//===-- GlobalDCE.cpp - DCE unreachable internal functions ----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This transform is designed to eliminate unreachable internal globals from the // program. It uses an aggressive algorithm, searching out globals that are // known to be alive. After it finds all of the globals which are needed, it // deletes whatever is left over. This allows it to delete recursive chunks of // the program which are unreachable. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/GlobalDCE.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/TypeMetadataUtils.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/Utils/CtorUtils.h" #include "llvm/Transforms/Utils/GlobalStatus.h" using namespace llvm; #define DEBUG_TYPE "globaldce" static cl::opt ClEnableVFE("enable-vfe", cl::Hidden, cl::init(true), cl::desc("Enable virtual function elimination")); STATISTIC(NumAliases , "Number of global aliases removed"); STATISTIC(NumFunctions, "Number of functions removed"); STATISTIC(NumIFuncs, "Number of indirect functions removed"); STATISTIC(NumVariables, "Number of global variables removed"); STATISTIC(NumVFuncs, "Number of virtual functions removed"); namespace { class GlobalDCELegacyPass : public ModulePass { public: static char ID; // Pass identification, replacement for typeid GlobalDCELegacyPass() : ModulePass(ID) { initializeGlobalDCELegacyPassPass(*PassRegistry::getPassRegistry()); } // run - Do the GlobalDCE pass on the specified module, optionally updating // the specified callgraph to reflect the changes. // bool runOnModule(Module &M) override { if (skipModule(M)) return false; // We need a minimally functional dummy module analysis manager. It needs // to at least know about the possibility of proxying a function analysis // manager. FunctionAnalysisManager DummyFAM; ModuleAnalysisManager DummyMAM; DummyMAM.registerPass( [&] { return FunctionAnalysisManagerModuleProxy(DummyFAM); }); auto PA = Impl.run(M, DummyMAM); return !PA.areAllPreserved(); } private: GlobalDCEPass Impl; }; } char GlobalDCELegacyPass::ID = 0; INITIALIZE_PASS(GlobalDCELegacyPass, "globaldce", "Dead Global Elimination", false, false) // Public interface to the GlobalDCEPass. ModulePass *llvm::createGlobalDCEPass() { return new GlobalDCELegacyPass(); } /// Returns true if F is effectively empty. static bool isEmptyFunction(Function *F) { // Skip external functions. if (F->isDeclaration()) return false; BasicBlock &Entry = F->getEntryBlock(); for (auto &I : Entry) { if (I.isDebugOrPseudoInst()) continue; if (auto *RI = dyn_cast(&I)) return !RI->getReturnValue(); break; } return false; } /// Compute the set of GlobalValue that depends from V. /// The recursion stops as soon as a GlobalValue is met. void GlobalDCEPass::ComputeDependencies(Value *V, SmallPtrSetImpl &Deps) { if (auto *I = dyn_cast(V)) { Function *Parent = I->getParent()->getParent(); Deps.insert(Parent); } else if (auto *GV = dyn_cast(V)) { Deps.insert(GV); } else if (auto *CE = dyn_cast(V)) { // Avoid walking the whole tree of a big ConstantExprs multiple times. auto Where = ConstantDependenciesCache.find(CE); if (Where != ConstantDependenciesCache.end()) { auto const &K = Where->second; Deps.insert(K.begin(), K.end()); } else { SmallPtrSetImpl &LocalDeps = ConstantDependenciesCache[CE]; for (User *CEUser : CE->users()) ComputeDependencies(CEUser, LocalDeps); Deps.insert(LocalDeps.begin(), LocalDeps.end()); } } } void GlobalDCEPass::UpdateGVDependencies(GlobalValue &GV) { SmallPtrSet Deps; for (User *User : GV.users()) ComputeDependencies(User, Deps); Deps.erase(&GV); // Remove self-reference. for (GlobalValue *GVU : Deps) { // If this is a dep from a vtable to a virtual function, and we have // complete information about all virtual call sites which could call // though this vtable, then skip it, because the call site information will // be more precise. if (VFESafeVTables.count(GVU) && isa(&GV)) { LLVM_DEBUG(dbgs() << "Ignoring dep " << GVU->getName() << " -> " << GV.getName() << "\n"); continue; } GVDependencies[GVU].insert(&GV); } } /// Mark Global value as Live void GlobalDCEPass::MarkLive(GlobalValue &GV, SmallVectorImpl *Updates) { auto const Ret = AliveGlobals.insert(&GV); if (!Ret.second) return; if (Updates) Updates->push_back(&GV); if (Comdat *C = GV.getComdat()) { for (auto &&CM : make_range(ComdatMembers.equal_range(C))) { MarkLive(*CM.second, Updates); // Recursion depth is