//== GenericTaintChecker.cpp ----------------------------------- -*- C++ -*--=// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This checker defines the attack surface for generic taint propagation. // // The taint information produced by it might be useful to other checkers. For // example, checkers should report errors which involve tainted data more // aggressively, even if the involved symbols are under constrained. // //===----------------------------------------------------------------------===// #include "Taint.h" #include "Yaml.h" #include "clang/AST/Attr.h" #include "clang/Basic/Builtins.h" #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" #include "clang/StaticAnalyzer/Core/Checker.h" #include "clang/StaticAnalyzer/Core/CheckerManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" #include "llvm/Support/YAMLTraits.h" #include #include #include using namespace clang; using namespace ento; using namespace taint; namespace { class GenericTaintChecker; /// Check for CWE-134: Uncontrolled Format String. constexpr llvm::StringLiteral MsgUncontrolledFormatString = "Untrusted data is used as a format string " "(CWE-134: Uncontrolled Format String)"; /// Check for: /// CERT/STR02-C. "Sanitize data passed to complex subsystems" /// CWE-78, "Failure to Sanitize Data into an OS Command" constexpr llvm::StringLiteral MsgSanitizeSystemArgs = "Untrusted data is passed to a system call " "(CERT/STR02-C. Sanitize data passed to complex subsystems)"; /// Check if tainted data is used as a buffer size in strn.. functions, /// and allocators. constexpr llvm::StringLiteral MsgTaintedBufferSize = "Untrusted data is used to specify the buffer size " "(CERT/STR31-C. Guarantee that storage for strings has sufficient space " "for character data and the null terminator)"; /// Check if tainted data is used as a custom sink's parameter. constexpr llvm::StringLiteral MsgCustomSink = "Untrusted data is passed to a user-defined sink"; using ArgIdxTy = int; using ArgVecTy = llvm::SmallVector; /// Denotes the return value. constexpr ArgIdxTy ReturnValueIndex{-1}; static ArgIdxTy fromArgumentCount(unsigned Count) { assert(Count <= static_cast(std::numeric_limits::max()) && "ArgIdxTy is not large enough to represent the number of arguments."); return Count; } /// Check if the region the expression evaluates to is the standard input, /// and thus, is tainted. /// FIXME: Move this to Taint.cpp. bool isStdin(SVal Val, const ASTContext &ACtx) { // FIXME: What if Val is NonParamVarRegion? // The region should be symbolic, we do not know it's value. const auto *SymReg = dyn_cast_or_null(Val.getAsRegion()); if (!SymReg) return false; // Get it's symbol and find the declaration region it's pointing to. const auto *Sm = dyn_cast(SymReg->getSymbol()); if (!Sm) return false; const auto *DeclReg = dyn_cast(Sm->getRegion()); if (!DeclReg) return false; // This region corresponds to a declaration, find out if it's a global/extern // variable named stdin with the proper type. if (const auto *D = dyn_cast_or_null(DeclReg->getDecl())) { D = D->getCanonicalDecl(); // FIXME: This should look for an exact match. if (D->getName().contains("stdin") && D->isExternC()) { const QualType FILETy = ACtx.getFILEType().getCanonicalType(); const QualType Ty = D->getType().getCanonicalType(); if (Ty->isPointerType()) return Ty->getPointeeType() == FILETy; } } return false; } SVal getPointeeOf(const CheckerContext &C, Loc LValue) { const QualType ArgTy = LValue.getType(C.getASTContext()); if (!ArgTy->isPointerType() || !ArgTy->getPointeeType()->isVoidType()) return C.getState()->getSVal(LValue); // Do not dereference