//== BasicObjCFoundationChecks.cpp - Simple Apple-Foundation checks -*- C++ -*-- // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines BasicObjCFoundationChecks, a class that encapsulates // a set of simple checks to run on Objective-C code using Apple's Foundation // classes. // //===----------------------------------------------------------------------===// #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/StmtObjC.h" #include "clang/Analysis/DomainSpecific/CocoaConventions.h" #include "clang/Analysis/SelectorExtras.h" #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" #include "clang/StaticAnalyzer/Core/Checker.h" #include "clang/StaticAnalyzer/Core/CheckerManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringMap.h" #include "llvm/Support/raw_ostream.h" using namespace clang; using namespace ento; using namespace llvm; namespace { class APIMisuse : public BugType { public: APIMisuse(const CheckerBase *checker, const char *name) : BugType(checker, name, "API Misuse (Apple)") {} }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Utility functions. //===----------------------------------------------------------------------===// static StringRef GetReceiverInterfaceName(const ObjCMethodCall &msg) { if (const ObjCInterfaceDecl *ID = msg.getReceiverInterface()) return ID->getIdentifier()->getName(); return StringRef(); } enum FoundationClass { FC_None, FC_NSArray, FC_NSDictionary, FC_NSEnumerator, FC_NSNull, FC_NSOrderedSet, FC_NSSet, FC_NSString }; static FoundationClass findKnownClass(const ObjCInterfaceDecl *ID, bool IncludeSuperclasses = true) { static llvm::StringMap Classes; if (Classes.empty()) { Classes["NSArray"] = FC_NSArray; Classes["NSDictionary"] = FC_NSDictionary; Classes["NSEnumerator"] = FC_NSEnumerator; Classes["NSNull"] = FC_NSNull; Classes["NSOrderedSet"] = FC_NSOrderedSet; Classes["NSSet"] = FC_NSSet; Classes["NSString"] = FC_NSString; } // FIXME: Should we cache this at all? FoundationClass result = Classes.lookup(ID->getIdentifier()->getName()); if (result == FC_None && IncludeSuperclasses) if (const ObjCInterfaceDecl *Super = ID->getSuperClass()) return findKnownClass(Super); return result; } //===----------------------------------------------------------------------===// // NilArgChecker - Check for prohibited nil arguments to ObjC method calls. //===----------------------------------------------------------------------===// namespace { class NilArgChecker : public Checker, check::PostStmt > { mutable std::unique_ptr BT; mutable llvm::SmallDenseMap StringSelectors; mutable Selector ArrayWithObjectSel; mutable Selector AddObjectSel; mutable Selector InsertObjectAtIndexSel; mutable Selector ReplaceObjectAtIndexWithObjectSel; mutable Selector SetObjectAtIndexedSubscriptSel; mutable Selector ArrayByAddingObjectSel; mutable Selector DictionaryWithObjectForKeySel; mutable Selector SetObjectForKeySel; mutable Selector SetObjectForKeyedSubscriptSel; mutable Selector RemoveObjectForKeySel; void warnIfNilExpr(const Expr *E, const char *Msg, CheckerContext &C) const; void warnIfNilArg(CheckerContext &C, const ObjCMethodCall &msg, unsigned Arg, FoundationClass Class, bool CanBeSubscript = false) const; void generateBugReport(ExplodedNode *N, StringRef Msg, SourceRange Range, const Expr *Expr, CheckerContext &C) const; public: void checkPreObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const; void checkPostStmt(const ObjCDictionaryLiteral *DL, CheckerContext &C) const; void checkPostStmt(const ObjCArrayLiteral *AL, CheckerContext &C) const; }; } // end anonymous namespace void NilArgChecker::warnIfNilExpr(const Expr *E, const char *Msg, CheckerContext &C) const { ProgramStateRef State = C.getState(); if (State->isNull(C.getSVal(E)).isConstrainedTrue()) { if (ExplodedNode *N = C.generateErrorNode()) { generateBugReport(N, Msg, E->getSourceRange(), E, C); } } } void NilArgChecker::warnIfNilArg(CheckerContext &C, const ObjCMethodCall &msg, unsigned int Arg, FoundationClass Class, bool CanBeSubscript) const { // Check if the argument is nil. ProgramStateRef State = C.getState(); if (!State->isNull(msg.getArgSVal(Arg)).isConstrainedTrue()) return; // NOTE: We cannot throw non-fatal errors from warnIfNilExpr, // because it's called multiple times from some callers, so it'd cause // an unwanted state split if two or more non-fatal errors are thrown // within the same checker callback. For now we don't want to, but // it'll need to be fixed if we ever want to. if (ExplodedNode *N = C.generateErrorNode()) { SmallString<128> sbuf; llvm::raw_svector_ostream os(sbuf); if (CanBeSubscript && msg.getMessageKind() == OCM_Subscript) { if (Class == FC_NSArray) { os << "Array element cannot be nil"; } else if (Class == FC_NSDictionary) { if (Arg == 0) { os << "Value stored into '"; os << GetReceiverInterfaceName(msg) << "' cannot be nil"; } else { assert(Arg == 1); os << "'"<< GetReceiverInterfaceName(msg) << "' key cannot be nil"; } } else llvm_unreachable("Missing foundation class for the subscript expr"); } else { if (Class == FC_NSDictionary) { if (Arg == 0) os << "Value argument "; else { assert(Arg == 1); os << "Key argument "; } os << "to '"; msg.getSelector().print(os); os << "' cannot be nil"; } else { os << "Argument to '" << GetReceiverInterfaceName(msg) << "' method '"; msg.getSelector().print(os); os << "' cannot be nil"; } } generateBugReport(N, os.str(), msg.getArgSourceRange(Arg), msg.getArgExpr(Arg), C); } } void NilArgChecker::generateBugReport(ExplodedNode *N, StringRef Msg, SourceRange Range, const Expr *E, CheckerContext &C) const { if (!BT) BT.reset(new APIMisuse(this, "nil argument")); auto R = std::make_unique(*BT, Msg, N); R->addRange(Range); bugreporter::trackExpressionValue(N, E, *R); C.emitReport(std::move(R)); } void NilArgChecker::checkPreObjCMessage(const ObjCMethodCall &msg, CheckerContext &C) const { const ObjCInterfaceDecl *ID = msg.getReceiverInterface(); if (!ID) return; FoundationClass Class = findKnownClass(ID); static const unsigned InvalidArgIndex = UINT_MAX; unsigned Arg = InvalidArgIndex; bool CanBeSubscript = false; if (Class == FC_NSString) { Selector S = msg.getSelector(); if (S.isUnarySelector()) return; if (StringSelectors.empty()) { ASTContext &Ctx = C.getASTContext(); Selector Sels[] = { getKeywordSelector(Ctx, "caseInsensitiveCompare"), getKeywordSelector(Ctx, "compare"), getKeywordSelector(Ctx, "compare", "options"), getKeywordSelector(Ctx, "compare", "options", "range"), getKeywordSelector(Ctx, "compare", "options", "range", "locale"), getKeywordSelector(Ctx, "componentsSeparatedByCharactersInSet"), getKeywordSelector(Ctx, "initWithFormat"), getKeywordSelector(Ctx, "localizedCaseInsensitiveCompare"), getKeywordSelector(Ctx, "localizedCompare"), getKeywordSelector(Ctx, "localizedStandardCompare"), }; for (Selector KnownSel : Sels) StringSelectors[KnownSel] = 0; } auto I = StringSelectors.find(S); if (I == StringSelectors.end()) return; Arg = I->second; } else if (Class == FC_NSArray) { Selector S = msg.getSelector(); if (S.isUnarySelector()) return; if (ArrayWithObjectSel.isNull()) { ASTContext &Ctx = C.getASTContext(); ArrayWithObjectSel = getKeywordSelector(Ctx, "arrayWithObject"); AddObjectSel = getKeywordSelector(Ctx, "addObject"); InsertObjectAtIndexSel = getKeywordSelector(Ctx, "insertObject", "atIndex"); ReplaceObjectAtIndexWithObjectSel = getKeywordSelector(Ctx, "replaceObjectAtIndex", "withObject"); SetObjectAtIndexedSubscriptSel = getKeywordSelector(Ctx, "setObject", "atIndexedSubscript"); ArrayByAddingObjectSel = getKeywordSelector(Ctx, "arrayByAddingObject"); } if (S == ArrayWithObjectSel || S == AddObjectSel || S == InsertObjectAtIndexSel || S == ArrayByAddingObjectSel) { Arg = 0; } else if (S == SetObjectAtIndexedSubscriptSel) { Arg = 0; CanBeSubscript = true; } else if (S == ReplaceObjectAtIndexWithObjectSel) { Arg = 1; } } else if (Class == FC_NSDictionary) { Selector S = msg.getSelector(); if (S.isUnarySelector()) return; if (DictionaryWithObjectForKeySel.isNull()) { ASTContext &Ctx = C.getASTContext(); DictionaryWithObjectForKeySel = getKeywordSelector(Ctx, "dictionaryWithObject", "forKey"); SetObjectForKeySel = getKeywordSelector(Ctx, "setObject", "forKey"); SetObjectForKeyedSubscriptSel = getKeywordSelector(Ctx, "setObject", "forKeyedSubscript"); RemoveObjectForKeySel = getKeywordSelector(Ctx, "removeObjectForKey"); } if (S == DictionaryWithObjectForKeySel || S == SetObjectForKeySel) { Arg = 0; warnIfNilArg(C, msg, /* Arg */1, Class); } else if (S == SetObjectForKeyedSubscriptSel) { CanBeSubscript = true; Arg = 1; } else if (S == RemoveObjectForKeySel) { Arg = 0; } } // If argument is '0', report a warning. if ((Arg != InvalidArgIndex)) warnIfNilArg(C, msg, Arg, Class, CanBeSubscript); } void NilArgChecker::checkPostStmt(const ObjCArrayLiteral *AL, CheckerContext &C) const { unsigned NumOfElements = AL->getNumElements(); for (unsigned i = 0; i < NumOfElements; ++i) { warnIfNilExpr(AL->getElement(i), "Array element cannot be nil", C); } } void NilArgChecker::checkPostStmt(const ObjCDictionaryLiteral *DL, CheckerContext &C) const { unsigned NumOfElements = DL->getNumElements(); for (unsigned i = 0; i < NumOfElements; ++i) { ObjCDictionaryElement