#pragma once #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif //===--- StmtCXX.h - Classes for representing C++ statements ----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the C++ statement AST node classes. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_STMTCXX_H #define LLVM_CLANG_AST_STMTCXX_H #include "clang/AST/DeclarationName.h" #include "clang/AST/Expr.h" #include "clang/AST/NestedNameSpecifier.h" #include "clang/AST/Stmt.h" #include "llvm/Support/Compiler.h" namespace clang { class VarDecl; /// CXXCatchStmt - This represents a C++ catch block. /// class CXXCatchStmt : public Stmt { SourceLocation CatchLoc; /// The exception-declaration of the type. VarDecl *ExceptionDecl; /// The handler block. Stmt *HandlerBlock; public: CXXCatchStmt(SourceLocation catchLoc, VarDecl *exDecl, Stmt *handlerBlock) : Stmt(CXXCatchStmtClass), CatchLoc(catchLoc), ExceptionDecl(exDecl), HandlerBlock(handlerBlock) {} CXXCatchStmt(EmptyShell Empty) : Stmt(CXXCatchStmtClass), ExceptionDecl(nullptr), HandlerBlock(nullptr) {} SourceLocation getBeginLoc() const LLVM_READONLY { return CatchLoc; } SourceLocation getEndLoc() const LLVM_READONLY { return HandlerBlock->getEndLoc(); } SourceLocation getCatchLoc() const { return CatchLoc; } VarDecl *getExceptionDecl() const { return ExceptionDecl; } QualType getCaughtType() const; Stmt *getHandlerBlock() const { return HandlerBlock; } static bool classof(const Stmt *T) { return T->getStmtClass() == CXXCatchStmtClass; } child_range children() { return child_range(&HandlerBlock, &HandlerBlock+1); } const_child_range children() const { return const_child_range(&HandlerBlock, &HandlerBlock + 1); } friend class ASTStmtReader; }; /// CXXTryStmt - A C++ try block, including all handlers. /// class CXXTryStmt final : public Stmt, private llvm::TrailingObjects { friend TrailingObjects; friend class ASTStmtReader; SourceLocation TryLoc; unsigned NumHandlers; size_t numTrailingObjects(OverloadToken) const { return NumHandlers; } CXXTryStmt(SourceLocation tryLoc, Stmt *tryBlock, ArrayRef handlers); CXXTryStmt(EmptyShell Empty, unsigned numHandlers) : Stmt(CXXTryStmtClass), NumHandlers(numHandlers) { } Stmt *const *getStmts() const { return getTrailingObjects(); } Stmt **getStmts() { return getTrailingObjects(); } public: static CXXTryStmt *Create(const ASTContext &C, SourceLocation tryLoc, Stmt *tryBlock, ArrayRef handlers); static CXXTryStmt *Create(const ASTContext &C, EmptyShell Empty, unsigned numHandlers); SourceLocation getBeginLoc() const LLVM_READONLY { return getTryLoc(); } SourceLocation getTryLoc() const { return TryLoc; } SourceLocation getEndLoc() const { return getStmts()[NumHandlers]->getEndLoc(); } CompoundStmt *getTryBlock() { return cast(getStmts()[0]); } const CompoundStmt *getTryBlock() const { return cast(getStmts()[0]); } unsigned getNumHandlers() const { return NumHandlers; } CXXCatchStmt *getHandler(unsigned i) { return cast(getStmts()[i + 1]); } const CXXCatchStmt *getHandler(unsigned i) const { return cast(getStmts()[i + 1]); } static bool classof(const Stmt *T) { return T->getStmtClass() == CXXTryStmtClass; } child_range children() { return child_range(getStmts(), getStmts() + getNumHandlers() + 1); } const_child_range children() const { return const_child_range(getStmts(), getStmts() + getNumHandlers() + 1); } }; /// CXXForRangeStmt - This represents C++0x [stmt.ranged]'s ranged for /// statement, represented as 'for (range-declarator : range-expression)' /// or 'for (init-statement range-declarator : range-expression)'. /// /// This is stored in a partially-desugared form to allow full semantic /// analysis of the constituent components. The original syntactic components /// can be extracted using getLoopVariable and getRangeInit. class CXXForRangeStmt : public Stmt { SourceLocation ForLoc; enum { INIT, RANGE, BEGINSTMT, ENDSTMT, COND, INC, LOOPVAR, BODY, END }; // SubExprs[RANGE] is an expression or declstmt. // SubExprs[COND] and SubExprs[INC] are