//===--- UppercaseLiteralSuffixCheck.cpp - clang-tidy ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "UppercaseLiteralSuffixCheck.h" #include "../utils/ASTUtils.h" #include "clang/AST/ASTContext.h" #include "clang/ASTMatchers/ASTMatchFinder.h" #include "clang/Lex/Lexer.h" #include "llvm/ADT/SmallString.h" #include #include using namespace clang::ast_matchers; namespace clang::tidy::readability { namespace { struct IntegerLiteralCheck { using type = clang::IntegerLiteral; static constexpr llvm::StringLiteral Name = llvm::StringLiteral("integer"); // What should be skipped before looking for the Suffixes? (Nothing here.) static constexpr llvm::StringLiteral SkipFirst = llvm::StringLiteral(""); // Suffix can only consist of 'u' and 'l' chars, and can be a complex number // ('i', 'j'). In MS compatibility mode, suffixes like i32 are supported. static constexpr llvm::StringLiteral Suffixes = llvm::StringLiteral("uUlLiIjJ"); }; constexpr llvm::StringLiteral IntegerLiteralCheck::Name; constexpr llvm::StringLiteral IntegerLiteralCheck::SkipFirst; constexpr llvm::StringLiteral IntegerLiteralCheck::Suffixes; struct FloatingLiteralCheck { using type = clang::FloatingLiteral; static constexpr llvm::StringLiteral Name = llvm::StringLiteral("floating point"); // C++17 introduced hexadecimal floating-point literals, and 'f' is both a // valid hexadecimal digit in a hex float literal and a valid floating-point // literal suffix. // So we can't just "skip to the chars that can be in the suffix". // Since the exponent ('p'/'P') is mandatory for hexadecimal floating-point // literals, we first skip everything before the exponent. static constexpr llvm::StringLiteral SkipFirst = llvm::StringLiteral("pP"); // Suffix can only consist of 'f', 'l', "f16", 'h', 'q' chars, // and can be a complex number ('i', 'j'). static constexpr llvm::StringLiteral Suffixes = llvm::StringLiteral("fFlLhHqQiIjJ"); }; constexpr llvm::StringLiteral FloatingLiteralCheck::Name; constexpr llvm::StringLiteral FloatingLiteralCheck::SkipFirst; constexpr llvm::StringLiteral FloatingLiteralCheck::Suffixes; struct NewSuffix { SourceRange LiteralLocation; StringRef OldSuffix; std::optional FixIt; }; std::optional getMacroAwareLocation(SourceLocation Loc, const SourceManager &SM) { // Do nothing if the provided location is invalid. if (Loc.isInvalid()) return std::nullopt; // Look where the location was *actually* written. SourceLocation SpellingLoc = SM.getSpellingLoc(Loc); if (SpellingLoc.isInvalid()) return std::nullopt; return SpellingLoc; } std::optional getMacroAwareSourceRange(SourceRange Loc, const SourceManager &SM) { std::optional Begin = getMacroAwareLocation(Loc.getBegin(), SM); std::optional End = getMacroAwareLocation(Loc.getEnd(), SM); if (!Begin || !End) return std::nullopt; return SourceRange(*Begin, *End); } std::optional getNewSuffix(llvm::StringRef OldSuffix, const std::vector &NewSuffixes) { // If there is no config, just uppercase the entirety of the suffix. if (NewSuffixes.empty()) return OldSuffix.upper(); // Else, find matching suffix, case-*insensitive*ly. auto NewSuffix = llvm::find_if(NewSuffixes, [OldSuffix](StringRef PotentialNewSuffix) { return OldSuffix.equals_insensitive(PotentialNewSuffix); }); // Have a match, return it. if (NewSuffix != NewSuffixes.end()) return NewSuffix->str(); // Nope, I guess we have to keep it as-is. return std::nullopt; } template std::optional shouldReplaceLiteralSuffix(const Expr &Literal, const std::vector &NewSuffixes, const SourceManager &SM, const LangOptions &LO) { NewSuffix ReplacementDsc; const auto &L = cast(Literal); // The naive location of the literal. Is always valid. ReplacementDsc.LiteralLocation = L.getSourceRange(); // Was this literal fully spelled or is it a product of macro expansion? bool RangeCanBeFixed = utils::rangeCanBeFixed(ReplacementDsc.LiteralLocation, &SM); // The literal may have macro expansion, we need the final expanded src range. std::optional Range = getMacroAwareSourceRange(ReplacementDsc.LiteralLocation, SM); if (!Range) return std::nullopt; if (RangeCanBeFixed) ReplacementDsc.LiteralLocation = *Range; // Else keep the naive