Element = DL->getKeyValueElement(i); warnIfNilExpr(Element.Key, "Dictionary key cannot be nil", C); warnIfNilExpr(Element.Value, "Dictionary value cannot be nil", C); } } //===----------------------------------------------------------------------===// // Checking for mismatched types passed to CFNumberCreate/CFNumberGetValue. //===----------------------------------------------------------------------===// namespace { class CFNumberChecker : public Checker< check::PreStmt > { mutable std::unique_ptr BT; mutable IdentifierInfo *ICreate, *IGetValue; public: CFNumberChecker() : ICreate(nullptr), IGetValue(nullptr) {} void checkPreStmt(const CallExpr *CE, CheckerContext &C) const; private: void EmitError(const TypedRegion* R, const Expr *Ex, uint64_t SourceSize, uint64_t TargetSize, uint64_t NumberKind); }; } // end anonymous namespace enum CFNumberType { kCFNumberSInt8Type = 1, kCFNumberSInt16Type = 2, kCFNumberSInt32Type = 3, kCFNumberSInt64Type = 4, kCFNumberFloat32Type = 5, kCFNumberFloat64Type = 6, kCFNumberCharType = 7, kCFNumberShortType = 8, kCFNumberIntType = 9, kCFNumberLongType = 10, kCFNumberLongLongType = 11, kCFNumberFloatType = 12, kCFNumberDoubleType = 13, kCFNumberCFIndexType = 14, kCFNumberNSIntegerType = 15, kCFNumberCGFloatType = 16 }; static Optional GetCFNumberSize(ASTContext &Ctx, uint64_t i) { static const unsigned char FixedSize[] = { 8, 16, 32, 64, 32, 64 }; if (i < kCFNumberCharType) return FixedSize[i-1]; QualType T; switch (i) { case kCFNumberCharType: T = Ctx.CharTy; break; case kCFNumberShortType: T = Ctx.ShortTy; break; case kCFNumberIntType: T = Ctx.IntTy; break; case kCFNumberLongType: T = Ctx.LongTy; break; case kCFNumberLongLongType: T = Ctx.LongLongTy; break; case kCFNumberFloatType: T = Ctx.FloatTy; break; case kCFNumberDoubleType: T = Ctx.DoubleTy; break; case kCFNumberCFIndexType: case kCFNumberNSIntegerType: case kCFNumberCGFloatType: // FIXME: We need a way to map from names to Type*. default: return None; } return Ctx.getTypeSize(T); } #if 0 static const char* GetCFNumberTypeStr(uint64_t i) { static const char* Names[] = { "kCFNumberSInt8Type", "kCFNumberSInt16Type", "kCFNumberSInt32Type", "kCFNumberSInt64Type", "kCFNumberFloat32Type", "kCFNumberFloat64Type", "kCFNumberCharType", "kCFNumberShortType", "kCFNumberIntType", "kCFNumberLongType", "kCFNumberLongLongType", "kCFNumberFloatType", "kCFNumberDoubleType", "kCFNumberCFIndexType", "kCFNumberNSIntegerType", "kCFNumberCGFloatType" }; return i <= kCFNumberCGFloatType ? Names[i-1] : "Invalid CFNumberType"; } #endif void CFNumberChecker::checkPreStmt(const CallExpr *CE, CheckerContext &C) const { ProgramStateRef state = C.getState(); const FunctionDecl *FD = C.getCalleeDecl(CE); if (!FD) return; ASTContext &Ctx = C.getASTContext(); if (!ICreate) { ICreate = &Ctx.Idents.get("CFNumberCreate"); IGetValue = &Ctx.Idents.get("CFNumberGetValue"); } if (!(FD->getIdentifier() == ICreate || FD->getIdentifier() == IGetValue) || CE->getNumArgs() != 3) return; // Get the value of the "theType" argument. SVal TheTypeVal = C.getSVal(CE->getArg(1)); // FIXME: We really should allow ranges of valid theType values, and // bifurcate the state appropriately. Optional V = TheTypeVal.getAs(); if (!V) return; uint64_t NumberKind = V->getValue().getLimitedValue(); Optional OptCFNumberSize = GetCFNumberSize(Ctx, NumberKind); // FIXME: In some cases we can emit an error. if (!OptCFNumberSize) return; uint64_t CFNumberSize = *OptCFNumberSize; // Look at the value of the integer being passed by reference. Essentially // we want to catch cases where the value passed in is not equal to the // size of the type being created. SVal TheValueExpr = C.getSVal(CE->getArg(2)); // FIXME: Eventually we should handle arbitrary locations. We can do this // by having an enhanced memory model that does low-level typing. Optional LV = TheValueExpr.getAs(); if (!LV) return; const TypedValueRegion* R = dyn_cast(LV->stripCasts()); if (!R) return; QualType T = Ctx.getCanonicalType(R->getValueType()); // FIXME: If the pointee isn't an integer type, should we flag a warning? // People can do weird stuff with pointers. if (!T->isIntegralOrEnumerationType()) return; uint64_t PrimitiveTypeSize = Ctx.getTypeSize(T); if (PrimitiveTypeSize == CFNumberSize) return; // FIXME: We can actually create an abstract "CFNumber" object that has // the bits initialized to the provided values. ExplodedNode *N = C.generateNonFatalErrorNode(); if (N) { SmallString<128> sbuf; llvm::raw_svector_ostream os(sbuf); bool isCreate = (FD->getIdentifier() == ICreate); if (isCreate) { os << (PrimitiveTypeSize == 8 ? "An " : "A ") << PrimitiveTypeSize << "-bit integer is used to initialize a " << "CFNumber object that represents " << (CFNumberSize == 8 ? "an " : "a ") << CFNumberSize << "-bit integer; "; } else { os << "A CFNumber object that represents " << (CFNumberSize == 8 ? "an " : "a ") << CFNumberSize << "-bit integer is used to initialize " << (PrimitiveTypeSize == 8 ? "an " : "a ") << PrimitiveTypeSize << "-bit integer; "; } if (PrimitiveTypeSize < CFNumberSize) os << (CFNumberSize - PrimitiveTypeSize) << " bits of the CFNumber value will " << (isCreate ? "be garbage." : "overwrite adjacent storage."); else os << (PrimitiveTypeSize - CFNumberSize) << " bits of the integer value will be " << (isCreate ? "lost." : "garbage."); if (!BT) BT.reset(new APIMisuse(this, "Bad use of CFNumber APIs")); auto report = std::make_unique(*BT, os.str(), N); report->addRange(CE->getArg(2)->getSourceRange()); C.emitReport(std::move(report)); } } //===----------------------------------------------------------------------===// // CFRetain/CFRelease/CFMakeCollectable/CFAutorelease checking for null arguments. //===----------------------------------------------------------------------===// namespace { class CFRetainReleaseChecker : public Checker { mutable APIMisuse BT{this, "null passed to CF memory management function"}; const CallDescriptionSet ModelledCalls = { {"CFRetain", 1}, {"CFRelease", 1}, {"CFMakeCollectable", 1}, {"CFAutorelease", 1}, }; public: void checkPreCall(const CallEvent &Call, CheckerContext &C) const; }; } // end anonymous namespace void CFRetainReleaseChecker::checkPreCall(const CallEvent &Call, CheckerContext &C) const { // TODO: Make this check part of CallDescription. if (!Call.isGlobalCFunction()) return; // Check if we called CFRetain/CFRelease/CFMakeCollectable/CFAutorelease. if (!ModelledCalls.contains(Call)) return; // Get the argument's value. SVal ArgVal = Call.getArgSVal(0); Optional DefArgVal = ArgVal.getAs(); if (!DefArgVal) return; // Is it null? ProgramStateRef state = C.getState(); ProgramStateRef stateNonNull, stateNull; std::tie(stateNonNull, stateNull) = state->assume(*DefArgVal); if (!stateNonNull) { ExplodedNode *N = C.generateErrorNode(stateNull); if (!N) return; SmallString<64> Str; raw_svector_ostream OS(Str); OS << "Null pointer argument in call to " << cast(Call.getDecl())->getName(); auto report = std::make_unique(BT, OS.str(), N); report->addRange(Call.getArgSourceRange(0)); bugreporter::trackExpressionValue(N, Call.getArgExpr(0), *report); C.emitReport(std::move(report)); return; } // From here on, we know the argument is non-null. C.addTransition(stateNonNull); } //===----------------------------------------------------------------------===// // Check for sending 'retain', 'release', or 'autorelease' directly to a Class. //===----------------------------------------------------------------------===// namespace { class ClassReleaseChecker : public Checker { mutable Selector releaseS; mutable Selector retainS; mutable Selector autoreleaseS; mutable Selector drainS; mutable std::unique_ptr BT; public: void checkPreObjCMessage(const ObjCMethodCall &msg, CheckerContext &C) const; }; } // end anonymous namespace void ClassReleaseChecker::checkPreObjCMessage(const ObjCMethodCall &msg, CheckerContext &C) const { if (!BT) { BT.reset(new APIMisuse( this, "message incorrectly sent to class instead of class instance")); ASTContext &Ctx = C.getASTContext(); releaseS = GetNullarySelector("release", Ctx); retainS = GetNullarySelector("retain", Ctx); autoreleaseS = GetNullarySelector("autorelease", Ctx); drainS = GetNullarySelector("drain", Ctx); } if (msg.isInstanceMessage()) return; const ObjCInterfaceDecl *Class = msg.getReceiverInterface(); assert(Class); Selector S = msg.getSelector(); if (!(S == releaseS || S == retainS || S == autoreleaseS || S == drainS)) return; if (ExplodedNode *N = C.generateNonFatalErrorNode()) { SmallString<200> buf; llvm::raw_svector_ostream os(buf); os << "The '"; S.print(os); os << "' message should be sent to instances " "of class '" << Class->getName() << "' and not the class directly"; auto report = std::make_unique(*BT, os.str(), N); report->addRange(msg.getSourceRange()); C.emitReport(std::move(report)); } } //===----------------------------------------------------------------------===// // Check for passing non-Objective-C types to variadic methods that expect // only Objective-C types. //===----------------------------------------------------------------------===// namespace { class VariadicMethodTypeChecker : public Checker { mutable