expressions. Stmt *SubExprs[END]; SourceLocation CoawaitLoc; SourceLocation ColonLoc; SourceLocation RParenLoc; friend class ASTStmtReader; public: CXXForRangeStmt(Stmt *InitStmt, DeclStmt *Range, DeclStmt *Begin, DeclStmt *End, Expr *Cond, Expr *Inc, DeclStmt *LoopVar, Stmt *Body, SourceLocation FL, SourceLocation CAL, SourceLocation CL, SourceLocation RPL); CXXForRangeStmt(EmptyShell Empty) : Stmt(CXXForRangeStmtClass, Empty) { } Stmt *getInit() { return SubExprs[INIT]; } VarDecl *getLoopVariable(); Expr *getRangeInit(); const Stmt *getInit() const { return SubExprs[INIT]; } const VarDecl *getLoopVariable() const; const Expr *getRangeInit() const; DeclStmt *getRangeStmt() { return cast(SubExprs[RANGE]); } DeclStmt *getBeginStmt() { return cast_or_null(SubExprs[BEGINSTMT]); } DeclStmt *getEndStmt() { return cast_or_null(SubExprs[ENDSTMT]); } Expr *getCond() { return cast_or_null(SubExprs[COND]); } Expr *getInc() { return cast_or_null(SubExprs[INC]); } DeclStmt *getLoopVarStmt() { return cast(SubExprs[LOOPVAR]); } Stmt *getBody() { return SubExprs[BODY]; } const DeclStmt *getRangeStmt() const { return cast(SubExprs[RANGE]); } const DeclStmt *getBeginStmt() const { return cast_or_null(SubExprs[BEGINSTMT]); } const DeclStmt *getEndStmt() const { return cast_or_null(SubExprs[ENDSTMT]); } const Expr *getCond() const { return cast_or_null(SubExprs[COND]); } const Expr *getInc() const { return cast_or_null(SubExprs[INC]); } const DeclStmt *getLoopVarStmt() const { return cast(SubExprs[LOOPVAR]); } const Stmt *getBody() const { return SubExprs[BODY]; } void setInit(Stmt *S) { SubExprs[INIT] = S; } void setRangeInit(Expr *E) { SubExprs[RANGE] = reinterpret_cast(E); } void setRangeStmt(Stmt *S) { SubExprs[RANGE] = S; } void setBeginStmt(Stmt *S) { SubExprs[BEGINSTMT] = S; } void setEndStmt(Stmt *S) { SubExprs[ENDSTMT] = S; } void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast(E); } void setInc(Expr *E) { SubExprs[INC] = reinterpret_cast(E); } void setLoopVarStmt(Stmt *S) { SubExprs[LOOPVAR] = S; } void setBody(Stmt *S) { SubExprs[BODY] = S; } SourceLocation getForLoc() const { return ForLoc; } SourceLocation getCoawaitLoc() const { return CoawaitLoc; } SourceLocation getColonLoc() const { return ColonLoc; } SourceLocation getRParenLoc() const { return RParenLoc; } SourceLocation getBeginLoc() const LLVM_READONLY { return ForLoc; } SourceLocation getEndLoc() const LLVM_READONLY { return SubExprs[BODY]->getEndLoc(); } static bool classof(const Stmt *T) { return T->getStmtClass() == CXXForRangeStmtClass; } // Iterators child_range children() { return child_range(&SubExprs[0], &SubExprs[END]); } const_child_range children() const { return const_child_range(&SubExprs[0], &SubExprs[END]); } }; /// Representation of a Microsoft __if_exists or __if_not_exists /// statement with a dependent name. /// /// The __if_exists statement can be used to include a sequence of statements /// in the program only when a particular dependent name does not exist. For /// example: /// /// \code /// template /// void call_foo(T &t) { /// __if_exists (T::foo) { /// t.foo(); // okay: only called when T::foo exists. /// } /// } /// \endcode /// /// Similarly, the __if_not_exists statement can be used to include the /// statements when a particular name does not exist. /// /// Note that this statement only captures __if_exists and __if_not_exists /// statements whose name is dependent. All non-dependent cases are handled /// directly in the parser, so that they don't introduce a new scope. Clang /// introduces scopes in the dependent case to keep names inside the compound /// statement from leaking out into the surround statements, which would /// compromise the template instantiation model. This behavior differs from /// Visual C++ (which never introduces a scope), but is a fairly reasonable /// approximation of the VC++ behavior. class MSDependentExistsStmt : public Stmt { SourceLocation KeywordLoc; bool IsIfExists; NestedNameSpecifierLoc