//=== StackAddrEscapeChecker.cpp ----------------------------------*- C++ -*--// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines stack address leak checker, which checks if an invalid // stack address is stored into a global or heap location. See CERT DCL30-C. // //===----------------------------------------------------------------------===// #include "clang/AST/ExprCXX.h" #include "clang/Basic/SourceManager.h" #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" #include "clang/StaticAnalyzer/Core/Checker.h" #include "clang/StaticAnalyzer/Core/CheckerManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "llvm/ADT/SmallString.h" #include "llvm/Support/raw_ostream.h" using namespace clang; using namespace ento; namespace { class StackAddrEscapeChecker : public Checker, check::EndFunction> { mutable IdentifierInfo *dispatch_semaphore_tII; mutable std::unique_ptr BT_stackleak; mutable std::unique_ptr BT_returnstack; mutable std::unique_ptr BT_capturedstackasync; mutable std::unique_ptr BT_capturedstackret; public: enum CheckKind { CK_StackAddrEscapeChecker, CK_StackAddrAsyncEscapeChecker, CK_NumCheckKinds }; DefaultBool ChecksEnabled[CK_NumCheckKinds]; CheckerNameRef CheckNames[CK_NumCheckKinds]; void checkPreCall(const CallEvent &Call, CheckerContext &C) const; void checkPreStmt(const ReturnStmt *RS, CheckerContext &C) const; void checkEndFunction(const ReturnStmt *RS, CheckerContext &Ctx) const; private: void checkReturnedBlockCaptures(const BlockDataRegion &B, CheckerContext &C) const; void checkAsyncExecutedBlockCaptures(const BlockDataRegion &B, CheckerContext &C) const; void EmitStackError(CheckerContext &C, const MemRegion *R, const Expr *RetE) const; bool isSemaphoreCaptured(const BlockDecl &B) const; static SourceRange genName(raw_ostream &os, const MemRegion *R, ASTContext &Ctx); static SmallVector getCapturedStackRegions(const BlockDataRegion &B, CheckerContext &C); static bool isArcManagedBlock(const MemRegion *R, CheckerContext &C); static bool isNotInCurrentFrame(const MemRegion *R, CheckerContext &C); }; } // namespace SourceRange StackAddrEscapeChecker::genName(raw_ostream &os, const MemRegion *R, ASTContext &Ctx) { // Get the base region, stripping away fields and elements. R = R->getBaseRegion(); SourceManager &SM = Ctx.getSourceManager(); SourceRange range; os << "Address of "; // Check if the region is a compound literal. if (const auto *CR = dyn_cast(R)) { const CompoundLiteralExpr *CL = CR->getLiteralExpr(); os << "stack memory associated with a compound literal " "declared on line " << SM.getExpansionLineNumber(CL->getBeginLoc()) << " returned to caller"; range = CL->getSourceRange(); } else if (const auto *AR = dyn_cast(R)) { const Expr *ARE = AR->getExpr(); SourceLocation L = ARE->getBeginLoc(); range = ARE->getSourceRange(); os << "stack memory allocated by call to alloca() on line " << SM.getExpansionLineNumber(L); } else if (const auto *BR = dyn_cast(R)) { const BlockDecl *BD = BR->getCodeRegion()->getDecl(); SourceLocation L = BD->getBeginLoc(); range = BD->getSourceRange(); os << "stack-allocated block declared on line " << SM.getExpansionLineNumber(L); } else if (const auto *VR = dyn_cast(R)) { os << "stack memory associated with local variable '" << VR->getString() << '\''; range = VR->getDecl()->getSourceRange(); } else if (const auto *TOR = dyn_cast(R)) { QualType Ty = TOR->getValueType().getLocalUnqualifiedType(); os << "stack memory associated with temporary object of type '"; Ty.print(os, Ctx.getPrintingPolicy()); os << "'"; range = TOR->getExpr()->getSourceRange(); } else { llvm_unreachable("Invalid region in ReturnStackAddressChecker."); } return range; } bool StackAddrEscapeChecker::isArcManagedBlock(const MemRegion *R, CheckerContext &C) { assert(R && "MemRegion should not be null"); return C.getASTContext().getLangOpts().ObjCAutoRefCount && isa(R); } bool StackAddrEscapeChecker::isNotInCurrentFrame(const MemRegion *R, CheckerContext &C) { const StackSpaceRegion *S = cast(R->getMemorySpace()); return S->getStackFrame() != C.getStackFrame(); } bool StackAddrEscapeChecker::isSemaphoreCaptured(const BlockDecl &B) const { if (!dispatch_semaphore_tII) dispatch_semaphore_tII = &B.getASTContext().Idents.get("dispatch_semaphore_t"); for (const auto &C : B.captures()) { const auto *T = C.getVariable()->getType()->getAs(); if (T && T->getDecl()->getIdentifier() == dispatch_semaphore_tII) return true; } return false; } SmallVector StackAddrEscapeChecker::getCapturedStackRegions(const BlockDataRegion &B, CheckerContext &C) { SmallVector Regions; BlockDataRegion::referenced_vars_iterator I = B.referenced_vars_begin(); BlockDataRegion::referenced_vars_iterator E = B.referenced_vars_end(); for (; I != E; ++I) { SVal Val = C.getState()->getSVal(I.getCapturedRegion()); const MemRegion *Region = Val.getAsRegion(); if (Region && isa(Region->getMemorySpace())) Regions.push_back(Region); } return Regions; } void StackAddrEscapeChecker::EmitStackError(CheckerContext &C, const MemRegion *R, const Expr *RetE) const { ExplodedNode *N = C.generateNonFatalErrorNode(); if (!N) return; if (!BT_returnstack) BT_returnstack = std::make_unique( CheckNames[CK_StackAddrEscapeChecker], "Return of address to stack-allocated memory"); // Generate a report for this bug. SmallString<128> buf; llvm::raw_svector_ostream os(buf); SourceRange range = genName(os, R, C.getASTContext()); os << " returned to caller"; auto report = std::make_unique(*BT_returnstack, os.str(), N); report->addRange(RetE->getSourceRange()); if (range.isValid()) report->addRange(range); C.emitReport(std::move(report)); } void StackAddrEscapeChecker::checkAsyncExecutedBlockCaptures( const BlockDataRegion &B, CheckerContext &C) const { // There is a not-too-uncommon idiom // where a block passed to dispatch_async captures a semaphore // and then the thread (which called dispatch_async) is blocked on waiting // for the completion of the execution of the block // via dispatch_semaphore_wait. To avoid false-positives (for now) // we ignore all the blocks which have captured // a variable of the type "dispatch_semaphore_t". if (isSemaphoreCaptured(*B.getDecl())) return; for (const MemRegion *Region : getCapturedStackRegions(B, C)) { // The block passed to dispatch_async may capture another block // created on the stack. However, there is no leak in this situaton, // no matter if ARC or no ARC is enabled: // dispatch_async copies the passed "outer" block (via Block_copy) // and if the block has captured another "inner" block, // the "inner" block will be copied as well. if (isa(Region)) continue; ExplodedNode *N = C.generateNonFatalErrorNode(); if (!N) continue; if (!BT_capturedstackasync) BT_capturedstackasync = std::make_unique( CheckNames[CK_StackAddrAsyncEscapeChecker], "Address of stack-allocated memory is captured"); SmallString<128> Buf; llvm::raw_svector_ostream Out(Buf); SourceRange Range = genName(Out, Region, C.getASTContext()); Out << " is captured by an asynchronously-executed block"; auto Report = std::make_unique( *BT_capturedstackasync, Out.str(), N); if (Range.isValid()) Report->addRange(Range); C.emitReport(std::move(Report)); } } void StackAddrEscapeChecker::checkReturnedBlockCaptures( const BlockDataRegion &B, CheckerContext &C) const { for (const MemRegion *Region : getCapturedStackRegions(B, C)) { if (isArcManagedBlock(Region, C) || isNotInCurrentFrame(Region, C)) continue; ExplodedNode *N = C.generateNonFatalErrorNode(); if (!N) continue; if (!BT_capturedstackret) BT_capturedstackret = std::make_unique( CheckNames[CK_StackAddrEscapeChecker], "Address of stack-allocated memory is captured"); SmallString<128> Buf; llvm::raw_svector_ostream Out(Buf); SourceRange Range = genName(Out, Region, C.getASTContext()); Out << " is captured by a returned block"; auto Report = std::make_unique(*BT_capturedstackret, Out.str(), N); if (Range.isValid()) Report->addRange(Range); C.emitReport(std::move(Report)); } } void StackAddrEscapeChecker::checkPreCall(const CallEvent &Call, CheckerContext &C) const { if (!ChecksEnabled[CK_StackAddrAsyncEscapeChecker]) return; if (!Call.isGlobalCFunction("dispatch_after") && !Call.isGlobalCFunction("dispatch_async")) return; for (unsigned Idx = 0, NumArgs = Call.getNumArgs(); Idx < NumArgs; ++Idx) { if (const BlockDataRegion *B = dyn_cast_or_null( Call.getArgSVal(Idx).getAsRegion())) checkAsyncExecutedBlockCaptures(*B, C); } } void StackAddrEscapeChecker::checkPreStmt(const ReturnStmt *RS, CheckerContext &C) const { if (!ChecksEnabled[CK_StackAddrEscapeChecker]) return; const Expr *RetE = RS->getRetValue(); if (!RetE) return; RetE = RetE->IgnoreParens(); SVal V = C.getSVal(RetE); const MemRegion *R = V.getAsRegion(); if (!R) return; if (const BlockDataRegion *B = dyn_cast(R)) checkReturnedBlockCaptures(*B, C); if (!isa(R->getMemorySpace()) || isNotInCurrentFrame(R, C) || isArcManagedBlock(R, C)) return; // Returning a record by value is fine. (In this case, the returned // expression will be a copy-constructor, possibly wrapped in an // ExprWithCleanups node.) if (const