//===- llvm-jitlink.cpp -- Command line interface/tester for llvm-jitlink -===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This utility provides a simple command line interface to the llvm jitlink // library, which makes relocatable object files executable in memory. Its // primary function is as a testing utility for the jitlink library. // //===----------------------------------------------------------------------===// #include "llvm-jitlink.h" #include "llvm/BinaryFormat/Magic.h" #include "llvm/ExecutionEngine/Orc/DebugObjectManagerPlugin.h" #include "llvm/ExecutionEngine/Orc/DebuggerSupportPlugin.h" #include "llvm/ExecutionEngine/Orc/ELFNixPlatform.h" #include "llvm/ExecutionEngine/Orc/EPCDebugObjectRegistrar.h" #include "llvm/ExecutionEngine/Orc/EPCDynamicLibrarySearchGenerator.h" #include "llvm/ExecutionEngine/Orc/EPCEHFrameRegistrar.h" #include "llvm/ExecutionEngine/Orc/ExecutionUtils.h" #include "llvm/ExecutionEngine/Orc/IndirectionUtils.h" #include "llvm/ExecutionEngine/Orc/MachOPlatform.h" #include "llvm/ExecutionEngine/Orc/ObjectFileInterface.h" #include "llvm/ExecutionEngine/Orc/TargetProcess/JITLoaderGDB.h" #include "llvm/ExecutionEngine/Orc/TargetProcess/RegisterEHFrames.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDisassembler/MCDisassembler.h" #include "llvm/MC/MCInstPrinter.h" #include "llvm/MC/MCInstrAnalysis.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCTargetOptions.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Object/COFF.h" #include "llvm/Object/MachO.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/InitLLVM.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/Process.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/Timer.h" #include #include #include #ifdef LLVM_ON_UNIX #include #include #include #include #endif // LLVM_ON_UNIX #define DEBUG_TYPE "llvm_jitlink" using namespace llvm; using namespace llvm::jitlink; using namespace llvm::orc; static cl::OptionCategory JITLinkCategory("JITLink Options"); static cl::list InputFiles(cl::Positional, cl::OneOrMore, cl::desc("input files"), cl::cat(JITLinkCategory)); static cl::list LibrarySearchPaths("L", cl::desc("Add dir to the list of library search paths"), cl::Prefix, cl::cat(JITLinkCategory)); static cl::list Libraries("l", cl::desc("Link against library X in the library search paths"), cl::Prefix, cl::cat(JITLinkCategory)); static cl::list LibrariesHidden("hidden-l", cl::desc("Link against library X in the library search " "paths with hidden visibility"), cl::Prefix, cl::cat(JITLinkCategory)); static cl::list LoadHidden("load_hidden", cl::desc("Link against library X with hidden visibility"), cl::cat(JITLinkCategory)); static cl::opt NoExec("noexec", cl::desc("Do not execute loaded code"), cl::init(false), cl::cat(JITLinkCategory)); static cl::list CheckFiles("check", cl::desc("File containing verifier checks"), cl::ZeroOrMore, cl::cat(JITLinkCategory)); static cl::opt CheckName("check-name", cl::desc("Name of checks to match against"), cl::init("jitlink-check"), cl::cat(JITLinkCategory)); static cl::opt EntryPointName("entry", cl::desc("Symbol to call as main entry point"), cl::init(""), cl::cat(JITLinkCategory)); static cl::list JITDylibs( "jd", cl::desc("Specifies the JITDylib to be used for any subsequent " "input file, -L, and -l arguments"), cl::cat(JITLinkCategory)); static cl::list Dylibs("preload", cl::desc("Pre-load dynamic libraries (e.g. language runtimes " "required by the ORC runtime)"), cl::ZeroOrMore, cl::cat(JITLinkCategory)); static cl::list InputArgv("args", cl::Positional, cl::desc("..."), cl::ZeroOrMore, cl::PositionalEatsArgs, cl::cat(JITLinkCategory)); static cl::opt DebuggerSupport("debugger-support", cl::desc("Enable debugger suppport (default = !