void pointers. Treat them as byte pointers instead. // FIXME: we might want to consider more than just the first byte. return C.getState()->getSVal(LValue, C.getASTContext().CharTy); } /// Given a pointer/reference argument, return the value it refers to. Optional getPointeeOf(const CheckerContext &C, SVal Arg) { if (auto LValue = Arg.getAs()) return getPointeeOf(C, *LValue); return None; } /// Given a pointer, return the SVal of its pointee or if it is tainted, /// otherwise return the pointer's SVal if tainted. /// Also considers stdin as a taint source. Optional getTaintedPointeeOrPointer(const CheckerContext &C, SVal Arg) { const ProgramStateRef State = C.getState(); if (auto Pointee = getPointeeOf(C, Arg)) if (isTainted(State, *Pointee)) // FIXME: isTainted(...) ? Pointee : None; return Pointee; if (isTainted(State, Arg)) return Arg; // FIXME: This should be done by the isTainted() API. if (isStdin(Arg, C.getASTContext())) return Arg; return None; } bool isTaintedOrPointsToTainted(const Expr *E, const ProgramStateRef &State, CheckerContext &C) { return getTaintedPointeeOrPointer(C, C.getSVal(E)).hasValue(); } /// ArgSet is used to describe arguments relevant for taint detection or /// taint application. A discrete set of argument indexes and a variadic /// argument list signified by a starting index are supported. class ArgSet { public: ArgSet() = default; ArgSet(ArgVecTy &&DiscreteArgs, Optional VariadicIndex = None) : DiscreteArgs(std::move(DiscreteArgs)), VariadicIndex(std::move(VariadicIndex)) {} bool contains(ArgIdxTy ArgIdx) const { if (llvm::is_contained(DiscreteArgs, ArgIdx)) return true; return VariadicIndex && ArgIdx >= *VariadicIndex; } bool isEmpty() const { return DiscreteArgs.empty() && !VariadicIndex; } ArgVecTy ArgsUpTo(ArgIdxTy LastArgIdx) const { ArgVecTy Args; for (ArgIdxTy I = ReturnValueIndex; I <= LastArgIdx; ++I) { if (contains(I)) Args.push_back(I); } return Args; } private: ArgVecTy DiscreteArgs; Optional VariadicIndex; }; /// A struct used to specify taint propagation rules for a function. /// /// If any of the possible taint source arguments is tainted, all of the /// destination arguments should also be tainted. If ReturnValueIndex is added /// to the dst list, the return value will be tainted. class GenericTaintRule { /// Arguments which are taints sinks and should be checked, and a report /// should be emitted if taint reaches these. ArgSet SinkArgs; /// Arguments which should be sanitized on function return. ArgSet FilterArgs; /// Arguments which can participate in taint propagationa. If any of the /// arguments in PropSrcArgs is tainted, all arguments in PropDstArgs should /// be tainted. ArgSet PropSrcArgs; ArgSet PropDstArgs; /// A message that explains why the call is sensitive to taint. Optional SinkMsg; GenericTaintRule() = default; GenericTaintRule(ArgSet &&Sink, ArgSet &&Filter, ArgSet &&Src, ArgSet &&Dst, Optional SinkMsg = None) : SinkArgs(std::move(Sink)), FilterArgs(std::move(Filter)), PropSrcArgs(std::move(Src)), PropDstArgs(std::move(Dst)), SinkMsg(SinkMsg) {} public: /// Make a rule that reports a warning if taint reaches any of \p FilterArgs /// arguments. static GenericTaintRule Sink(ArgSet &&SinkArgs, Optional Msg = None) { return {std::move(SinkArgs), {}, {}, {}, Msg}; } /// Make a rule that sanitizes all FilterArgs arguments. static GenericTaintRule Filter(ArgSet &&FilterArgs) { return {{}, std::move(FilterArgs), {}, {}}; } /// Make a rule that unconditionally taints all Args. /// If Func is provided, it must also return true for taint to propagate. static GenericTaintRule Source(ArgSet &&SourceArgs) { return {{}, {}, {}, std::move(SourceArgs)}; } /// Make a rule that taints all PropDstArgs if any of PropSrcArgs is tainted. static GenericTaintRule Prop(ArgSet &&SrcArgs, ArgSet &&DstArgs) { return {{}, {}, std::move(SrcArgs), std::move(DstArgs)}; } /// Make a rule that taints all PropDstArgs if any of PropSrcArgs is tainted. static GenericTaintRule SinkProp(ArgSet &&SinkArgs, ArgSet &&SrcArgs, ArgSet &&DstArgs, Optional Msg = None) { return { std::move(SinkArgs), {}, std::move(SrcArgs), std::move(DstArgs), Msg}; } /// Process a function which could either be a taint source, a taint sink, a /// taint filter or a taint propagator. void process(const GenericTaintChecker &Checker, const CallEvent &Call, CheckerContext &C) const; /// Handles the resolution of indexes of type ArgIdxTy to Expr*-s. static const Expr *GetArgExpr(ArgIdxTy ArgIdx, const CallEvent &Call) { return ArgIdx == ReturnValueIndex ? Call.getOriginExpr() : Call.getArgExpr(ArgIdx); }; /// Functions for custom taintedness propagation. static bool UntrustedEnv(CheckerContext &C); }; using RuleLookupTy = CallDescriptionMap; /// Used to parse the configuration file. struct TaintConfiguration { using NameScopeArgs = std::tuple; enum class VariadicType { None, Src, Dst }; struct Common { std::string Name; std::string Scope; }; struct Sink : Common { ArgVecTy SinkArgs; }; struct Filter : Common { ArgVecTy FilterArgs; }; struct Propagation : Common { ArgVecTy SrcArgs; ArgVecTy DstArgs; VariadicType VarType; ArgIdxTy VarIndex; }; std::vector Propagations; std::vector Filters; std::vector Sinks; TaintConfiguration() = default; TaintConfiguration(const TaintConfiguration &) = default; TaintConfiguration(TaintConfiguration &&) = default; TaintConfiguration &operator=(const TaintConfiguration &) = default; TaintConfiguration &operator=(TaintConfiguration &&) = default; }; struct GenericTaintRuleParser { GenericTaintRuleParser(CheckerManager &Mgr) : Mgr(Mgr) {} /// Container type used to gather call identification objects grouped into /// pairs with their corresponding taint rules. It is temporary as it is used /// to finally initialize RuleLookupTy, which is considered to be immutable. using RulesContTy = std::vector>; RulesContTy parseConfiguration(const std::string &Option, TaintConfiguration &&Config) const; private: using NamePartsTy = llvm::SmallVector, 2>; /// Validate part of the configuration, which contains a list of argument /// indexes. void validateArgVector(const std::string &Option, const ArgVecTy &Args) const; template static NamePartsTy parseNameParts(const Config &C); // Takes the config and creates a CallDescription for it and associates a Rule // with that. template static void consumeRulesFromConfig(const Config &C, GenericTaintRule &&Rule, RulesContTy &Rules); void parseConfig(const std::string &Option, TaintConfiguration::Sink &&P, RulesContTy &Rules) const; void parseConfig(const std::string &Option, TaintConfiguration::Filter &&P, RulesContTy &Rules) const; void parseConfig(const std::string &Option, TaintConfiguration::Propagation &&P, RulesContTy &Rules) const; CheckerManager &Mgr; }; class GenericTaintChecker : public Checker { public: static void *getTag() { static int Tag; return &Tag; } void checkPreCall(const CallEvent &Call, CheckerContext &C) const; void checkPostCall(const CallEvent &Call, CheckerContext &C) const; void printState(raw_ostream &Out, ProgramStateRef State, const char *NL, const char *Sep) const override; /// Generate a report if the expression is tainted or points to tainted data. bool generateReportIfTainted(const Expr *E, StringRef Msg, CheckerContext &C) const; private: const BugType