ExprWithCleanups *Cleanup = dyn_cast(RetE)) RetE = Cleanup->getSubExpr(); if (isa(RetE) && RetE->getType()->isRecordType()) return; // The CK_CopyAndAutoreleaseBlockObject cast causes the block to be copied // so the stack address is not escaping here. if (const auto *ICE = dyn_cast(RetE)) { if (isa(R) && ICE->getCastKind() == CK_CopyAndAutoreleaseBlockObject) { return; } } EmitStackError(C, R, RetE); } void StackAddrEscapeChecker::checkEndFunction(const ReturnStmt *RS, CheckerContext &Ctx) const { if (!ChecksEnabled[CK_StackAddrEscapeChecker]) return; ProgramStateRef State = Ctx.getState(); // Iterate over all bindings to global variables and see if it contains // a memory region in the stack space. class CallBack : public StoreManager::BindingsHandler { private: CheckerContext &Ctx; const StackFrameContext *PoppedFrame; /// Look for stack variables referring to popped stack variables. /// Returns true only if it found some dangling stack variables /// referred by an other stack variable from different stack frame. bool checkForDanglingStackVariable(const MemRegion *Referrer, const MemRegion *Referred) { const auto *ReferrerMemSpace = Referrer->getMemorySpace()->getAs(); const auto *ReferredMemSpace = Referred->getMemorySpace()->getAs(); if (!ReferrerMemSpace || !ReferredMemSpace) return false; const auto *ReferrerFrame = ReferrerMemSpace->getStackFrame(); const auto *ReferredFrame = ReferredMemSpace->getStackFrame(); if (ReferrerMemSpace && ReferredMemSpace) { if (ReferredFrame == PoppedFrame && ReferrerFrame->isParentOf(PoppedFrame)) { V.emplace_back(Referrer, Referred); return true; } } return false; } public: SmallVector, 10> V; CallBack(CheckerContext &CC) : Ctx(CC), PoppedFrame(CC.getStackFrame()) {} bool HandleBinding(StoreManager &SMgr, Store S, const MemRegion *Region, SVal Val) override { const MemRegion *VR = Val.getAsRegion(); if (!VR) return true; if (checkForDanglingStackVariable(Region, VR)) return true; // Check the globals for the same. if (!isa(Region->getMemorySpace())) return true; if (VR && VR->hasStackStorage() && !isArcManagedBlock(VR, Ctx) && !isNotInCurrentFrame(VR, Ctx)) V.emplace_back(Region, VR); return true; } }; CallBack Cb(Ctx); State->getStateManager().getStoreManager().iterBindings(State->getStore(), Cb); if (Cb.V.empty()) return; // Generate an error node. ExplodedNode *N = Ctx.generateNonFatalErrorNode(State); if (!N) return; if (!BT_stackleak) BT_stackleak = std::make_unique( CheckNames[CK_StackAddrEscapeChecker], "Stack address stored into global variable", "Stack address was saved into a global variable. " "This is dangerous because the address will become " "invalid after returning from the function"); for (const auto &P : Cb.V) { const MemRegion *Referrer = P.first; const MemRegion *Referred = P.second; // Generate a report for this bug. const StringRef CommonSuffix = "upon returning to the caller. This will be a dangling reference"; SmallString<128> Buf; llvm::raw_svector_ostream Out(Buf); const SourceRange Range = genName(Out, Referred, Ctx.getASTContext()); if (isa(Referrer)) { Out << " is still referred to by a temporary object on the stack " << CommonSuffix; auto Report = std::make_unique(*BT_stackleak, Out.str(), N); Ctx.emitReport(std::move(Report)); return; } const StringRef ReferrerMemorySpace = [](const MemSpaceRegion *Space) { if (isa(Space)) return "static"; if (isa(Space)) return "global"; assert(isa(Space)); return "stack"; }(Referrer->getMemorySpace()); // This cast supposed to succeed. const VarRegion *ReferrerVar = cast(Referrer->getBaseRegion()); const std::string ReferrerVarName = ReferrerVar->getDecl()->getDeclName().getAsString(); Out << " is still referred to by the " << ReferrerMemorySpace << " variable '" << ReferrerVarName << "' " << CommonSuffix; auto Report = std::make_unique(*BT_stackleak, Out.str(), N); if (Range.isValid()) Report->addRange(Range); Ctx.emitReport(std::move(Report)); } } void ento::registerStackAddrEscapeBase(CheckerManager &mgr) { mgr.registerChecker(); } bool ento::shouldRegisterStackAddrEscapeBase(const CheckerManager &mgr) { return true; } #define REGISTER_CHECKER(name) \ void ento::register##name(CheckerManager &Mgr) { \ StackAddrEscapeChecker *Chk = Mgr.getChecker(); \ Chk->ChecksEnabled[StackAddrEscapeChecker::CK_##name] = true; \ Chk->CheckNames[StackAddrEscapeChecker::CK_##name] = \ Mgr.getCurrentCheckerName(); \ } \ \ bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } REGISTER_CHECKER(StackAddrEscapeChecker) REGISTER_CHECKER(StackAddrAsyncEscapeChecker)