//===- DDG.cpp - Data Dependence Graph -------------------------------------==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // The implementation for the data dependence graph. //===----------------------------------------------------------------------===// #include "llvm/Analysis/DDG.h" #include "llvm/ADT/SCCIterator.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopIterator.h" #include "llvm/Support/CommandLine.h" using namespace llvm; static cl::opt SimplifyDDG( "ddg-simplify", cl::init(true), cl::Hidden, cl::ZeroOrMore, cl::desc( "Simplify DDG by merging nodes that have less interesting edges.")); static cl::opt CreatePiBlocks("ddg-pi-blocks", cl::init(true), cl::Hidden, cl::ZeroOrMore, cl::desc("Create pi-block nodes.")); #define DEBUG_TYPE "ddg" template class llvm::DGEdge; template class llvm::DGNode; template class llvm::DirectedGraph; //===--------------------------------------------------------------------===// // DDGNode implementation //===--------------------------------------------------------------------===// DDGNode::~DDGNode() {} bool DDGNode::collectInstructions( llvm::function_ref const &Pred, InstructionListType &IList) const { assert(IList.empty() && "Expected the IList to be empty on entry."); if (isa(this)) { for (Instruction *I : cast(this)->getInstructions()) if (Pred(I)) IList.push_back(I); } else if (isa(this)) { for (const DDGNode *PN : cast(this)->getNodes()) { assert(!isa(PN) && "Nested PiBlocks are not supported."); SmallVector TmpIList; PN->collectInstructions(Pred, TmpIList); llvm::append_range(IList, TmpIList); } } else llvm_unreachable("unimplemented type of node"); return !IList.empty(); } raw_ostream &llvm::operator<<(raw_ostream &OS, const DDGNode::NodeKind K) { const char *Out; switch (K) { case DDGNode::NodeKind::SingleInstruction: Out = "single-instruction"; break; case DDGNode::NodeKind::MultiInstruction: Out = "multi-instruction"; break; case DDGNode::NodeKind::PiBlock: Out = "pi-block"; break; case DDGNode::NodeKind::Root: Out = "root"; break; case DDGNode::NodeKind::Unknown: Out = "?? (error)"; break; } OS << Out; return OS; } raw_ostream &llvm::operator<<(raw_ostream &OS, const DDGNode &N) { OS << "Node Address:" << &N << ":" << N.getKind() << "\n"; if (isa(N)) { OS << " Instructions:\n"; for (const Instruction *I : cast(N).getInstructions()) OS.indent(2) << *I << "\n"; } else if (isa(&N)) { OS << "--- start of nodes in pi-block ---\n"; auto &Nodes = cast(&N)->getNodes(); unsigned Count = 0; for (const DDGNode *N : Nodes) OS << *N << (++Count == Nodes.size() ? "" : "\n"); OS << "--- end of nodes in pi-block ---\n"; } else if (!isa(N)) llvm_unreachable("unimplemented type of node"); OS << (N.getEdges().empty() ? " Edges:none!\n" : " Edges:\n"); for (auto &E : N.getEdges()) OS.indent(2) << *E; return OS; } //===--------------------------------------------------------------------===// // SimpleDDGNode implementation //===--------------------------------------------------------------------===// SimpleDDGNode::SimpleDDGNode(Instruction &I) : DDGNode(NodeKind::SingleInstruction) { assert(InstList.empty() && "Expected empty list."); InstList.push_back(&I); } SimpleDDGNode::SimpleDDGNode(const SimpleDDGNode &N) : DDGNode(N), InstList(N.InstList) { assert(((getKind() == NodeKind::SingleInstruction && InstList.size() == 1) || (getKind() == NodeKind::MultiInstruction && InstList.size() > 1)) && "constructing from invalid simple node."); } SimpleDDGNode::SimpleDDGNode(SimpleDDGNode &&N) : DDGNode(std::move(N)), InstList(std::move(N.InstList)) { assert(((getKind() == NodeKind::SingleInstruction && InstList.size() == 1) || (getKind() == NodeKind::MultiInstruction && InstList.size() > 1)) && "constructing from invalid simple node."); } SimpleDDGNode::~SimpleDDGNode() { InstList.clear(); } //===--------------------------------------------------------------------===// // PiBlockDDGNode implementation //===--------------------------------------------------------------------===// PiBlockDDGNode::PiBlockDDGNode(const PiNodeList &List) : DDGNode(NodeKind::PiBlock), NodeList(List) { assert(!NodeList.empty() && "pi-block node constructed with an empty list."); } PiBlockDDGNode::PiBlockDDGNode(const PiBlockDDGNode &N) : DDGNode(N), NodeList(N.NodeList) { assert(getKind() == NodeKind::PiBlock && !NodeList.empty() && "constructing from invalid pi-block node."); } PiBlockDDGNode::PiBlockDDGNode(PiBlockDDGNode &&N) : DDGNode(std::move(N)), NodeList(std::move(N.NodeList)) { assert(getKind() == NodeKind::PiBlock && !NodeList.empty() && "constructing from invalid pi-block node."); } PiBlockDDGNode::~PiBlockDDGNode() { NodeList.clear(); } //===--------------------------------------------------------------------===// // DDGEdge implementation //===--------------------------------------------------------------------===// raw_ostream &llvm::operator<<(raw_ostream &OS, const