BT{this, "Use of Untrusted Data", "Untrusted Data"}; bool checkUncontrolledFormatString(const CallEvent &Call, CheckerContext &C) const; void taintUnsafeSocketProtocol(const CallEvent &Call, CheckerContext &C) const; /// Default taint rules are initilized with the help of a CheckerContext to /// access the names of built-in functions like memcpy. void initTaintRules(CheckerContext &C) const; /// CallDescription currently cannot restrict matches to the global namespace /// only, which is why multiple CallDescriptionMaps are used, as we want to /// disambiguate global C functions from functions inside user-defined /// namespaces. // TODO: Remove separation to simplify matching logic once CallDescriptions // are more expressive. mutable Optional StaticTaintRules; mutable Optional DynamicTaintRules; }; } // end of anonymous namespace /// YAML serialization mapping. LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfiguration::Sink) LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfiguration::Filter) LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfiguration::Propagation) namespace llvm { namespace yaml { template <> struct MappingTraits { static void mapping(IO &IO, TaintConfiguration &Config) { IO.mapOptional("Propagations", Config.Propagations); IO.mapOptional("Filters", Config.Filters); IO.mapOptional("Sinks", Config.Sinks); } }; template <> struct MappingTraits { static void mapping(IO &IO, TaintConfiguration::Sink &Sink) { IO.mapRequired("Name", Sink.Name); IO.mapOptional("Scope", Sink.Scope); IO.mapRequired("Args", Sink.SinkArgs); } }; template <> struct MappingTraits { static void mapping(IO &IO, TaintConfiguration::Filter &Filter) { IO.mapRequired("Name", Filter.Name); IO.mapOptional("Scope", Filter.Scope); IO.mapRequired("Args", Filter.FilterArgs); } }; template <> struct MappingTraits { static void mapping(IO &IO, TaintConfiguration::Propagation &Propagation) { IO.mapRequired("Name", Propagation.Name); IO.mapOptional("Scope", Propagation.Scope); IO.mapOptional("SrcArgs", Propagation.SrcArgs); IO.mapOptional("DstArgs", Propagation.DstArgs); IO.mapOptional("VariadicType", Propagation.VarType); IO.mapOptional("VariadicIndex", Propagation.VarIndex); } }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, TaintConfiguration::VariadicType &Value) { IO.enumCase(Value, "None", TaintConfiguration::VariadicType::None); IO.enumCase(Value, "Src", TaintConfiguration::VariadicType::Src); IO.enumCase(Value, "Dst", TaintConfiguration::VariadicType::Dst); } }; } // namespace yaml } // namespace llvm /// A set which is used to pass information from call pre-visit instruction /// to the call post-visit. The values are signed integers, which are either /// ReturnValueIndex, or indexes of the pointer/reference argument, which /// points to data, which should be tainted on return. REGISTER_SET_WITH_PROGRAMSTATE(TaintArgsOnPostVisit, ArgIdxTy) void GenericTaintRuleParser::validateArgVector(const std::string &Option, const ArgVecTy &Args) const { for (ArgIdxTy Arg : Args) { if (Arg < ReturnValueIndex) { Mgr.reportInvalidCheckerOptionValue( Mgr.getChecker(), Option, "an argument number for propagation rules greater or equal to -1"); } } } template GenericTaintRuleParser::NamePartsTy GenericTaintRuleParser::parseNameParts(const Config &C) { NamePartsTy NameParts; if (!C.Scope.empty()) { // If the Scope argument contains multiple "::" parts, those are considered // namespace identifiers. llvm::SmallVector NSParts; StringRef{C.Scope}.split(NSParts, "::", /*MaxSplit*/ -1, /*KeepEmpty*/ false); NameParts.append(NSParts.begin(), NSParts.end()); } NameParts.emplace_back(C.Name); return