Selector arrayWithObjectsS; mutable Selector dictionaryWithObjectsAndKeysS; mutable Selector setWithObjectsS; mutable Selector orderedSetWithObjectsS; mutable Selector initWithObjectsS; mutable Selector initWithObjectsAndKeysS; mutable std::unique_ptr BT; bool isVariadicMessage(const ObjCMethodCall &msg) const; public: void checkPreObjCMessage(const ObjCMethodCall &msg, CheckerContext &C) const; }; } // end anonymous namespace /// isVariadicMessage - Returns whether the given message is a variadic message, /// where all arguments must be Objective-C types. bool VariadicMethodTypeChecker::isVariadicMessage(const ObjCMethodCall &msg) const { const ObjCMethodDecl *MD = msg.getDecl(); if (!MD || !MD->isVariadic() || isa(MD->getDeclContext())) return false; Selector S = msg.getSelector(); if (msg.isInstanceMessage()) { // FIXME: Ideally we'd look at the receiver interface here, but that's not // useful for init, because alloc returns 'id'. In theory, this could lead // to false positives, for example if there existed a class that had an // initWithObjects: implementation that does accept non-Objective-C pointer // types, but the chance of that happening is pretty small compared to the // gains that this analysis gives. const ObjCInterfaceDecl *Class = MD->getClassInterface(); switch (findKnownClass(Class)) { case FC_NSArray: case FC_NSOrderedSet: case FC_NSSet: return S == initWithObjectsS; case FC_NSDictionary: return S == initWithObjectsAndKeysS; default: return false; } } else { const ObjCInterfaceDecl *Class = msg.getReceiverInterface(); switch (findKnownClass(Class)) { case FC_NSArray: return S == arrayWithObjectsS; case FC_NSOrderedSet: return S == orderedSetWithObjectsS; case FC_NSSet: return S == setWithObjectsS; case FC_NSDictionary: return S == dictionaryWithObjectsAndKeysS; default: return false; } } } void VariadicMethodTypeChecker::checkPreObjCMessage(const ObjCMethodCall &msg, CheckerContext &C) const { if (!BT) { BT.reset(new APIMisuse(this, "Arguments passed to variadic method aren't all " "Objective-C pointer types")); ASTContext &Ctx = C.getASTContext(); arrayWithObjectsS = GetUnarySelector("arrayWithObjects", Ctx); dictionaryWithObjectsAndKeysS = GetUnarySelector("dictionaryWithObjectsAndKeys", Ctx); setWithObjectsS = GetUnarySelector("setWithObjects", Ctx); orderedSetWithObjectsS = GetUnarySelector("orderedSetWithObjects", Ctx); initWithObjectsS = GetUnarySelector("initWithObjects", Ctx); initWithObjectsAndKeysS = GetUnarySelector("initWithObjectsAndKeys", Ctx); } if (!isVariadicMessage(msg)) return; // We are not interested in the selector arguments since they have // well-defined types, so the compiler will issue a warning for them. unsigned variadicArgsBegin = msg.getSelector().getNumArgs(); // We're not interested in the last argument since it has to be nil or the // compiler would have issued a warning for it elsewhere. unsigned variadicArgsEnd = msg.getNumArgs() - 1; if (variadicArgsEnd <= variadicArgsBegin) return; // Verify that all arguments have Objective-C types. Optional errorNode; for (unsigned I = variadicArgsBegin; I != variadicArgsEnd; ++I) { QualType ArgTy = msg.getArgExpr(I)->getType(); if (ArgTy->isObjCObjectPointerType()) continue; // Block pointers are treaded as Objective-C pointers. if (ArgTy->isBlockPointerType()) continue; // Ignore pointer constants. if (msg.getArgSVal(I).getAs()) continue; // Ignore pointer types annotated with 'NSObject' attribute. if (C.getASTContext().isObjCNSObjectType(ArgTy)) continue; // Ignore CF references, which can be toll-free bridged. if (coreFoundation::isCFObjectRef(ArgTy)) continue; // Generate only one error node to use for all bug reports. if (!errorNode.hasValue()) errorNode = C.generateNonFatalErrorNode(); if (!errorNode.getValue()) continue; SmallString<128> sbuf; llvm::raw_svector_ostream os(sbuf); StringRef TypeName = GetReceiverInterfaceName(msg); if (!TypeName.empty()) os << "Argument to '" << TypeName << "' method '"; else os << "Argument to method '"; msg.getSelector().print(os); os << "' should be an Objective-C pointer type, not '"; ArgTy.print(os, C.getLangOpts()); os << "'"; auto R = std::make_unique(*BT, os.str(), errorNode.getValue()); R->addRange(msg.getArgSourceRange(I)); C.emitReport(std::move(R)); } } //===----------------------------------------------------------------------===// // Improves the modeling of loops over Cocoa collections. //===----------------------------------------------------------------------===// // The map from container symbol to the container count symbol. // We currently will remember the last