-noexec)"), cl::init(true), cl::Hidden, cl::cat(JITLinkCategory)); static cl::opt NoProcessSymbols("no-process-syms", cl::desc("Do not resolve to llvm-jitlink process symbols"), cl::init(false), cl::cat(JITLinkCategory)); static cl::list AbsoluteDefs( "define-abs", cl::desc("Inject absolute symbol definitions (syntax: =)"), cl::ZeroOrMore, cl::cat(JITLinkCategory)); static cl::list TestHarnesses("harness", cl::Positional, cl::desc("Test harness files"), cl::ZeroOrMore, cl::PositionalEatsArgs, cl::cat(JITLinkCategory)); static cl::opt ShowInitialExecutionSessionState( "show-init-es", cl::desc("Print ExecutionSession state before resolving entry point"), cl::init(false), cl::cat(JITLinkCategory)); static cl::opt ShowEntryExecutionSessionState( "show-entry-es", cl::desc("Print ExecutionSession state after resolving entry point"), cl::init(false), cl::cat(JITLinkCategory)); static cl::opt ShowAddrs( "show-addrs", cl::desc("Print registered symbol, section, got and stub addresses"), cl::init(false), cl::cat(JITLinkCategory)); static cl::opt ShowLinkGraph( "show-graph", cl::desc("Print the link graph after fixups have been applied"), cl::init(false), cl::cat(JITLinkCategory)); static cl::opt ShowSizes( "show-sizes", cl::desc("Show sizes pre- and post-dead stripping, and allocations"), cl::init(false), cl::cat(JITLinkCategory)); static cl::opt ShowTimes("show-times", cl::desc("Show times for llvm-jitlink phases"), cl::init(false), cl::cat(JITLinkCategory)); static cl::opt SlabAllocateSizeString( "slab-allocate", cl::desc("Allocate from a slab of the given size " "(allowable suffixes: Kb, Mb, Gb. default = " "Kb)"), cl::init(""), cl::cat(JITLinkCategory)); static cl::opt SlabAddress( "slab-address", cl::desc("Set slab target address (requires -slab-allocate and -noexec)"), cl::init(~0ULL), cl::cat(JITLinkCategory)); static cl::opt SlabPageSize( "slab-page-size", cl::desc("Set page size for slab (requires -slab-allocate and -noexec)"), cl::init(0), cl::cat(JITLinkCategory)); static cl::opt ShowRelocatedSectionContents( "show-relocated-section-contents", cl::desc("show section contents after fixups have been applied"), cl::init(false), cl::cat(JITLinkCategory)); static cl::opt PhonyExternals( "phony-externals", cl::desc("resolve all otherwise unresolved externals to null"), cl::init(false), cl::cat(JITLinkCategory)); static cl::opt OutOfProcessExecutor( "oop-executor", cl::desc("Launch an out-of-process executor to run code"), cl::ValueOptional, cl::cat(JITLinkCategory)); static cl::opt OutOfProcessExecutorConnect( "oop-executor-connect", cl::desc("Connect to an out-of-process executor via TCP"), cl::cat(JITLinkCategory)); static cl::opt OrcRuntime("orc-runtime", cl::desc("Use ORC runtime from given path"), cl::init(""), cl::cat(JITLinkCategory)); static cl::opt AddSelfRelocations( "add-self-relocations", cl::desc("Add relocations to function pointers to the current function"), cl::init(false), cl::cat(JITLinkCategory)); ExitOnError ExitOnErr; LLVM_ATTRIBUTE_USED void linkComponents() { errs() << (void *)&llvm_orc_registerEHFrameSectionWrapper << (void *)&llvm_orc_deregisterEHFrameSectionWrapper << (void *)&llvm_orc_registerJITLoaderGDBWrapper; } static bool UseTestResultOverride = false; static int64_t TestResultOverride = 0; extern "C" LLVM_ATTRIBUTE_USED void llvm_jitlink_setTestResultOverride(int64_t Value) { TestResultOverride = Value; UseTestResultOverride = true; } static Error addSelfRelocations(LinkGraph &G); namespace llvm { static raw_ostream & operator<<(raw_ostream &OS, const Session::MemoryRegionInfo &MRI) { return OS << "target