only two because only // globals in the same comdat are visited. } } } void GlobalDCEPass::ScanVTables(Module &M) { SmallVector Types; LLVM_DEBUG(dbgs() << "Building type info -> vtable map\n"); auto *LTOPostLinkMD = cast_or_null(M.getModuleFlag("LTOPostLink")); bool LTOPostLink = LTOPostLinkMD && (cast(LTOPostLinkMD->getValue())->getZExtValue() != 0); for (GlobalVariable &GV : M.globals()) { Types.clear(); GV.getMetadata(LLVMContext::MD_type, Types); if (GV.isDeclaration() || Types.empty()) continue; // Use the typeid metadata on the vtable to build a mapping from typeids to // the list of (GV, offset) pairs which are the possible vtables for that // typeid. for (MDNode *Type : Types) { Metadata *TypeID = Type->getOperand(1).get(); uint64_t Offset = cast( cast(Type->getOperand(0))->getValue()) ->getZExtValue(); TypeIdMap[TypeID].insert(std::make_pair(&GV, Offset)); } // If the type corresponding to the vtable is private to this translation // unit, we know that we can see all virtual functions which might use it, // so VFE is safe. if (auto GO = dyn_cast(&GV)) { GlobalObject::VCallVisibility TypeVis = GO->getVCallVisibility(); if (TypeVis == GlobalObject::VCallVisibilityTranslationUnit || (LTOPostLink && TypeVis == GlobalObject::VCallVisibilityLinkageUnit)) { LLVM_DEBUG(dbgs() << GV.getName() << " is safe for VFE\n"); VFESafeVTables.insert(&GV); } } } } void GlobalDCEPass::ScanVTableLoad(Function *Caller, Metadata *TypeId, uint64_t CallOffset) { for (const auto &VTableInfo : TypeIdMap[TypeId]) { GlobalVariable *VTable = VTableInfo.first; uint64_t VTableOffset = VTableInfo.second; Constant *Ptr = getPointerAtOffset(VTable->getInitializer(), VTableOffset + CallOffset, *Caller->getParent(), VTable); if (!Ptr) { LLVM_DEBUG(dbgs() << "can't find pointer in vtable!\n"); VFESafeVTables.erase(VTable); continue; } auto Callee = dyn_cast(Ptr->stripPointerCasts()); if (!Callee) { LLVM_DEBUG(dbgs() << "vtable entry is not function pointer!\n"); VFESafeVTables.erase(VTable); continue; } LLVM_DEBUG(dbgs() << "vfunc dep " << Caller->getName() << " -> " << Callee->getName() << "\n"); GVDependencies[Caller].insert(Callee); } } void GlobalDCEPass::ScanTypeCheckedLoadIntrinsics(Module &M) { LLVM_DEBUG(dbgs() << "Scanning type.checked.load intrinsics\n"); Function *TypeCheckedLoadFunc = M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); if (!TypeCheckedLoadFunc) return; for (auto *U : TypeCheckedLoadFunc->users()) { auto CI = dyn_cast(U); if (!CI) continue; auto *Offset = dyn_cast(CI->getArgOperand(1)); Value *TypeIdValue = CI->getArgOperand(2); auto *TypeId = cast(TypeIdValue)->getMetadata(); if (Offset) { ScanVTableLoad(CI->getFunction(), TypeId, Offset->getZExtValue()); } else { // type.checked.load with a non-constant offset, so assume every entry in // every matching vtable is used. for (const auto &VTableInfo : TypeIdMap[TypeId]) { VFESafeVTables.erase(VTableInfo.first); } } } } void GlobalDCEPass::AddVirtualFunctionDependencies(Module &M) { if (!ClEnableVFE) return; // If the Virtual Function Elim module flag is present and set to zero, then // the vcall_visibility metadata was inserted for another optimization (WPD) // and we may not have type checked loads on all accesses to the vtable. // Don't attempt VFE in that case. auto *Val = mdconst::dyn_extract_or_null( M.getModuleFlag("Virtual Function Elim")); if (!Val || Val->getZExtValue() == 0) return; ScanVTables(M); if (VFESafeVTables.empty()) return; ScanTypeCheckedLoadIntrinsics(M); LLVM_DEBUG( dbgs() << "VFE safe vtables:\n"; for (auto *VTable : VFESafeVTables) dbgs() << " " << VTable->getName() << "\n"; ); } PreservedAnalyses GlobalDCEPass::run(Module &M, ModuleAnalysisManager &MAM) { bool Changed = false; // The algorithm first computes the set L of global variables that are // trivially live. Then it walks the initialization of these variables to // compute the globals used to initialize them, which effectively builds a // directed graph where nodes are global variables, and an edge from A to B // means B is used to initialize A. Finally, it propagates the liveness // information through the graph starting from the nodes in L. Nodes note // marked as alive are discarded. // Remove empty functions from the global ctors list. Changed |= optimizeGlobalCtorsList( M, [](uint32_t, Function *F) { return isEmptyFunction(F); }); // Collect the set of members for each comdat. for (Function &F : M) if (Comdat *C = F.getComdat()) ComdatMembers.insert(std::make_pair(C, &F)); for (GlobalVariable &GV : M.globals()) if (Comdat *C = GV.getComdat()) ComdatMembers.insert(std::make_pair(C, &GV)); for (GlobalAlias &GA : M.aliases()) if (Comdat *C = GA.getComdat()) ComdatMembers.insert(std::make_pair(C, &GA)); // Add dependencies between virtual call sites and the virtual functions they // might call, if we have that information. AddVirtualFunctionDependencies(M); // Loop over the module, adding globals which are obviously necessary. for (GlobalObject &GO : M.global_objects()) { GO.removeDeadConstantUsers(); // Functions with external linkage are needed if they have a body. // Externally visible & appending globals are needed, if they have an // initializer. if (!GO.isDeclaration()) if (!GO.isDiscardableIfUnused()) MarkLive(GO); UpdateGVDependencies(GO); } // Compute direct dependencies of aliases. for (GlobalAlias &GA : M.aliases()) { GA.removeDeadConstantUsers(); // Externally visible aliases are needed. if (!GA.isDiscardableIfUnused()) MarkLive(GA); UpdateGVDependencies(GA); } // Compute direct dependencies of ifuncs. for (GlobalIFunc &GIF : M.ifuncs()) { GIF.removeDeadConstantUsers(); // Externally visible ifuncs are needed. if (!GIF.isDiscardableIfUnused()) MarkLive(GIF); UpdateGVDependencies(GIF); } // Propagate liveness from collected Global Values through the computed // dependencies. SmallVector NewLiveGVs{AliveGlobals.begin(), AliveGlobals.end()}; while (!NewLiveGVs.empty()) { GlobalValue *LGV = NewLiveGVs.pop_back_val(); for (auto *GVD : GVDependencies[LGV]) MarkLive(*GVD, &NewLiveGVs); } // Now that all globals which are needed are in the AliveGlobals set, we loop // through the program, deleting those which are not alive. // // The first pass is to drop initializers of global variables which are dead. std::vector DeadGlobalVars; // Keep track of dead globals for (GlobalVariable &GV : M.globals()) if (!AliveGlobals.count(&GV)) { DeadGlobalVars.push_back(&GV); // Keep track of dead globals if (GV.hasInitializer()) { Constant *Init = GV.getInitializer(); GV.setInitializer(nullptr); if (isSafeToDestroyConstant(Init)) Init->destroyConstant(); } } // The second pass drops the bodies of functions which are dead... std::vector DeadFunctions; for (Function &F : M) if (!AliveGlobals.count(&F)) { DeadFunctions.push_back(&F); // Keep track of dead globals if (!F.isDeclaration()) F.deleteBody(); } // The third pass drops targets of aliases which are dead... std::vector DeadAliases; for (GlobalAlias &GA : M.aliases()) if (!AliveGlobals.count(&GA)) { DeadAliases.push_back(&GA); GA.setAliasee(nullptr); } // The fourth pass drops targets of ifuncs which are dead... std::vector DeadIFuncs; for (GlobalIFunc &GIF : M.ifuncs()) if (!AliveGlobals.count(&GIF)) { DeadIFuncs.push_back(&GIF); GIF.setResolver(nullptr); } // Now that all interferences have been dropped, delete the actual objects // themselves. auto EraseUnusedGlobalValue = [&](GlobalValue *GV) { GV->removeDeadConstantUsers(); GV->eraseFromParent(); Changed = true; }; NumFunctions += DeadFunctions.size(); for (Function *F : DeadFunctions) { if (!F->use_empty()) { // Virtual functions might still be referenced by one or more vtables, // but if we've proven them to be unused then it's safe to replace the // virtual function pointers with null, allowing us to remove the // function itself. ++NumVFuncs; // Detect vfuncs that are referenced as "relative pointers" which are used // in Swift vtables, i.e. entries in the form of: // // i32 trunc (i64 sub (i64 ptrtoint @f, i64 ptrtoint ...)) to i32) // // In this case, replace the whole "sub" expression with constant 0 to // avoid leaving a weird sub(0, symbol) expression behind. replaceRelativePointerUsersWithZero(F); F->replaceNonMetadataUsesWith(ConstantPointerNull::get(F->getType())); } EraseUnusedGlobalValue(F); } NumVariables += DeadGlobalVars.size(); for (GlobalVariable *GV : DeadGlobalVars) EraseUnusedGlobalValue(GV); NumAliases += DeadAliases.size(); for (GlobalAlias *GA : DeadAliases) EraseUnusedGlobalValue(GA); NumIFuncs += DeadIFuncs.size(); for (GlobalIFunc *GIF : DeadIFuncs) EraseUnusedGlobalValue(GIF); // Make sure that all memory is released AliveGlobals.clear(); ConstantDependenciesCache.clear(); GVDependencies.clear(); ComdatMembers.clear(); TypeIdMap.clear(); VFESafeVTables.clear(); if (Changed) return PreservedAnalyses::none(); return PreservedAnalyses::all(); }