DDGEdge::EdgeKind K) { const char *Out; switch (K) { case DDGEdge::EdgeKind::RegisterDefUse: Out = "def-use"; break; case DDGEdge::EdgeKind::MemoryDependence: Out = "memory"; break; case DDGEdge::EdgeKind::Rooted: Out = "rooted"; break; case DDGEdge::EdgeKind::Unknown: Out = "?? (error)"; break; } OS << Out; return OS; } raw_ostream &llvm::operator<<(raw_ostream &OS, const DDGEdge &E) { OS << "[" << E.getKind() << "] to " << &E.getTargetNode() << "\n"; return OS; } //===--------------------------------------------------------------------===// // DataDependenceGraph implementation //===--------------------------------------------------------------------===// using BasicBlockListType = SmallVector; DataDependenceGraph::DataDependenceGraph(Function &F, DependenceInfo &D) : DependenceGraphInfo(F.getName().str(), D) { // Put the basic blocks in program order for correct dependence // directions. BasicBlockListType BBList; for (auto &SCC : make_range(scc_begin(&F), scc_end(&F))) append_range(BBList, SCC); std::reverse(BBList.begin(), BBList.end()); DDGBuilder(*this, D, BBList).populate(); } DataDependenceGraph::DataDependenceGraph(Loop &L, LoopInfo &LI, DependenceInfo &D) : DependenceGraphInfo(Twine(L.getHeader()->getParent()->getName() + "." + L.getHeader()->getName()) .str(), D) { // Put the basic blocks in program order for correct dependence // directions. LoopBlocksDFS DFS(&L); DFS.perform(&LI); BasicBlockListType BBList; append_range(BBList, make_range(DFS.beginRPO(), DFS.endRPO())); DDGBuilder(*this, D, BBList).populate(); } DataDependenceGraph::~DataDependenceGraph() { for (auto *N : Nodes) { for (auto *E : *N) delete E; delete N; } } bool DataDependenceGraph::addNode(DDGNode &N) { if (!DDGBase::addNode(N)) return false; // In general, if the root node is already created and linked, it is not safe // to add new nodes since they may be unreachable by the root. However, // pi-block nodes need to be added after the root node is linked, and they are // always reachable by the root, because they represent components that are // already reachable by root. auto *Pi = dyn_cast(&N); assert((!Root || Pi) && "Root node is already added. No more nodes can be added."); if (isa(N)) Root = &N; if (Pi) for (DDGNode *NI : Pi->getNodes()) PiBlockMap.insert(std::make_pair(NI, Pi)); return true; } const PiBlockDDGNode *DataDependenceGraph::getPiBlock(const NodeType &N) const { if (PiBlockMap.find(&N) == PiBlockMap.end()) return nullptr; auto *Pi = PiBlockMap.find(&N)->second; assert(PiBlockMap.find(Pi) == PiBlockMap.end() && "Nested pi-blocks detected."); return Pi; } raw_ostream &llvm::operator<<(raw_ostream &OS, const DataDependenceGraph &G) { for (DDGNode *Node : G) // Avoid printing nodes that are part of a pi-block twice. They will get // printed when the pi-block is printed. if (!G.getPiBlock(*Node)) OS << *Node << "\n"; OS << "\n"; return OS; } //===--------------------------------------------------------------------===// // DDGBuilder implementation //===--------------------------------------------------------------------===// bool DDGBuilder::areNodesMergeable(const DDGNode &Src, const DDGNode &Tgt) const { // Only merge two nodes if they are both simple nodes and the consecutive // instructions after merging belong to the same BB. const auto *SimpleSrc = dyn_cast(&Src); const auto *SimpleTgt = dyn_cast(&Tgt); if (!SimpleSrc || !SimpleTgt) return false; return SimpleSrc->getLastInstruction()->getParent() == SimpleTgt->getFirstInstruction()->getParent(); } void DDGBuilder::mergeNodes(DDGNode &A, DDGNode &B) { DDGEdge &EdgeToFold = A.back(); assert(A.getEdges().size() == 1 && EdgeToFold.getTargetNode() == B && "Expected A to have a single edge to B."); assert(isa(&A) && isa(&B) && "Expected simple nodes"); // Copy instructions from B to the end of A. cast(&A)->appendInstructions(*cast(&B)); // Move to A any outgoing edges from B. for (DDGEdge *BE : B) Graph.connect(A, BE->getTargetNode(), *BE); A.removeEdge(EdgeToFold); destroyEdge(EdgeToFold); Graph.removeNode(B); destroyNode(B); } bool DDGBuilder::shouldSimplify() const { return SimplifyDDG; } bool DDGBuilder::shouldCreatePiBlocks() const { return CreatePiBlocks; } //===--------------------------------------------------------------------===// // DDG Analysis Passes //===--------------------------------------------------------------------===// /// DDG as a loop pass. DDGAnalysis::Result DDGAnalysis::run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR) { Function *F = L.getHeader()->getParent(); DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI); return std::make_unique(L, AR.LI, DI); } AnalysisKey DDGAnalysis::Key; PreservedAnalyses DDGAnalysisPrinterPass::run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &U) { OS << "'DDG' for loop '" << L.getHeader()->getName() << "':\n"; OS << *AM.getResult(L, AR); return PreservedAnalyses::all(); }