literal location! // Get the whole literal from the source buffer. bool Invalid; const StringRef LiteralSourceText = Lexer::getSourceText( CharSourceRange::getTokenRange(*Range), SM, LO, &Invalid); assert(!Invalid && "Failed to retrieve the source text."); // Make sure the first character is actually a digit, instead of // something else, like a non-type template parameter. if (!std::isdigit(static_cast(LiteralSourceText.front()))) return std::nullopt; size_t Skip = 0; // Do we need to ignore something before actually looking for the suffix? if (!LiteralType::SkipFirst.empty()) { // E.g. we can't look for 'f' suffix in hexadecimal floating-point literals // until after we skip to the exponent (which is mandatory there), // because hex-digit-sequence may contain 'f'. Skip = LiteralSourceText.find_first_of(LiteralType::SkipFirst); // We could be in non-hexadecimal floating-point literal, with no exponent. if (Skip == StringRef::npos) Skip = 0; } // Find the beginning of the suffix by looking for the first char that is // one of these chars that can be in the suffix, potentially starting looking // in the exponent, if we are skipping hex-digit-sequence. Skip = LiteralSourceText.find_first_of(LiteralType::Suffixes, /*From=*/Skip); // We can't check whether the *Literal has any suffix or not without actually // looking for the suffix. So it is totally possible that there is no suffix. if (Skip == StringRef::npos) return std::nullopt; // Move the cursor in the source range to the beginning of the suffix. Range->setBegin(Range->getBegin().getLocWithOffset(Skip)); // And in our textual representation too. ReplacementDsc.OldSuffix = LiteralSourceText.drop_front(Skip); assert(!ReplacementDsc.OldSuffix.empty() && "We still should have some chars left."); // And get the replacement suffix. std::optional NewSuffix = getNewSuffix(ReplacementDsc.OldSuffix, NewSuffixes); if (!NewSuffix || ReplacementDsc.OldSuffix == *NewSuffix) return std::nullopt; // The suffix was already the way it should be. if (RangeCanBeFixed) ReplacementDsc.FixIt = FixItHint::CreateReplacement(*Range, *NewSuffix); return ReplacementDsc; } } // namespace UppercaseLiteralSuffixCheck::UppercaseLiteralSuffixCheck( StringRef Name, ClangTidyContext *Context) : ClangTidyCheck(Name, Context), NewSuffixes( utils::options::parseStringList(Options.get("NewSuffixes", ""))), IgnoreMacros(Options.getLocalOrGlobal("IgnoreMacros", true)) {} void UppercaseLiteralSuffixCheck::storeOptions( ClangTidyOptions::OptionMap &Opts) { Options.store(Opts, "NewSuffixes", utils::options::serializeStringList(NewSuffixes)); Options.store(Opts, "IgnoreMacros", IgnoreMacros); } void UppercaseLiteralSuffixCheck::registerMatchers(MatchFinder *Finder) { // Sadly, we can't check whether the literal has suffix or not. // E.g. i32 suffix still results in 'BuiltinType::Kind::Int'. // And such an info is not stored in the *Literal itself. Finder->addMatcher( stmt(eachOf(integerLiteral().bind(IntegerLiteralCheck::Name), floatLiteral().bind(FloatingLiteralCheck::Name)), unless(anyOf(hasParent(userDefinedLiteral()), hasAncestor(substNonTypeTemplateParmExpr())))), this); } template bool UppercaseLiteralSuffixCheck::checkBoundMatch( const MatchFinder::MatchResult &Result) { const auto *Literal = Result.Nodes.getNodeAs(LiteralType::Name); if (!Literal) return false; // We won't *always* want to diagnose. // We might have a suffix that is already uppercase. if (auto Details = shouldReplaceLiteralSuffix( *Literal, NewSuffixes, *Result.SourceManager, getLangOpts())) { if (Details->LiteralLocation.getBegin().isMacroID() && IgnoreMacros) return true; auto Complaint = diag(Details->LiteralLocation.getBegin(), "%0 literal has suffix '%1', which is not uppercase") << LiteralType::Name << Details->OldSuffix; if (Details->FixIt) // Similarly, a fix-it is not always possible. Complaint << *(Details->FixIt); } return true; } void UppercaseLiteralSuffixCheck::check( const MatchFinder::MatchResult &Result) { if (checkBoundMatch(Result)) return; // If it *was* IntegerLiteral, don't check for FloatingLiteral. checkBoundMatch(Result); } } // namespace clang::tidy::readability