addr = " << format("0x%016" PRIx64, MRI.getTargetAddress()) << ", content: " << (const void *)MRI.getContent().data() << " -- " << (const void *)(MRI.getContent().data() + MRI.getContent().size()) << " (" << MRI.getContent().size() << " bytes)"; } static raw_ostream & operator<<(raw_ostream &OS, const Session::SymbolInfoMap &SIM) { OS << "Symbols:\n"; for (auto &SKV : SIM) OS << " \"" << SKV.first() << "\" " << SKV.second << "\n"; return OS; } static raw_ostream & operator<<(raw_ostream &OS, const Session::FileInfo &FI) { for (auto &SIKV : FI.SectionInfos) OS << " Section \"" << SIKV.first() << "\": " << SIKV.second << "\n"; for (auto &GOTKV : FI.GOTEntryInfos) OS << " GOT \"" << GOTKV.first() << "\": " << GOTKV.second << "\n"; for (auto &StubKV : FI.StubInfos) OS << " Stub \"" << StubKV.first() << "\": " << StubKV.second << "\n"; return OS; } static raw_ostream & operator<<(raw_ostream &OS, const Session::FileInfoMap &FIM) { for (auto &FIKV : FIM) OS << "File \"" << FIKV.first() << "\":\n" << FIKV.second; return OS; } static Error applyHarnessPromotions(Session &S, LinkGraph &G) { // If this graph is part of the test harness there's nothing to do. if (S.HarnessFiles.empty() || S.HarnessFiles.count(G.getName())) return Error::success(); LLVM_DEBUG(dbgs() << "Applying promotions to graph " << G.getName() << "\n"); // If this graph is part of the test then promote any symbols referenced by // the harness to default scope, remove all symbols that clash with harness // definitions. std::vector DefinitionsToRemove; for (auto *Sym : G.defined_symbols()) { if (!Sym->hasName()) continue; if (Sym->getLinkage() == Linkage::Weak) { if (!S.CanonicalWeakDefs.count(Sym->getName()) || S.CanonicalWeakDefs[Sym->getName()] != G.getName()) { LLVM_DEBUG({ dbgs() << " Externalizing weak symbol " << Sym->getName() << "\n"; }); DefinitionsToRemove.push_back(Sym); } else { LLVM_DEBUG({ dbgs() << " Making weak symbol " << Sym->getName() << " strong\n"; }); if (S.HarnessExternals.count(Sym->getName())) Sym->setScope(Scope::Default); else Sym->setScope(Scope::Hidden); Sym->setLinkage(Linkage::Strong); } } else if (S.HarnessExternals.count(Sym->getName())) { LLVM_DEBUG(dbgs() << " Promoting " << Sym->getName() << "\n"); Sym->setScope(Scope::Default); Sym->setLive(true); continue; } else if (S.HarnessDefinitions.count(Sym->getName())) { LLVM_DEBUG(dbgs() << " Externalizing " << Sym->getName() << "\n"); DefinitionsToRemove.push_back(Sym); } } for (auto *Sym : DefinitionsToRemove) G.makeExternal(*Sym); return Error::success(); } static uint64_t computeTotalBlockSizes(LinkGraph &G) { uint64_t TotalSize = 0; for (auto *B : G.blocks()) TotalSize += B->getSize(); return TotalSize; } static void dumpSectionContents(raw_ostream &OS, LinkGraph &G) { constexpr orc::ExecutorAddrDiff DumpWidth = 16; static_assert(isPowerOf2_64(DumpWidth), "DumpWidth must be a power of two"); // Put sections in address order. std::vector
Sections; for (auto &S : G.sections()) Sections.push_back(&S); llvm::sort(Sections, [](const Section *LHS, const Section *RHS) { if (llvm::empty(LHS->symbols()) && llvm::empty(RHS->symbols())) return false; if (llvm::empty(LHS->symbols())) return false; if (llvm::empty(RHS->symbols())) return true; SectionRange LHSRange(*LHS); SectionRange RHSRange(*RHS); return LHSRange.getStart() < RHSRange.getStart(); }); for (auto *S : Sections) { OS << S->getName() << " content:"; if (llvm::empty(S->symbols())) { OS << "\n section empty\n"; continue; } // Sort symbols into order, then render. std::vector Syms(S->symbols().begin(), S->symbols().end()); llvm::sort(Syms, [](const Symbol *LHS, const Symbol *RHS) { return