container count symbol encountered. REGISTER_MAP_WITH_PROGRAMSTATE(ContainerCountMap, SymbolRef, SymbolRef) REGISTER_MAP_WITH_PROGRAMSTATE(ContainerNonEmptyMap, SymbolRef, bool) namespace { class ObjCLoopChecker : public Checker, check::PostObjCMessage, check::DeadSymbols, check::PointerEscape > { mutable IdentifierInfo *CountSelectorII; bool isCollectionCountMethod(const ObjCMethodCall &M, CheckerContext &C) const; public: ObjCLoopChecker() : CountSelectorII(nullptr) {} void checkPostStmt(const ObjCForCollectionStmt *FCS, CheckerContext &C) const; void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const; void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; ProgramStateRef checkPointerEscape(ProgramStateRef State, const InvalidatedSymbols &Escaped, const CallEvent *Call, PointerEscapeKind Kind) const; }; } // end anonymous namespace static bool isKnownNonNilCollectionType(QualType T) { const ObjCObjectPointerType *PT = T->getAs(); if (!PT) return false; const ObjCInterfaceDecl *ID = PT->getInterfaceDecl(); if (!ID) return false; switch (findKnownClass(ID)) { case FC_NSArray: case FC_NSDictionary: case FC_NSEnumerator: case FC_NSOrderedSet: case FC_NSSet: return true; default: return false; } } /// Assumes that the collection is non-nil. /// /// If the collection is known to be nil, returns NULL to indicate an infeasible /// path. static ProgramStateRef checkCollectionNonNil(CheckerContext &C, ProgramStateRef State, const ObjCForCollectionStmt *FCS) { if (!State) return nullptr; SVal CollectionVal = C.getSVal(FCS->getCollection()); Optional KnownCollection = CollectionVal.getAs(); if (!KnownCollection) return State; ProgramStateRef StNonNil, StNil; std::tie(StNonNil, StNil) = State->assume(*KnownCollection); if (StNil && !StNonNil) { // The collection is nil. This path is infeasible. return nullptr; } return StNonNil; } /// Assumes that the collection elements are non-nil. /// /// This only applies if the collection is one of those known not to contain /// nil values. static ProgramStateRef checkElementNonNil(CheckerContext &C, ProgramStateRef State, const ObjCForCollectionStmt *FCS) { if (!State) return nullptr; // See if the collection is one where we /know/ the elements are non-nil. if (!isKnownNonNilCollectionType(FCS->getCollection()->getType())) return State; const LocationContext *LCtx = C.getLocationContext(); const Stmt *Element = FCS->getElement(); // FIXME: Copied from ExprEngineObjC. Optional ElementLoc; if (const DeclStmt *DS = dyn_cast(Element)) { const VarDecl *ElemDecl = cast(DS->getSingleDecl()); assert(ElemDecl->getInit() == nullptr); ElementLoc = State->getLValue(ElemDecl, LCtx); } else { ElementLoc = State->getSVal(Element, LCtx).getAs(); } if (!ElementLoc) return State; // Go ahead and assume the value is non-nil. SVal Val = State->getSVal(*ElementLoc); return State->assume(Val.castAs(), true); } /// Returns NULL state if the collection is known to contain elements /// (or is known not to contain elements if the Assumption parameter is false.) static ProgramStateRef assumeCollectionNonEmpty(CheckerContext &C, ProgramStateRef State, SymbolRef CollectionS, bool Assumption) { if (!State || !CollectionS) return State; const SymbolRef *CountS = State->get(CollectionS); if (!CountS) { const bool *KnownNonEmpty = State->get(CollectionS); if (!KnownNonEmpty) return State->set(CollectionS, Assumption); return (Assumption == *KnownNonEmpty) ? State : nullptr; } SValBuilder &SvalBuilder = C.getSValBuilder(); SVal CountGreaterThanZeroVal = SvalBuilder.evalBinOp(State, BO_GT, nonloc::SymbolVal(*CountS), SvalBuilder.makeIntVal(0, (*CountS)->getType()), SvalBuilder.getConditionType()); Optional CountGreaterThanZero = CountGreaterThanZeroVal.getAs(); if (!CountGreaterThanZero) { // The SValBuilder cannot construct a valid SVal for this condition. // This means we cannot properly reason about it. return State; } return State->assume(*CountGreaterThanZero, Assumption); } static ProgramStateRef assumeCollectionNonEmpty(CheckerContext &C, ProgramStateRef State, const ObjCForCollectionStmt *FCS, bool Assumption) { if (!State) return nullptr; SymbolRef CollectionS = C.getSVal(FCS->getCollection()).getAsSymbol(); return assumeCollectionNonEmpty(C, State, CollectionS, Assumption); } /// If the fist block edge is a back edge, we are reentering the loop. static bool alreadyExecutedAtLeastOneLoopIteration(const ExplodedNode *N, const ObjCForCollectionStmt *FCS) { if (!N) return false; ProgramPoint P = N->getLocation(); if (Optional BE = P.getAs()) { return BE->getSrc()->getLoopTarget() == FCS; } // Keep looking