//===- CodeEmitterGen.cpp - Code Emitter Generator ------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // CodeEmitterGen uses the descriptions of instructions and their fields to // construct an automated code emitter: a function that, given a MachineInstr, // returns the (currently, 32-bit unsigned) value of the instruction. // //===----------------------------------------------------------------------===// #include "CodeGenInstruction.h" #include "CodeGenTarget.h" #include "SubtargetFeatureInfo.h" #include "Types.h" #include "VarLenCodeEmitterGen.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Casting.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include #include #include #include #include #include using namespace llvm; namespace { class CodeEmitterGen { RecordKeeper &Records; public: CodeEmitterGen(RecordKeeper &R) : Records(R) {} void run(raw_ostream &o); private: int getVariableBit(const std::string &VarName, BitsInit *BI, int bit); std::string getInstructionCase(Record *R, CodeGenTarget &Target); std::string getInstructionCaseForEncoding(Record *R, Record *EncodingDef, CodeGenTarget &Target); bool addCodeToMergeInOperand(Record *R, BitsInit *BI, const std::string &VarName, unsigned &NumberedOp, std::set &NamedOpIndices, std::string &Case, CodeGenTarget &Target); void emitInstructionBaseValues( raw_ostream &o, ArrayRef NumberedInstructions, CodeGenTarget &Target, int HwMode = -1); unsigned BitWidth; bool UseAPInt; }; // If the VarBitInit at position 'bit' matches the specified variable then // return the variable bit position. Otherwise return -1. int CodeEmitterGen::getVariableBit(const std::string &VarName, BitsInit *BI, int bit) { if (VarBitInit *VBI = dyn_cast(BI->getBit(bit))) { if (VarInit *VI = dyn_cast(VBI->getBitVar())) if (VI->getName() == VarName) return VBI->getBitNum(); } else if (VarInit *VI = dyn_cast(BI->getBit(bit))) { if (VI->getName() == VarName) return 0; } return -1; } // Returns true if it succeeds, false if an error. bool CodeEmitterGen::addCodeToMergeInOperand(Record *R, BitsInit *BI, const std::string &VarName, unsigned &NumberedOp, std::set &NamedOpIndices, std::string &Case, CodeGenTarget &Target) { CodeGenInstruction &CGI = Target.getInstruction(R); // Determine if VarName actually contributes to the Inst encoding. int bit = BI->getNumBits()-1; // Scan for a bit that this contributed to. for (; bit >= 0; ) { if (getVariableBit(VarName, BI, bit) != -1) break; --bit; } // If we found no bits, ignore this value, otherwise emit the call to get the // operand encoding. if (bit < 0) return true; // If the operand matches by name, reference according to that // operand number. Non-matching operands are assumed to be in // order. unsigned OpIdx; std::pair SubOp; if (CGI.Operands.hasSubOperandAlias(VarName, SubOp)) { OpIdx = CGI.Operands[SubOp.first].MIOperandNo + SubOp.second; } else if (CGI.Operands.hasOperandNamed(VarName, OpIdx)) { // Get the machine operand number for the indicated operand. OpIdx = CGI.Operands[OpIdx].MIOperandNo; } else { // Fall back to positional lookup. By default, we now disable positional // lookup (and print an error, below), but even so, we'll do the lookup to // help print a helpful diagnostic message. // // TODO: When we remove useDeprecatedPositionallyEncodedOperands, delete all // this code, just leaving a "no operand named X in record Y" error. unsigned NumberOps = CGI.Operands.size(); /// If this operand is not supposed to be emitted by the /// generated emitter, skip it. while (NumberedOp < NumberOps && (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) || (!NamedOpIndices.empty() && NamedOpIndices.count( CGI.Operands.getSubOperandNumber(NumberedOp).first)))) { ++NumberedOp; } if (NumberedOp >= CGI.Operands.back().MIOperandNo + CGI.Operands.back().MINumOperands) { if (!Target.getInstructionSet()->getValueAsBit( "useDeprecatedPositionallyEncodedOperands")) { PrintError(R, Twine("No operand named ") + VarName + " in record " + R->getName() + " (would've given 'too few operands' error with " "useDeprecatedPositionallyEncodedOperands=true)"); } else { PrintError(R, "Too few operands in record " + R->getName() + " (no match for variable " + VarName + ")"); } return false; } OpIdx = NumberedOp++; if (!Target.getInstructionSet()->getValueAsBit( "useDeprecatedPositionallyEncodedOperands")) { std::pair SO = CGI.Operands.getSubOperandNumber(OpIdx); std::string OpName = CGI.Operands[SO.first].Name; PrintError(R, Twine("No operand named ") + VarName + " in record " + R->getName() + " (would've used positional operand #" + Twine(SO.first) + " ('" + OpName + "') sub-op #" + Twine(SO.second) + " with useDeprecatedPositionallyEncodedOperands=true)"); return false; } } if (CGI.Operands.isFlatOperandNotEmitted(OpIdx)) { PrintError(R, "Operand " + VarName + " used but also marked as not emitted!"); return false; } std::pair SO = CGI.Operands.getSubOperandNumber(OpIdx); std::string &EncoderMethodName = CGI.Operands[SO.first].EncoderMethodNames[SO.second]; if (UseAPInt) Case += " op.clearAllBits();\n"; Case += " // op: " + VarName + "\n"; // If the source operand has a custom encoder, use it. if (!EncoderMethodName.empty()) { if (UseAPInt) { Case += " " + EncoderMethodName + "(MI, " + utostr(OpIdx); Case += ", op"; } else { Case += " op = " + EncoderMethodName + "(MI, " + utostr(OpIdx); } Case += ", Fixups, STI);\n"; } else { if (UseAPInt) { Case += " getMachineOpValue(MI, MI.getOperand(" + utostr(OpIdx) + ")"; Case += ", op, Fixups, STI"; } else { Case += " op = getMachineOpValue(MI, MI.getOperand(" + utostr(OpIdx) + ")"; Case += ", Fixups, STI"; } Case += ");\n"; } // Precalculate the number of lits this variable contributes to in the // operand. If there is a single lit (consecutive range of bits) we can use a // destructive sequence on APInt that reduces memory allocations. int numOperandLits = 0; for (int tmpBit = bit; tmpBit >= 0;) { int varBit = getVariableBit(VarName, BI, tmpBit); // If this bit isn't from a variable, skip it. if (varBit == -1) { --tmpBit; continue; } // Figure out the consecutive range of bits covered by this operand, in // order to generate better encoding code. int beginVarBit = varBit; int N = 1; for (--tmpBit; tmpBit >= 0;) { varBit = getVariableBit(VarName, BI, tmpBit); if (varBit == -1 || varBit != (beginVarBit - N)) break; ++N; --tmpBit; } ++numOperandLits; } for (; bit >= 0; ) { int varBit = getVariableBit(VarName, BI, bit); // If this bit isn't from a variable, skip it. if (varBit == -1) { --bit; continue; } // Figure out the consecutive range of bits covered by this operand, in // order to generate better encoding code. int beginInstBit = bit; int beginVarBit = varBit; int N = 1; for (--bit; bit >= 0;) { varBit = getVariableBit(VarName, BI, bit); if (varBit == -1 || varBit != (beginVarBit - N)) break; ++N; --bit; } std::string maskStr; int opShift; unsigned loBit = beginVarBit - N + 1; unsigned hiBit = loBit + N; unsigned loInstBit = beginInstBit - N + 1; if (UseAPInt) { std::string extractStr; if (N >= 64) { extractStr = "op.extractBits(" + itostr(hiBit - loBit) + ", " + itostr(loBit) + ")"; Case += " Value.insertBits(" + extractStr + ", " + itostr(loInstBit) + ");\n"; } else { extractStr = "op.extractBitsAsZExtValue(" + itostr(hiBit - loBit) + ", " + itostr(loBit) + ")"; Case += " Value.insertBits(" + extractStr + ", " + itostr(loInstBit) + ", " + itostr(hiBit - loBit) + ");\n"; } } else { uint64_t opMask = ~(uint64_t)0 >> (64 - N); opShift = beginVarBit - N + 1; opMask <<= opShift; maskStr = "UINT64_C(" + utostr(opMask) + ")"; opShift = beginInstBit - beginVarBit; if (numOperandLits == 1) { Case += " op &= " + maskStr + ";\n"; if (opShift > 0) { Case += " op <<= " + itostr(opShift) + ";\n"; } else if (opShift < 0) { Case += " op >>= " + itostr(-opShift) + ";\n"; } Case += " Value |= op;\n"; } else { if (opShift > 0) { Case += " Value |= (op & " + maskStr + ") << " + itostr(opShift) + ";\n"; } else if (opShift < 0) { Case += " Value |= (op & " + maskStr + ") >> " + itostr(-opShift) + ";\n"; } else { Case += " Value |= (op & " + maskStr + ");\n"; } } } } return true; } std::string CodeEmitterGen::getInstructionCase(Record *R, CodeGenTarget &Target) { std::string Case; if (const RecordVal *RV = R->getValue("EncodingInfos")) { if (auto *DI = dyn_cast_or_null(RV->getValue())) { const CodeGenHwModes &HWM = Target.getHwModes(); EncodingInfoByHwMode EBM(DI->getDef(), HWM); Case += " switch (HwMode) {\n"; Case += " default: llvm_unreachable(\"Unhandled HwMode\");\n"; for (auto &KV : EBM) { Case += " case " + itostr(KV.first) + ": {\n"; Case += getInstructionCaseForEncoding(R, KV.second, Target); Case += " break;\n"; Case += " }\n"; } Case += " }\n"; return Case; } } return getInstructionCaseForEncoding(R, R, Target); } std::string CodeEmitterGen::getInstructionCaseForEncoding(Record *R, Record *EncodingDef, CodeGenTarget &Target) { std::string Case; BitsInit *BI = EncodingDef->getValueAsBitsInit("Inst"); unsigned NumberedOp = 0; std::set NamedOpIndices; // Collect the set of operand indices that might correspond to named // operand, and skip these when assigning operands based on position. if (Target.getInstructionSet()-> getValueAsBit("noNamedPositionallyEncodedOperands")) { CodeGenInstruction &CGI = Target.getInstruction(R); for (const RecordVal &RV : R->getValues()) { unsigned OpIdx; if (!CGI.Operands.hasOperandNamed(RV.getName(), OpIdx)) continue; NamedOpIndices.insert(OpIdx); } } // Loop over all of the fields in the instruction, determining which are the // operands to the instruction. bool Success = true; for (const RecordVal &RV : EncodingDef->getValues()) { // Ignore fixed fields in the record, we're looking for values like: // bits<5> RST = { ?, ?, ?, ?, ? }; if (RV.isNonconcreteOK() || RV.getValue()->isComplete()) continue; Success &= addCodeToMergeInOperand(R, BI, std::string(RV.getName()), NumberedOp, NamedOpIndices, Case, Target); } if (!Success) { // Dump the record, so we can see what's going on... std::string E; raw_string_ostream S(E); S << "Dumping record for previous error:\n"; S << *R; PrintNote(E); } StringRef PostEmitter = R->getValueAsString("PostEncoderMethod"); if (!PostEmitter.empty()) { Case += " Value = "; Case += PostEmitter; Case += "(MI, Value"; Case += ", STI"; Case += ");\n"; } return Case; } static void emitInstBits(raw_ostream &OS, const APInt &Bits) { for (unsigned I = 0; I < Bits.getNumWords(); ++I) OS << ((I > 0) ? ", " : "") << "UINT64_C(" << utostr(Bits.getRawData()[I]) << ")"; } void CodeEmitterGen::emitInstructionBaseValues( raw_ostream &o, ArrayRef NumberedInstructions, CodeGenTarget &Target, int HwMode) { const CodeGenHwModes &HWM = Target.getHwModes(); if (HwMode == -1) o << " static const uint64_t InstBits[] = {\n"; else o << " static const uint64_t InstBits_" << HWM.getMode(HwMode).Name << "[] = {\n"; for (const CodeGenInstruction *CGI : NumberedInstructions) { Record *R = CGI->TheDef; if (R->getValueAsString("Namespace") == "TargetOpcode" || R->getValueAsBit("isPseudo")) { o << " "; emitInstBits(o, APInt(BitWidth, 0)); o << ",\n"; continue; } Record *EncodingDef = R; if (const RecordVal *RV = R->getValue("EncodingInfos")) { if (auto *DI = dyn_cast_or_null(RV->getValue())) { EncodingInfoByHwMode EBM(DI->getDef(), HWM); if (EBM.hasMode(HwMode)) EncodingDef = EBM.get(HwMode); } } BitsInit *BI = EncodingDef->getValueAsBitsInit("Inst"); // Start by filling in fixed values. APInt Value(BitWidth, 0); for (unsigned i = 0, e = BI->getNumBits(); i != e; ++i) { if (auto *B = dyn_cast(BI->getBit(i)); B && B->getValue()) Value.setBit(i); } o << " "; emitInstBits(o, Value); o << "," << '\t' << "// " << R->getName() << "\n"; } o << " UINT64_C(0)\n };\n"; } void CodeEmitterGen::run(raw_ostream &o) { CodeGenTarget Target(Records); std::vector Insts = Records.getAllDerivedDefinitions("Instruction"); // For little-endian instruction bit encodings, reverse the bit order Target.reverseBitsForLittleEndianEncoding(); ArrayRef