NameParts; } template void GenericTaintRuleParser::consumeRulesFromConfig(const Config &C, GenericTaintRule &&Rule, RulesContTy &Rules) { NamePartsTy NameParts = parseNameParts(C); llvm::SmallVector CallDescParts{NameParts.size()}; llvm::transform(NameParts, CallDescParts.begin(), [](SmallString<32> &S) { return S.c_str(); }); Rules.emplace_back(CallDescription(CallDescParts), std::move(Rule)); } void GenericTaintRuleParser::parseConfig(const std::string &Option, TaintConfiguration::Sink &&S, RulesContTy &Rules) const { validateArgVector(Option, S.SinkArgs); consumeRulesFromConfig(S, GenericTaintRule::Sink(std::move(S.SinkArgs)), Rules); } void GenericTaintRuleParser::parseConfig(const std::string &Option, TaintConfiguration::Filter &&S, RulesContTy &Rules) const { validateArgVector(Option, S.FilterArgs); consumeRulesFromConfig(S, GenericTaintRule::Filter(std::move(S.FilterArgs)), Rules); } void GenericTaintRuleParser::parseConfig(const std::string &Option, TaintConfiguration::Propagation &&P, RulesContTy &Rules) const { validateArgVector(Option, P.SrcArgs); validateArgVector(Option, P.DstArgs); bool IsSrcVariadic = P.VarType == TaintConfiguration::VariadicType::Src; bool IsDstVariadic = P.VarType == TaintConfiguration::VariadicType::Dst; Optional JustVarIndex = P.VarIndex; ArgSet SrcDesc(std::move(P.SrcArgs), IsSrcVariadic ? JustVarIndex : None); ArgSet DstDesc(std::move(P.DstArgs), IsDstVariadic ? JustVarIndex : None); consumeRulesFromConfig( P, GenericTaintRule::Prop(std::move(SrcDesc), std::move(DstDesc)), Rules); } GenericTaintRuleParser::RulesContTy GenericTaintRuleParser::parseConfiguration(const std::string &Option, TaintConfiguration &&Config) const { RulesContTy Rules; for (auto &F : Config.Filters) parseConfig(Option, std::move(F), Rules); for (auto &S : Config.Sinks) parseConfig(Option, std::move(S), Rules); for (auto &P : Config.Propagations) parseConfig(Option, std::move(P), Rules); return Rules; } void GenericTaintChecker::initTaintRules(CheckerContext &C) const { // Check for exact name match for functions without builtin substitutes. // Use qualified name, because these are C functions without namespace. if (StaticTaintRules || DynamicTaintRules) return; using RulesConstructionTy = std::vector>; using TR = GenericTaintRule; const Builtin::Context &BI = C.getASTContext().BuiltinInfo; RulesConstructionTy GlobalCRules{ // Sources {{"fdopen"}, TR::Source({{ReturnValueIndex}})}, {{"fopen"}, TR::Source({{ReturnValueIndex}})}, {{"freopen"}, TR::Source({{ReturnValueIndex}})}, {{"getch"}, TR::Source({{ReturnValueIndex}})}, {{"getchar"}, TR::Source({{ReturnValueIndex}})}, {{"getchar_unlocked"}, TR::Source({{ReturnValueIndex}})}, {{"gets"}, TR::Source({{0}, ReturnValueIndex})}, {{"scanf"}, TR::Source({{}, 1})}, {{"wgetch"}, TR::Source({{}, ReturnValueIndex})}, // Props {{"atoi"}, TR::Prop({{0}}, {{ReturnValueIndex}})}, {{"atol"}, TR::Prop({{0}}, {{ReturnValueIndex}})}, {{"atoll"}, TR::Prop({{0}}, {{ReturnValueIndex}})}, {{"fgetc"}, TR::Prop({{0}}, {{ReturnValueIndex}})}, {{"fgetln"}, TR::Prop({{0}}, {{ReturnValueIndex}})}, {{"fgets"}, TR::Prop({{2}}, {{0}, ReturnValueIndex})}, {{"fscanf"}, TR::Prop({{0}}, {{}, 2})}, {{"sscanf"}, TR::Prop({{0}}, {{}, 2})}, {{"getc"}, TR::Prop({{0}}, {{ReturnValueIndex}})}, {{"getc_unlocked"}, TR::Prop({{0}}, {{ReturnValueIndex}})}, {{"getdelim"}, TR::Prop({{3}}, {{0}})}, {{"getline"}, TR::Prop({{2}}, {{0}})}, {{"getw"}, TR::Prop({{0}}, {{ReturnValueIndex}})}, {{"pread"}, TR::Prop({{0, 1, 2, 3}}, {{1, ReturnValueIndex}})}, {{"read"}, TR::Prop({{0, 