for a block edge. for (ExplodedNode::const_pred_iterator I = N->pred_begin(), E = N->pred_end(); I != E; ++I) { if (alreadyExecutedAtLeastOneLoopIteration(*I, FCS)) return true; } return false; } void ObjCLoopChecker::checkPostStmt(const ObjCForCollectionStmt *FCS, CheckerContext &C) const { ProgramStateRef State = C.getState(); // Check if this is the branch for the end of the loop. if (!ExprEngine::hasMoreIteration(State, FCS, C.getLocationContext())) { if (!alreadyExecutedAtLeastOneLoopIteration(C.getPredecessor(), FCS)) State = assumeCollectionNonEmpty(C, State, FCS, /*Assumption*/false); // Otherwise, this is a branch that goes through the loop body. } else { State = checkCollectionNonNil(C, State, FCS); State = checkElementNonNil(C, State, FCS); State = assumeCollectionNonEmpty(C, State, FCS, /*Assumption*/true); } if (!State) C.generateSink(C.getState(), C.getPredecessor()); else if (State != C.getState()) C.addTransition(State); } bool ObjCLoopChecker::isCollectionCountMethod(const ObjCMethodCall &M, CheckerContext &C) const { Selector S = M.getSelector(); // Initialize the identifiers on first use. if (!CountSelectorII) CountSelectorII = &C.getASTContext().Idents.get("count"); // If the method returns collection count, record the value. return S.isUnarySelector() && (S.getIdentifierInfoForSlot(0) == CountSelectorII); } void ObjCLoopChecker::checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const { if (!M.isInstanceMessage()) return; const ObjCInterfaceDecl *ClassID = M.getReceiverInterface(); if (!ClassID) return; FoundationClass Class = findKnownClass(ClassID); if (Class != FC_NSDictionary && Class != FC_NSArray && Class != FC_NSSet && Class != FC_NSOrderedSet) return; SymbolRef ContainerS = M.getReceiverSVal().getAsSymbol(); if (!ContainerS) return; // If we are processing a call to "count", get the symbolic value returned by // a call to "count" and add it to the map. if (!isCollectionCountMethod(M, C)) return; const Expr *MsgExpr = M.getOriginExpr(); SymbolRef CountS = C.getSVal(MsgExpr).getAsSymbol(); if (CountS) { ProgramStateRef State = C.getState(); C.getSymbolManager().addSymbolDependency(ContainerS, CountS); State = State->set(ContainerS, CountS); if (const bool *NonEmpty = State->get(ContainerS)) { State = State->remove(ContainerS); State = assumeCollectionNonEmpty(C, State, ContainerS, *NonEmpty); } C.addTransition(State); } } static SymbolRef getMethodReceiverIfKnownImmutable(const CallEvent *Call) { const ObjCMethodCall *Message = dyn_cast_or_null(Call); if (!Message) return nullptr; const ObjCMethodDecl *MD = Message->getDecl(); if (!MD) return nullptr; const ObjCInterfaceDecl *StaticClass; if (isa(MD->getDeclContext())) { // We can't find out where the method was declared without doing more work. // Instead, see if the receiver is statically typed as a known immutable // collection. StaticClass = Message->getOriginExpr()->getReceiverInterface(); } else { StaticClass = MD->getClassInterface(); } if (!StaticClass) return nullptr; switch (findKnownClass(StaticClass, /*IncludeSuper=*/false)) { case FC_None: return nullptr; case FC_NSArray: case FC_NSDictionary: case FC_NSEnumerator: case FC_NSNull: case FC_NSOrderedSet: case FC_NSSet: case FC_NSString: break; } return Message->getReceiverSVal().getAsSymbol(); } ProgramStateRef ObjCLoopChecker::checkPointerEscape(ProgramStateRef State, const InvalidatedSymbols &Escaped, const CallEvent *Call, PointerEscapeKind Kind) const { SymbolRef ImmutableReceiver = getMethodReceiverIfKnownImmutable(Call); // Remove the invalidated symbols form the collection count map. for (InvalidatedSymbols::const_iterator I = Escaped.begin(), E = Escaped.end(); I != E; ++I) { SymbolRef Sym = *I; // Don't invalidate this symbol's count if we know the method being called // is declared on an immutable class. This isn't completely correct if the // receiver is also passed as an argument, but in most uses of NSArray, // NSDictionary, etc. this isn't likely to happen in a dangerous way. if (Sym == ImmutableReceiver) continue; // The symbol escaped. Pessimistically, assume that the count could have // changed. State = State->remove(Sym); State = State->remove(Sym); } return State; } void ObjCLoopChecker::checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const { ProgramStateRef State = C.getState(); // Remove the dead symbols from the collection count map. ContainerCountMapTy Tracked = State->get(); for (ContainerCountMapTy::iterator I = Tracked.begin(), E = Tracked.end(); I != E; ++I) { SymbolRef Sym = I->first; if (SymReaper.isDead(Sym)) { State = State->remove(Sym); State = State->remove(Sym); } } C.addTransition(State); } namespace { /// \class ObjCNonNilReturnValueChecker /// The checker restricts the return values of APIs known to /// never (or almost never) return 'nil'. class ObjCNonNilReturnValueChecker : public Checker, check::PostStmt, check::PostStmt > { mutable bool Initialized; mutable Selector ObjectAtIndex; mutable Selector ObjectAtIndexedSubscript; mutable Selector NullSelector; public: ObjCNonNilReturnValueChecker() : Initialized(false) {} ProgramStateRef assumeExprIsNonNull(const Expr *NonNullExpr, ProgramStateRef State, CheckerContext &C) const; void assumeExprIsNonNull(const Expr *E, CheckerContext &C) const { C.addTransition(assumeExprIsNonNull(E, C.getState(), C)); } void checkPostStmt(const ObjCArrayLiteral *E, CheckerContext &C) const { assumeExprIsNonNull(E, C); } void checkPostStmt(const ObjCDictionaryLiteral *E, CheckerContext &C) const { assumeExprIsNonNull(E, C); } void checkPostStmt(const ObjCBoxedExpr *E, CheckerContext &C) const { assumeExprIsNonNull(E, C); } void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const; }; } // end anonymous namespace ProgramStateRef ObjCNonNilReturnValueChecker::assumeExprIsNonNull(const Expr *NonNullExpr, ProgramStateRef State, CheckerContext &C) const { SVal Val = C.getSVal(NonNullExpr); if (Optional DV = Val.getAs()) return State->assume(*DV, true); return State; } void ObjCNonNilReturnValueChecker::checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const { ProgramStateRef State = C.getState(); if (!Initialized) { ASTContext &Ctx = C.getASTContext(); ObjectAtIndex = GetUnarySelector("objectAtIndex", Ctx); ObjectAtIndexedSubscript = GetUnarySelector("objectAtIndexedSubscript", Ctx); NullSelector = GetNullarySelector("null", Ctx); } // Check the receiver type. if (const ObjCInterfaceDecl *Interface = M.getReceiverInterface()) { // Assume that object returned from '[self init]' or '[super init]' is not // 'nil' if we are processing an inlined function/method. // // A defensive callee will (and should) check if the object returned by // '[super init]' is 'nil' before doing it's own initialization. However, // since 'nil' is rarely returned in practice, we should not warn when the // caller to the defensive constructor uses the object in contexts where // 'nil' is not accepted. if (!C.inTopFrame() && M.getDecl() && M.getDecl()->getMethodFamily() == OMF_init && M.isReceiverSelfOrSuper()) { State = assumeExprIsNonNull(M.getOriginExpr(), State, C); } FoundationClass Cl = findKnownClass(Interface); // Objects returned from // [NSArray|NSOrderedSet]::[ObjectAtIndex|ObjectAtIndexedSubscript] // are never 'nil'. if (Cl == FC_NSArray || Cl == FC_NSOrderedSet) { Selector Sel = M.getSelector(); if (Sel == ObjectAtIndex || Sel == ObjectAtIndexedSubscript) { // Go ahead and assume the value is non-nil. State = assumeExprIsNonNull(M.getOriginExpr(), State, C); } } // Objects returned from [NSNull null] are not nil. if (Cl == FC_NSNull) { if (M.getSelector() == NullSelector) { // Go ahead and assume the value is non-nil. State = assumeExprIsNonNull(M.getOriginExpr(), State, C); } } } C.addTransition(State); } //===----------------------------------------------------------------------===// // Check registration. //===----------------------------------------------------------------------===// void ento::registerNilArgChecker(CheckerManager &mgr) { mgr.registerChecker(); } bool ento::shouldRegisterNilArgChecker(const CheckerManager &mgr) { return true; } void ento::registerCFNumberChecker(CheckerManager &mgr) { mgr.registerChecker(); } bool ento::shouldRegisterCFNumberChecker(const CheckerManager &mgr) { return true; } void ento::registerCFRetainReleaseChecker(CheckerManager &mgr) { mgr.registerChecker(); } bool ento::shouldRegisterCFRetainReleaseChecker(const CheckerManager &mgr) { return true; } void ento::registerClassReleaseChecker(CheckerManager &mgr) { mgr.registerChecker(); } bool ento::shouldRegisterClassReleaseChecker(const CheckerManager &mgr) { return true; } void ento::registerVariadicMethodTypeChecker(CheckerManager &mgr) { mgr.registerChecker(); } bool ento::shouldRegisterVariadicMethodTypeChecker(const CheckerManager &mgr) { return true; } void ento::registerObjCLoopChecker(CheckerManager &mgr) { mgr.registerChecker(); } bool ento::shouldRegisterObjCLoopChecker(const CheckerManager &mgr) { return true; } void ento::registerObjCNonNilReturnValueChecker(CheckerManager &mgr) { mgr.registerChecker(); } bool ento::shouldRegisterObjCNonNilReturnValueChecker(const CheckerManager &mgr) { return true; }