NumberedInstructions = Target.getInstructionsByEnumValue(); if (any_of(NumberedInstructions, [](const CodeGenInstruction *CGI) { Record *R = CGI->TheDef; return R->getValue("Inst") && isa(R->getValueInit("Inst")); })) { emitVarLenCodeEmitter(Records, o); } else { const CodeGenHwModes &HWM = Target.getHwModes(); // The set of HwModes used by instruction encodings. std::set HwModes; BitWidth = 0; for (const CodeGenInstruction *CGI : NumberedInstructions) { Record *R = CGI->TheDef; if (R->getValueAsString("Namespace") == "TargetOpcode" || R->getValueAsBit("isPseudo")) continue; if (const RecordVal *RV = R->getValue("EncodingInfos")) { if (DefInit *DI = dyn_cast_or_null(RV->getValue())) { EncodingInfoByHwMode EBM(DI->getDef(), HWM); for (auto &KV : EBM) { BitsInit *BI = KV.second->getValueAsBitsInit("Inst"); BitWidth = std::max(BitWidth, BI->getNumBits()); HwModes.insert(KV.first); } continue; } } BitsInit *BI = R->getValueAsBitsInit("Inst"); BitWidth = std::max(BitWidth, BI->getNumBits()); } UseAPInt = BitWidth > 64; // Emit function declaration if (UseAPInt) { o << "void " << Target.getName() << "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n" << " SmallVectorImpl &Fixups,\n" << " APInt &Inst,\n" << " APInt &Scratch,\n" << " const MCSubtargetInfo &STI) const {\n"; } else { o << "uint64_t " << Target.getName(); o << "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n" << " SmallVectorImpl &Fixups,\n" << " const MCSubtargetInfo &STI) const {\n"; } // Emit instruction base values if (HwModes.empty()) { emitInstructionBaseValues(o, NumberedInstructions, Target, -1); } else { for (unsigned HwMode : HwModes) emitInstructionBaseValues(o, NumberedInstructions, Target, (int)HwMode); } if (!HwModes.empty()) { o << " const uint64_t *InstBits;\n"; o << " unsigned HwMode = STI.getHwMode();\n"; o << " switch (HwMode) {\n"; o << " default: llvm_unreachable(\"Unknown hardware mode!\"); break;\n"; for (unsigned I : HwModes) { o << " case " << I << ": InstBits = InstBits_" << HWM.getMode(I).Name << "; break;\n"; } o << " };\n"; } // Map to accumulate all the cases. std::map> CaseMap; // Construct all cases statement for each opcode for (Record *R : Insts) { if (R->getValueAsString("Namespace") == "TargetOpcode" || R->getValueAsBit("isPseudo")) continue; std::string InstName = (R->getValueAsString("Namespace") + "::" + R->getName()).str(); std::string Case = getInstructionCase(R, Target); CaseMap[Case].push_back(std::move(InstName)); } // Emit initial function code if (UseAPInt) { int NumWords = APInt::getNumWords(BitWidth); o << " const unsigned opcode = MI.getOpcode();\n" << " if (Scratch.getBitWidth() != " << BitWidth << ")\n" << " Scratch = Scratch.zext(" << BitWidth << ");\n" << " Inst = APInt(" << BitWidth << ", ArrayRef(InstBits + opcode * " << NumWords << ", " << NumWords << "));\n" << " APInt &Value = Inst;\n" << " APInt &op = Scratch;\n" << " switch (opcode) {\n"; } else { o << " const unsigned opcode = MI.getOpcode();\n" << " uint64_t Value = InstBits[opcode];\n" << " uint64_t op = 0;\n" << " (void)op; // suppress warning\n" << " switch (opcode) {\n"; } // Emit each case statement std::map>::iterator IE, EE; for (IE = CaseMap.begin(), EE = CaseMap.end(); IE != EE; ++IE) { const std::string &Case = IE->first; std::vector &InstList = IE->second; for (int i = 0, N = InstList.size(); i < N; i++) { if (i) o << "\n"; o << " case " << InstList[i] << ":"; } o << " {\n"; o << Case; o << " break;\n" << " }\n"; } // Default case: unhandled opcode o << " default:\n" << " std::string msg;\n" << " raw_string_ostream Msg(msg);\n" << " Msg << \"Not supported instr: \" << MI;\n" << " report_fatal_error(Msg.str().c_str());\n" << " }\n"; if (UseAPInt) o << " Inst = Value;\n"; else o << " return Value;\n"; o << "}\n\n"; } } } // end anonymous namespace namespace llvm { void EmitCodeEmitter(RecordKeeper &RK, raw_ostream &OS) { emitSourceFileHeader("Machine Code Emitter", OS); CodeEmitterGen(RK).run(OS); } } // end namespace llvm