInfo &Info) { LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); CmpInst::Predicate Pred = Cmp->getPredicate(); Value *A = Cmp->getOperand(0); Value *B = Cmp->getOperand(1); auto R = Info.getConstraintForSolving(Pred, A, B); if (R.empty() || !R.isValid(Info)){ LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); return false; } auto &CSToUse = Info.getCS(R.IsSigned); // If there was extra information collected during decomposition, apply // it now and remove it immediately once we are done with reasoning // about the constraint. for (auto &Row : R.ExtraInfo) CSToUse.addVariableRow(Row); auto InfoRestorer = make_scope_exit([&]() { for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) CSToUse.popLastConstraint(); }); bool Changed = false; if (CSToUse.isConditionImplied(R.Coefficients)) { if (!DebugCounter::shouldExecute(EliminatedCounter)) return false; LLVM_DEBUG({ dbgs() << "Condition " << *Cmp << " implied by dominating constraints\n"; dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); }); Constant *TrueC = ConstantInt::getTrue(CmpInst::makeCmpResultType(Cmp->getType())); Cmp->replaceUsesWithIf(TrueC, [](Use &U) { // Conditions in an assume trivially simplify to true. Skip uses // in assume calls to not destroy the available information. auto *II = dyn_cast(U.getUser()); return !II || II->getIntrinsicID() != Intrinsic::assume; }); NumCondsRemoved++; Changed = true; } if (CSToUse.isConditionImplied(ConstraintSystem::negate(R.Coefficients))) { if (!DebugCounter::shouldExecute(EliminatedCounter)) return false; LLVM_DEBUG({ dbgs() << "Condition !" << *Cmp << " implied by dominating constraints\n"; dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); }); Constant *FalseC = ConstantInt::getFalse(CmpInst::makeCmpResultType(Cmp->getType())); Cmp->replaceAllUsesWith(FalseC); NumCondsRemoved++; Changed = true; } return Changed; } void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, unsigned NumOut, SmallVectorImpl &DFSInStack) { // If the constraint has a pre-condition, skip the constraint if it does not // hold. SmallVector NewVariables; auto R = getConstraint(Pred, A, B, NewVariables); if (!R.isValid(*this)) return; LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " "; A->printAsOperand(dbgs(), false); dbgs() << ", "; B->printAsOperand(dbgs(), false); dbgs() << "'\n"); bool Added = false; auto &CSToUse = getCS(R.IsSigned); if (R.Coefficients.empty()) return; Added |= CSToUse.addVariableRowFill(R.Coefficients); // If R has been added to the system, add the new variables and queue it for // removal once it goes out-of-scope. if (Added) { SmallVector ValuesToRelease; auto &Value2Index = getValue2Index(R.IsSigned); for (Value *V : NewVariables) { Value2Index.insert({V, Value2Index.size() + 1}); ValuesToRelease.push_back(V); } LLVM_DEBUG({ dbgs() << " constraint: "; dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned)); dbgs() << "\n"; }); DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, std::move(ValuesToRelease)); if (R.IsEq) { // Also add the inverted constraint for equality constraints. for (auto &Coeff : R.Coefficients) Coeff *= -1; CSToUse.addVariableRowFill(R.Coefficients); DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, SmallVector()); } } } static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, SmallVectorImpl &ToRemove) { bool Changed = false; IRBuilder<> Builder(II->getParent(), II->getIterator()); Value *Sub = nullptr; for (User *U : make_early_inc_range(II->users())) { if (match(U, m_ExtractValue<0>(m_Value()))) { if (!Sub) Sub = Builder.CreateSub(A, B); U->replaceAllUsesWith(Sub); Changed = true; } else if (match(U, m_ExtractValue<1>(m_Value()))) { U->replaceAllUsesWith(Builder.getFalse()); Changed = true; } else continue; if (U->use_empty()) { auto *I = cast(U); ToRemove.push_back(I); I->setOperand(0, PoisonValue::get(II->getType())); Changed = true; } } if (II->use_empty()) { II->eraseFromParent(); Changed = true; } return Changed; } static bool tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, SmallVectorImpl &ToRemove) { auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, ConstraintInfo &Info) { auto R = Info.getConstraintForSolving(Pred, A, B); if (R.size() < 2 || !R.isValid(Info)) return false; auto &CSToUse = Info.getCS(R.IsSigned); return CSToUse.isConditionImplied(R.Coefficients); }; bool Changed = false; if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and // can be simplified to a regular sub. Value *A = II->getArgOperand(0); Value *B = II->getArgOperand(1); if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || !DoesConditionHold(CmpInst::ICMP_SGE, B, ConstantInt::get(A->getType(), 0), Info)) return false; Changed = replaceSubOverflowUses(II, A, B, ToRemove); } return Changed; } static bool eliminateConstraints(Function &F, DominatorTree &DT) { bool Changed = false; DT.updateDFSNumbers(); ConstraintInfo Info(F.getParent()->getDataLayout()); State S(DT); // First, collect conditions implied by branches and blocks with their // Dominator DFS in and out numbers. for (BasicBlock &BB : F) { if (!DT.getNode(&BB)) continue; S.addInfoFor(BB); } // Next, sort worklist by dominance, so that dominating conditions to check // and facts come before conditions and facts dominated by them. If a // condition to check and a fact have the same numbers, conditional facts come // first. Assume facts and checks are ordered according to their relative // order in the containing basic block. Also make sure conditions with // constant operands come before conditions without constant operands. This // increases the effectiveness of the current signed <-> unsigned fact // transfer logic. stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { auto HasNoConstOp = [](const FactOrCheck &B) { return !isa(B.Inst->getOperand(0)) && !isa(B.Inst->getOperand(1)); }; // If both entries have the same In numbers, conditional facts come first. // Otherwise use the relative order in the basic block. if (A.NumIn == B.NumIn) { if (A.isConditionFact() && B.isConditionFact()) { bool NoConstOpA = HasNoConstOp(A); bool NoConstOpB = HasNoConstOp(B); return NoConstOpA < NoConstOpB; } if (A.isConditionFact()) return true; if (B.isConditionFact()) return false; return A.Inst->comesBefore(B.Inst); } return A.NumIn < B.NumIn; }); SmallVector ToRemove; // Finally, process ordered worklist and eliminate implied conditions. SmallVector DFSInStack; for (FactOrCheck &CB : S.WorkList) { // First, pop entries from the stack that are out-of-scope for CB. Remove // the corresponding entry from the constraint system. while (!DFSInStack.empty()) { auto &E = DFSInStack.back(); LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut << "\n"); LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); assert(E.NumIn <= CB.NumIn); if (CB.NumOut <= E.NumOut) break; LLVM_DEBUG({ dbgs() << "Removing "; dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(), Info.getValue2Index(E.IsSigned)); dbgs() << "\n"; }); Info.popLastConstraint(E.IsSigned); // Remove variables in the system that went out of scope. auto &Mapping = Info.getValue2Index(E.IsSigned); for (Value *V : E.ValuesToRelease) Mapping.erase(V); Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); DFSInStack.pop_back(); } LLVM_DEBUG({ dbgs() << "Processing "; if (CB.IsCheck) dbgs() << "condition to simplify: " << *CB.Inst; else dbgs() << "fact to add to the system: " << *CB.Inst; dbgs() << "\n"; }); // For a block, check if any CmpInsts become known based on the current set // of constraints. if (CB.IsCheck) { if (auto *II = dyn_cast(CB.Inst)) { Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); } else if (auto *Cmp = dyn_cast(CB.Inst)) { Changed |= checkAndReplaceCondition(Cmp, Info); } continue; } ICmpInst::Predicate Pred; Value *A, *B; Value *Cmp = CB.Inst; match(Cmp, m_Intrinsic(m_Value(Cmp))); if (match(Cmp, m_ICmp(Pred, m_Value(A), m_Value(B)))) { if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { LLVM_DEBUG( dbgs() << "Skip adding constraint because system has too many rows.\n"); continue; } // Use the inverse predicate if required. if (CB.Not) Pred = CmpInst::getInversePredicate(Pred); Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); } } #ifndef NDEBUG unsigned SignedEntries = count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && "updates to CS and DFSInStack are out of sync"); assert(Info.getCS(true).size() == SignedEntries && "updates to CS and DFSInStack are out of sync"); #endif for (Instruction *I : ToRemove) I->eraseFromParent(); return Changed; } PreservedAnalyses ConstraintEliminationPass::run(Function &F, FunctionAnalysisManager &AM) { auto &DT = AM.getResult(F); if (!eliminateConstraints(F, DT)) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); PA.preserveSet(); return PA; }