LHS->getAddress() < RHS->getAddress(); }); orc::ExecutorAddr NextAddr(Syms.front()->getAddress().getValue() & ~(DumpWidth - 1)); for (auto *Sym : Syms) { bool IsZeroFill = Sym->getBlock().isZeroFill(); auto SymStart = Sym->getAddress(); auto SymSize = Sym->getSize(); auto SymEnd = SymStart + SymSize; const uint8_t *SymData = IsZeroFill ? nullptr : reinterpret_cast( Sym->getSymbolContent().data()); // Pad any space before the symbol starts. while (NextAddr != SymStart) { if (NextAddr % DumpWidth == 0) OS << formatv("\n{0:x16}:", NextAddr); OS << " "; ++NextAddr; } // Render the symbol content. while (NextAddr != SymEnd) { if (NextAddr % DumpWidth == 0) OS << formatv("\n{0:x16}:", NextAddr); if (IsZeroFill) OS << " 00"; else OS << formatv(" {0:x-2}", SymData[NextAddr - SymStart]); ++NextAddr; } } OS << "\n"; } } class JITLinkSlabAllocator final : public JITLinkMemoryManager { private: struct FinalizedAllocInfo { FinalizedAllocInfo(sys::MemoryBlock Mem, std::vector DeallocActions) : Mem(Mem), DeallocActions(std::move(DeallocActions)) {} sys::MemoryBlock Mem; std::vector DeallocActions; }; public: static Expected> Create(uint64_t SlabSize) { Error Err = Error::success(); std::unique_ptr Allocator( new JITLinkSlabAllocator(SlabSize, Err)); if (Err) return std::move(Err); return std::move(Allocator); } void allocate(const JITLinkDylib *JD, LinkGraph &G, OnAllocatedFunction OnAllocated) override { // Local class for allocation. class IPMMAlloc : public InFlightAlloc { public: IPMMAlloc(JITLinkSlabAllocator &Parent, BasicLayout BL, sys::MemoryBlock StandardSegs, sys::MemoryBlock FinalizeSegs) : Parent(Parent), BL(std::move(BL)), StandardSegs(std::move(StandardSegs)), FinalizeSegs(std::move(FinalizeSegs)) {} void finalize(OnFinalizedFunction OnFinalized) override { if (auto Err = applyProtections()) { OnFinalized(std::move(Err)); return; } auto DeallocActions = runFinalizeActions(BL.graphAllocActions()); if (!DeallocActions) { OnFinalized(DeallocActions.takeError()); return; } if (auto Err = Parent.freeBlock(FinalizeSegs)) { OnFinalized( joinErrors(std::move(Err), runDeallocActions(*DeallocActions))); return; } OnFinalized(FinalizedAlloc(ExecutorAddr::fromPtr( new FinalizedAllocInfo(StandardSegs, std::move(*DeallocActions))))); } void abandon(OnAbandonedFunction OnAbandoned) override { OnAbandoned(joinErrors(Parent.freeBlock(StandardSegs), Parent.freeBlock(FinalizeSegs))); } private: Error applyProtections() { for (auto &KV : BL.segments()) { const auto &Group = KV.first; auto &Seg = KV.second; auto Prot = toSysMemoryProtectionFlags(Group.getMemProt()); uint64_t SegSize = alignTo(Seg.ContentSize + Seg.ZeroFillSize, Parent.PageSize); sys::MemoryBlock MB(Seg.WorkingMem, SegSize); if (auto EC = sys::Memory::protectMappedMemory(MB, Prot)) return errorCodeToError(EC); if (Prot & sys::Memory::MF_EXEC) sys::Memory::InvalidateInstructionCache(MB.base(), MB.allocatedSize()); } return Error::success(); } JITLinkSlabAllocator &Parent; BasicLayout BL; sys::MemoryBlock StandardSegs; sys::MemoryBlock FinalizeSegs; }; BasicLayout BL(G); auto SegsSizes = BL.getContiguousPageBasedLayoutSizes(PageSize); if (!SegsSizes) { OnAllocated(SegsSizes.takeError()); return; } char *AllocBase = nullptr; { std::lock_guard Lock(SlabMutex); if (SegsSizes->total() > SlabRemaining.allocatedSize()) { OnAllocated(make_error( "Slab allocator out of memory: request for " + formatv("{0:x}", SegsSizes->total()) + " bytes exceeds remaining capacity of " + formatv("{0:x}", SlabRemaining.allocatedSize()) + " bytes", inconvertibleErrorCode())); return; } AllocBase = reinterpret_cast(SlabRemaining.base()); SlabRemaining = sys::MemoryBlock(AllocBase + SegsSizes->total(), SlabRemaining.allocatedSize() - SegsSizes->total()); } sys::MemoryBlock StandardSegs(AllocBase, SegsSizes->StandardSegs); sys::MemoryBlock FinalizeSegs(AllocBase + SegsSizes->StandardSegs, SegsSizes->FinalizeSegs); auto NextStandardSegAddr = ExecutorAddr::fromPtr(StandardSegs.base()); auto NextFinalizeSegAddr = ExecutorAddr::fromPtr(FinalizeSegs.base()); LLVM_DEBUG({ dbgs() << "JITLinkSlabAllocator allocated:\n"; if (SegsSizes->StandardSegs) dbgs() << formatv(" [ {0:x16} -- {1:x16} ]", NextStandardSegAddr, NextStandardSegAddr + StandardSegs.allocatedSize()) << " to stardard segs\n"; else dbgs() << " no standard segs\n"; if (SegsSizes->FinalizeSegs) dbgs() << formatv(" [ {0:x16} -- {1:x16} ]", NextFinalizeSegAddr, NextFinalizeSegAddr + FinalizeSegs.allocatedSize()) << " to finalize segs\n"; else dbgs() << " no finalize segs\n"; }); for (auto &KV : BL.segments()) { auto &Group = KV.first; auto &Seg = KV.second; auto &SegAddr = (Group.getMemDeallocPolicy() == MemDeallocPolicy::Standard) ? NextStandardSegAddr : NextFinalizeSegAddr; LLVM_DEBUG({ dbgs() << " " << Group << " -> " << formatv("{0:x16}", SegAddr) << "\n"; }); Seg.WorkingMem = SegAddr.toPtr(); Seg.Addr = SegAddr + NextSlabDelta; SegAddr += alignTo(Seg.ContentSize + Seg.ZeroFillSize, PageSize); // Zero out the zero-fill memory. if (Seg.ZeroFillSize != 0) memset(Seg.WorkingMem + Seg.ContentSize, 0, Seg.ZeroFillSize); } NextSlabDelta += SegsSizes->total(); if (auto Err = BL.apply()) { OnAllocated(std::move(Err)); return; } OnAllocated(std::unique_ptr( new IPMMAlloc(*this, std::move(BL), std::move(StandardSegs), std::move(FinalizeSegs)))); } void deallocate(std::vector FinalizedAllocs, OnDeallocatedFunction OnDeallocated) override { Error Err = Error::success(); for (auto &FA : FinalizedAllocs) { std::unique_ptr FAI( FA.release().toPtr()); // FIXME: Run dealloc actions. Err = joinErrors(std::move(Err), freeBlock(FAI->Mem)); } OnDeallocated(std::move(Err)); } private: JITLinkSlabAllocator(uint64_t SlabSize, Error &Err) { ErrorAsOutParameter _(&Err); if (!SlabPageSize) { if (auto PageSizeOrErr = sys::Process::getPageSize()) PageSize = *PageSizeOrErr; else { Err = PageSizeOrErr.takeError(); return; } if (PageSize == 0) { Err = make_error("Page size is zero", inconvertibleErrorCode()); return; } } else PageSize = SlabPageSize; if (!isPowerOf2_64(PageSize)) { Err = make_error("Page size is not a power of 2", inconvertibleErrorCode()); return; } // Round slab request up to page size. SlabSize = (SlabSize + PageSize - 1) & ~(PageSize - 1); const sys::Memory::ProtectionFlags ReadWrite = static_cast(sys::Memory::MF_READ | sys::Memory::MF_WRITE); std::error_code EC; SlabRemaining = sys::Memory::allocateMappedMemory(SlabSize, nullptr, ReadWrite, EC); if (EC) { Err = errorCodeToError(EC); return; } // Calculate the target address delta to link as-if slab were at // SlabAddress. if (SlabAddress != ~0ULL) NextSlabDelta = ExecutorAddr(SlabAddress) - ExecutorAddr::fromPtr(SlabRemaining.base()); } Error freeBlock(sys::MemoryBlock MB) { // FIXME: Return memory to slab. return Error::success(); } std::mutex SlabMutex; sys::MemoryBlock SlabRemaining; uint64_t PageSize = 0; int64_t NextSlabDelta = 0; }; Expected getSlabAllocSize(StringRef SizeString) { SizeString = SizeString.trim(); uint64_t Units = 1024; if (SizeString.endswith_insensitive("kb")) SizeString = SizeString.drop_back(2).rtrim(); else if (SizeString.endswith_insensitive("mb")) { Units = 1024 * 1024; SizeString = SizeString.drop_back(2).rtrim(); } else if (SizeString.endswith_insensitive("gb")) { Units = 1024 * 1024 * 1024; SizeString = SizeString.drop_back(2).rtrim(); } uint64_t SlabSize = 0; if (SizeString.getAsInteger(10, SlabSize)) return