QualifierLoc; DeclarationNameInfo NameInfo; Stmt *SubStmt; friend class ASTReader; friend class ASTStmtReader; public: MSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, NestedNameSpecifierLoc QualifierLoc, DeclarationNameInfo NameInfo, CompoundStmt *SubStmt) : Stmt(MSDependentExistsStmtClass), KeywordLoc(KeywordLoc), IsIfExists(IsIfExists), QualifierLoc(QualifierLoc), NameInfo(NameInfo), SubStmt(reinterpret_cast(SubStmt)) { } /// Retrieve the location of the __if_exists or __if_not_exists /// keyword. SourceLocation getKeywordLoc() const { return KeywordLoc; } /// Determine whether this is an __if_exists statement. bool isIfExists() const { return IsIfExists; } /// Determine whether this is an __if_exists statement. bool isIfNotExists() const { return !IsIfExists; } /// Retrieve the nested-name-specifier that qualifies this name, if /// any. NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } /// Retrieve the name of the entity we're testing for, along with /// location information DeclarationNameInfo getNameInfo() const { return NameInfo; } /// Retrieve the compound statement that will be included in the /// program only if the existence of the symbol matches the initial keyword. CompoundStmt *getSubStmt() const { return reinterpret_cast(SubStmt); } SourceLocation getBeginLoc() const LLVM_READONLY { return KeywordLoc; } SourceLocation getEndLoc() const LLVM_READONLY { return SubStmt->getEndLoc(); } child_range children() { return child_range(&SubStmt, &SubStmt+1); } const_child_range children() const { return const_child_range(&SubStmt, &SubStmt + 1); } static bool classof(const Stmt *T) { return T->getStmtClass() == MSDependentExistsStmtClass; } }; /// Represents the body of a coroutine. This wraps the normal function /// body and holds the additional semantic context required to set up and tear /// down the coroutine frame. class CoroutineBodyStmt final : public Stmt, private llvm::TrailingObjects { enum SubStmt { Body, ///< The body of the coroutine. Promise, ///< The promise statement. InitSuspend, ///< The initial suspend statement, run before the body. FinalSuspend, ///< The final suspend statement, run after the body. OnException, ///< Handler for exceptions thrown in the body. OnFallthrough, ///< Handler for control flow falling off the body. Allocate, ///< Coroutine frame memory allocation. Deallocate, ///< Coroutine frame memory deallocation. ReturnValue, ///< Return value for thunk function: p.get_return_object(). ResultDecl, ///< Declaration holding the result of get_return_object. ReturnStmt, ///< Return statement for the thunk function. ReturnStmtOnAllocFailure, ///< Return statement if allocation failed. FirstParamMove ///< First offset for move construction of parameter copies. }; unsigned NumParams; friend class ASTStmtReader; friend class ASTReader; friend TrailingObjects; Stmt **getStoredStmts() { return getTrailingObjects(); } Stmt *const *getStoredStmts() const { return getTrailingObjects(); } public: struct CtorArgs { Stmt *Body = nullptr; Stmt *Promise = nullptr; Expr *InitialSuspend = nullptr; Expr *FinalSuspend = nullptr; Stmt *OnException = nullptr; Stmt *OnFallthrough = nullptr; Expr *Allocate = nullptr; Expr *Deallocate = nullptr; Expr *ReturnValue = nullptr; Stmt *ResultDecl = nullptr; Stmt *ReturnStmt = nullptr; Stmt *ReturnStmtOnAllocFailure = nullptr; ArrayRef ParamMoves; }; private: CoroutineBodyStmt(CtorArgs const& Args); public: static CoroutineBodyStmt *Create(const ASTContext &C, CtorArgs const &Args); static CoroutineBodyStmt *Create(const ASTContext &C, EmptyShell, unsigned NumParams); bool hasDependentPromiseType() const { return getPromiseDecl()->getType()->isDependentType(); } /// Retrieve the body of the coroutine as written. This will be either /// a CompoundStmt or a TryStmt. Stmt *getBody() const { return getStoredStmts()[SubStmt::Body]; } Stmt *getPromiseDeclStmt() const { return getStoredStmts()[SubStmt::Promise]; } VarDecl *getPromiseDecl() const { return cast(cast(getPromiseDeclStmt())->getSingleDecl()); } Stmt *getInitSuspendStmt() const { return getStoredStmts()[SubStmt::InitSuspend]; } Stmt *getFinalSuspendStmt() const { return getStoredStmts()[SubStmt::FinalSuspend]; } Stmt *getExceptionHandler() const { return getStoredStmts()[SubStmt::OnException]; } Stmt *getFallthroughHandler() const { return getStoredStmts()[SubStmt::OnFallthrough]; } Expr *getAllocate() const { return cast_or_null(getStoredStmts()[SubStmt::Allocate]); } Expr *getDeallocate() const { return cast_or_null(getStoredStmts()[SubStmt::Deallocate]); } Expr *getReturnValueInit() const { return cast(getStoredStmts()[SubStmt::ReturnValue]); } Stmt *getResultDecl() const { return getStoredStmts()[SubStmt::ResultDecl]; } Stmt *getReturnStmt() const { return getStoredStmts()[SubStmt::ReturnStmt]; } Stmt *getReturnStmtOnAllocFailure() const { return getStoredStmts()[SubStmt::ReturnStmtOnAllocFailure]; } ArrayRef getParamMoves() const { return {getStoredStmts() + SubStmt::FirstParamMove, NumParams}; } SourceLocation getBeginLoc() const LLVM_READONLY { return getBody() ? getBody()->getBeginLoc() : getPromiseDecl()->getBeginLoc(); } SourceLocation getEndLoc() const LLVM_READONLY { return getBody() ? getBody()->getEndLoc() : getPromiseDecl()->getEndLoc(); } child_range children() { return child_range(getStoredStmts(), getStoredStmts() + SubStmt::FirstParamMove + NumParams); } const_child_range children() const { return const_child_range(getStoredStmts(), getStoredStmts() + SubStmt::FirstParamMove + NumParams); } static bool classof(const Stmt *T) { return T->getStmtClass() == CoroutineBodyStmtClass; } }; /// Represents a 'co_return' statement in the C++ Coroutines TS. /// /// This statament models the initialization of the coroutine promise /// (encapsulating the eventual notional return value) from an expression /// (or braced-init-list), followed by termination of the coroutine. /// /// This initialization is modeled by the evaluation of the operand /// followed by a call to one of: /// .return_value() /// .return_void() /// which we name the "promise call". class CoreturnStmt : public Stmt { SourceLocation CoreturnLoc; enum SubStmt { Operand, PromiseCall, Count }; Stmt *SubStmts[SubStmt::Count]; bool IsImplicit : 1; friend class ASTStmtReader; public: CoreturnStmt(SourceLocation CoreturnLoc, Stmt *Operand, Stmt *PromiseCall, bool IsImplicit = false) : Stmt(CoreturnStmtClass), CoreturnLoc(CoreturnLoc), IsImplicit(IsImplicit) { SubStmts[SubStmt::Operand] = Operand; SubStmts[SubStmt::PromiseCall] = PromiseCall; } CoreturnStmt(EmptyShell) : CoreturnStmt({}, {}, {}) {} SourceLocation getKeywordLoc() const { return CoreturnLoc; } /// Retrieve the operand of the 'co_return' statement. Will be nullptr /// if none was specified. Expr *getOperand() const { return static_cast(SubStmts[Operand]); } /// Retrieve the promise call that results from this 'co_return' /// statement. Will be nullptr if either the coroutine has not yet been /// finalized or the coroutine has no eventual return type. Expr *getPromiseCall() const { return static_cast(SubStmts[PromiseCall]); } bool isImplicit() const { return IsImplicit; } void setIsImplicit(bool value = true) { IsImplicit = value; } SourceLocation getBeginLoc() const LLVM_READONLY { return CoreturnLoc; } SourceLocation getEndLoc() const LLVM_READONLY { return getOperand() ? getOperand()->getEndLoc() : getBeginLoc(); } child_range children() { if (!getOperand()) return child_range(SubStmts + SubStmt::PromiseCall, SubStmts + SubStmt::Count); return child_range(SubStmts, SubStmts + SubStmt::Count); } const_child_range children() const { if (!getOperand()) return const_child_range(SubStmts + SubStmt::PromiseCall, SubStmts + SubStmt::Count); return const_child_range(SubStmts, SubStmts + SubStmt::Count); } static bool classof(const Stmt *T) { return T->getStmtClass() == CoreturnStmtClass; } }; } // end namespace clang #endif #ifdef __GNUC__ #pragma GCC diagnostic pop #endif