2}}, {{1, ReturnValueIndex}})}, {{"strchr"}, TR::Prop({{0}}, {{ReturnValueIndex}})}, {{"strrchr"}, TR::Prop({{0}}, {{ReturnValueIndex}})}, {{"tolower"}, TR::Prop({{0}}, {{ReturnValueIndex}})}, {{"toupper"}, TR::Prop({{0}}, {{ReturnValueIndex}})}, {{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrncat)}}, TR::Prop({{1, 2}}, {{0, ReturnValueIndex}})}, {{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrlcpy)}}, TR::Prop({{1, 2}}, {{0}})}, {{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrlcat)}}, TR::Prop({{1, 2}}, {{0}})}, {{CDF_MaybeBuiltin, {"snprintf"}}, TR::Prop({{1}, 3}, {{0, ReturnValueIndex}})}, {{CDF_MaybeBuiltin, {"sprintf"}}, TR::Prop({{1}, 2}, {{0, ReturnValueIndex}})}, {{CDF_MaybeBuiltin, {"strcpy"}}, TR::Prop({{1}}, {{0, ReturnValueIndex}})}, {{CDF_MaybeBuiltin, {"stpcpy"}}, TR::Prop({{1}}, {{0, ReturnValueIndex}})}, {{CDF_MaybeBuiltin, {"strcat"}}, TR::Prop({{1}}, {{0, ReturnValueIndex}})}, {{CDF_MaybeBuiltin, {"strdup"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, {{CDF_MaybeBuiltin, {"strdupa"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, {{CDF_MaybeBuiltin, {"wcsdup"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, // Sinks {{"system"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)}, {{"popen"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)}, {{"execl"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)}, {{"execle"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)}, {{"execlp"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)}, {{"execvp"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)}, {{"execvP"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)}, {{"execve"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)}, {{"dlopen"}, TR::Sink({{0}}, MsgSanitizeSystemArgs)}, {{CDF_MaybeBuiltin, {"malloc"}}, TR::Sink({{0}}, MsgTaintedBufferSize)}, {{CDF_MaybeBuiltin, {"calloc"}}, TR::Sink({{0}}, MsgTaintedBufferSize)}, {{CDF_MaybeBuiltin, {"alloca"}}, TR::Sink({{0}}, MsgTaintedBufferSize)}, {{CDF_MaybeBuiltin, {"memccpy"}}, TR::Sink({{3}}, MsgTaintedBufferSize)}, {{CDF_MaybeBuiltin, {"realloc"}}, TR::Sink({{1}}, MsgTaintedBufferSize)}, {{{"setproctitle"}}, TR::Sink({{0}, 1}, MsgUncontrolledFormatString)}, {{{"setproctitle_fast"}}, TR::Sink({{0}, 1}, MsgUncontrolledFormatString)}, // SinkProps {{CDF_MaybeBuiltin, BI.getName(Builtin::BImemcpy)}, TR::SinkProp({{2}}, {{1, 2}}, {{0, ReturnValueIndex}}, MsgTaintedBufferSize)}, {{CDF_MaybeBuiltin, {BI.getName(Builtin::BImemmove)}}, TR::SinkProp({{2}}, {{1, 2}}, {{0, ReturnValueIndex}}, MsgTaintedBufferSize)}, {{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrncpy)}}, TR::SinkProp({{2}}, {{1, 2}}, {{0, ReturnValueIndex}}, MsgTaintedBufferSize)}, {{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrndup)}}, TR::SinkProp({{1}}, {{0, 1}}, {{ReturnValueIndex}}, MsgTaintedBufferSize)}, {{CDF_MaybeBuiltin, {"bcopy"}}, TR::SinkProp({{2}}, {{0, 2}}, {{1}}, MsgTaintedBufferSize)}}; // `getenv` returns taint only in untrusted environments. if (TR::UntrustedEnv(C)) { // void setproctitle_init(int argc, char *argv[], char *envp[]) GlobalCRules.push_back( {{{"setproctitle_init"}}, TR::Sink({{2}}, MsgCustomSink)}); GlobalCRules.push_back({{"getenv"}, TR::Source({{ReturnValueIndex}})}); } StaticTaintRules.emplace(std::make_move_iterator(GlobalCRules.begin()), std::make_move_iterator(GlobalCRules.end())); // User-provided taint configuration. CheckerManager *Mgr = C.getAnalysisManager().getCheckerManager(); assert(Mgr); GenericTaintRuleParser ConfigParser{*Mgr}; std::string Option{"Config"}; StringRef ConfigFile = Mgr->getAnalyzerOptions().getCheckerStringOption(this, Option); llvm::Optional Config = getConfiguration(*Mgr, this, Option, ConfigFile); if (!Config) { // We don't have external taint config, no parsing required. DynamicTaintRules = RuleLookupTy{}; return; } GenericTaintRuleParser::RulesContTy Rules{ ConfigParser.parseConfiguration(Option, std::move(Config.getValue()))}; DynamicTaintRules.emplace(std::make_move_iterator(Rules.begin()), std::make_move_iterator(Rules.end())); } void GenericTaintChecker::checkPreCall(const CallEvent &Call, CheckerContext &C) const { initTaintRules(C); // FIXME: this should be much simpler. if (const auto *Rule = Call.isGlobalCFunction() ? StaticTaintRules->lookup(Call) : nullptr) Rule->process(*this, Call, C); else if (const auto *Rule = DynamicTaintRules->lookup(Call)) Rule->process(*this, Call, C); // FIXME: These edge cases are to be eliminated from here eventually. // // Additional check that is not supported by CallDescription. // TODO: Make CallDescription be able to match attributes such as printf-like // arguments. checkUncontrolledFormatString(Call, C); // TODO: Modeling sockets should be done in a specific checker. // Socket is a source, which taints the return value. taintUnsafeSocketProtocol(Call, C); } void GenericTaintChecker::checkPostCall(const CallEvent &Call, CheckerContext &C) const { // Set the marked values as tainted. The return value only accessible from // checkPostStmt. ProgramStateRef State = C.getState(); // Depending on what was tainted at pre-visit, we determined a set of // arguments which should be tainted after the function returns. These are // stored in the state as TaintArgsOnPostVisit set. TaintArgsOnPostVisitTy TaintArgs = State->get(); if (TaintArgs.isEmpty()) return; for (ArgIdxTy ArgNum : TaintArgs) { // Special handling for the tainted return value. if (ArgNum == ReturnValueIndex) { State = addTaint(State, Call.getReturnValue()); continue; } // The arguments are pointer arguments. The data they are pointing at is // tainted after the call. if (auto V = getPointeeOf(C, Call.getArgSVal(ArgNum))) State = addTaint(State, *V); } // Clear up the taint info from the state. State = State->remove(); C.addTransition(State); } void GenericTaintChecker::printState(raw_ostream &Out, ProgramStateRef State, const char *NL, const char *Sep) const { printTaint(State, Out, NL, Sep); } void GenericTaintRule::process(const GenericTaintChecker &Checker, const CallEvent &Call, CheckerContext &C) const { ProgramStateRef State = C.getState(); const ArgIdxTy CallNumArgs = fromArgumentCount(Call.getNumArgs()); /// Iterate every call argument, and get their corresponding Expr and SVal. const auto ForEachCallArg = [&C, &Call, CallNumArgs](auto &&Fun) { for (ArgIdxTy I = ReturnValueIndex; I < CallNumArgs; ++I) { const Expr *E = GetArgExpr(I, Call); Fun(I, E, C.getSVal(E)); } }; /// Check for taint sinks. ForEachCallArg([this, &Checker, &C, &State](ArgIdxTy I, const Expr *E, SVal) { if (SinkArgs.contains(I) && isTaintedOrPointsToTainted(E, State, C)) Checker.generateReportIfTainted(E, SinkMsg.getValueOr(MsgCustomSink), C); }); /// Check for taint filters. ForEachCallArg([this, &C, &State](ArgIdxTy I, const Expr *E, SVal S) { if (FilterArgs.contains(I)) { State = removeTaint(State, S); if (auto P = getPointeeOf(C, S)) State = removeTaint(State, *P); } }); /// Check for taint propagation sources. /// A rule is relevant if PropSrcArgs is empty, or if any of its signified /// args are tainted in context of the current CallEvent. bool IsMatching = PropSrcArgs.isEmpty(); ForEachCallArg( [this, &C, &IsMatching, &State](ArgIdxTy I, const Expr *E, SVal) { IsMatching = IsMatching || (PropSrcArgs.contains(I) && isTaintedOrPointsToTainted(E, State, C)); }); if (!IsMatching) return; const auto WouldEscape = [](SVal V, QualType Ty) -> bool { if (!V.getAs()) return false; const bool IsNonConstRef = Ty->isReferenceType() && !Ty.isConstQualified(); const bool IsNonConstPtr = Ty->isPointerType() && !Ty->getPointeeType().isConstQualified(); return IsNonConstRef || IsNonConstPtr; }; /// Propagate taint where it is necessary. ForEachCallArg( [this, &State, WouldEscape](ArgIdxTy I, const Expr *E, SVal V) { if (PropDstArgs.contains(I)) State = State->add(I); // TODO: We should traverse all reachable memory regions via the // escaping parameter. Instead of doing that we simply mark only the // referred memory region as tainted. if (WouldEscape(V, E->getType())) State = State->add(I); }); C.addTransition(State); } bool GenericTaintRule::UntrustedEnv(CheckerContext &C) { return !C.getAnalysisManager() .getAnalyzerOptions() .ShouldAssumeControlledEnvironment; } bool GenericTaintChecker::generateReportIfTainted(const Expr *E, StringRef Msg, CheckerContext &C) const { assert(E); Optional TaintedSVal{getTaintedPointeeOrPointer(C, C.getSVal(E))}; if (!TaintedSVal) return false; // Generate diagnostic. if (ExplodedNode *N = C.generateNonFatalErrorNode()) { auto report = std::make_unique(BT, Msg, N); report->addRange(E->getSourceRange()); report->addVisitor(std::make_unique(*TaintedSVal)); C.emitReport(std::move(report)); return true; } return false; } /// TODO: remove checking for printf format attributes and socket whitelisting /// from GenericTaintChecker, and that means the following functions: /// getPrintfFormatArgumentNum, /// GenericTaintChecker::checkUncontrolledFormatString, /// GenericTaintChecker::taintUnsafeSocketProtocol static bool getPrintfFormatArgumentNum(const CallEvent &Call, const CheckerContext &C, ArgIdxTy &ArgNum) { // Find if the function contains a format string argument. // Handles: fprintf, printf, sprintf, snprintf, vfprintf, vprintf, vsprintf, // vsnprintf, syslog, custom annotated functions. const Decl *CallDecl = Call.getDecl(); if (!CallDecl) return false; const FunctionDecl *FDecl = CallDecl->getAsFunction(); if (!FDecl) return false; const ArgIdxTy CallNumArgs = fromArgumentCount(Call.getNumArgs()); for (const auto *Format : FDecl->specific_attrs()) { ArgNum = Format->getFormatIdx() - 1; if ((Format->getType()->getName() == "printf") && CallNumArgs > ArgNum) return true; } return false; } bool GenericTaintChecker::checkUncontrolledFormatString( const CallEvent &Call, CheckerContext &C) const { // Check if the function contains a format string argument. ArgIdxTy ArgNum = 0; if (!getPrintfFormatArgumentNum(Call, C, ArgNum)) return false; // If either the format string content or the pointer itself are tainted, // warn. return generateReportIfTainted(Call.getArgExpr(ArgNum), MsgUncontrolledFormatString, C); } void GenericTaintChecker::taintUnsafeSocketProtocol(const CallEvent &Call, CheckerContext &C) const { if (Call.getNumArgs() < 1) return; const IdentifierInfo *ID = Call.getCalleeIdentifier(); if (!ID) return; if (!ID->getName().equals("socket")) return; SourceLocation DomLoc = Call.getArgExpr(0)->getExprLoc(); StringRef DomName = C.getMacroNameOrSpelling(DomLoc); // Allow internal communication protocols. bool SafeProtocol = DomName.equals("AF_SYSTEM") || DomName.equals("AF_LOCAL") || DomName.equals("AF_UNIX") || DomName.equals("AF_RESERVED_36"); if (SafeProtocol) return; C.addTransition(C.getState()->add(ReturnValueIndex)); } /// Checker registration void ento::registerGenericTaintChecker(CheckerManager &Mgr) { Mgr.registerChecker(); } bool ento::shouldRegisterGenericTaintChecker(const CheckerManager &mgr) { return true; }