make_error("Invalid numeric format for slab size", inconvertibleErrorCode()); return SlabSize * Units; } static std::unique_ptr createMemoryManager() { if (!SlabAllocateSizeString.empty()) { auto SlabSize = ExitOnErr(getSlabAllocSize(SlabAllocateSizeString)); return ExitOnErr(JITLinkSlabAllocator::Create(SlabSize)); } return ExitOnErr(InProcessMemoryManager::Create()); } static Expected getTestObjectFileInterface(Session &S, MemoryBufferRef O) { // Get the standard interface for this object, but ignore the symbols field. // We'll handle that manually to include promotion. auto I = getObjectFileInterface(S.ES, O); if (!I) return I.takeError(); I->SymbolFlags.clear(); // If creating an object file was going to fail it would have happened above, // so we can 'cantFail' this. auto Obj = cantFail(object::ObjectFile::createObjectFile(O)); // The init symbol must be included in the SymbolFlags map if present. if (I->InitSymbol) I->SymbolFlags[I->InitSymbol] = JITSymbolFlags::MaterializationSideEffectsOnly; for (auto &Sym : Obj->symbols()) { Expected SymFlagsOrErr = Sym.getFlags(); if (!SymFlagsOrErr) // TODO: Test this error. return SymFlagsOrErr.takeError(); // Skip symbols not defined in this object file. if ((*SymFlagsOrErr & object::BasicSymbolRef::SF_Undefined)) continue; auto Name = Sym.getName(); if (!Name) return Name.takeError(); // Skip symbols that have type SF_File. if (auto SymType = Sym.getType()) { if (*SymType == object::SymbolRef::ST_File) continue; } else return SymType.takeError(); auto SymFlags = JITSymbolFlags::fromObjectSymbol(Sym); if (!SymFlags) return SymFlags.takeError(); if (SymFlags->isWeak()) { // If this is a weak symbol that's not defined in the harness then we // need to either mark it as strong (if this is the first definition // that we've seen) or discard it. if (S.HarnessDefinitions.count(*Name) || S.CanonicalWeakDefs.count(*Name)) continue; S.CanonicalWeakDefs[*Name] = O.getBufferIdentifier(); *SymFlags &= ~JITSymbolFlags::Weak; if (!S.HarnessExternals.count(*Name)) *SymFlags &= ~JITSymbolFlags::Exported; } else if (S.HarnessExternals.count(*Name)) { *SymFlags |= JITSymbolFlags::Exported; } else if (S.HarnessDefinitions.count(*Name) || !(*SymFlagsOrErr & object::BasicSymbolRef::SF_Global)) continue; auto InternedName = S.ES.intern(*Name); I->SymbolFlags[InternedName] = std::move(*SymFlags); } return I; } static Error loadProcessSymbols(Session &S) { auto FilterMainEntryPoint = [EPName = S.ES.intern(EntryPointName)](SymbolStringPtr Name) { return Name != EPName; }; S.MainJD->addGenerator( ExitOnErr(orc::EPCDynamicLibrarySearchGenerator::GetForTargetProcess( S.ES, std::move(FilterMainEntryPoint)))); return Error::success(); } static Error loadDylibs(Session &S) { LLVM_DEBUG(dbgs() << "Loading dylibs...\n"); for (const auto &Dylib : Dylibs) { LLVM_DEBUG(dbgs() << " " << Dylib << "\n"); auto G = orc::EPCDynamicLibrarySearchGenerator::Load(S.ES, Dylib.c_str()); if (!G) return G.takeError(); S.MainJD->addGenerator(std::move(*G)); } return Error::success(); } static Expected> launchExecutor() { #ifndef LLVM_ON_UNIX // FIXME: Add support for Windows. return make_error("-" + OutOfProcessExecutor.ArgStr + " not supported on non-unix platforms", inconvertibleErrorCode()); #elif !LLVM_ENABLE_THREADS // Out of process mode using SimpleRemoteEPC depends on threads. return make_error( "-" + OutOfProcessExecutor.ArgStr + " requires threads, but LLVM was built with " "LLVM_ENABLE_THREADS=Off", inconvertibleErrorCode()); #else constexpr int ReadEnd = 0; constexpr int WriteEnd = 1; // Pipe FDs. int ToExecutor[2]; int FromExecutor[2]; pid_t ChildPID; // Create pipes to/from the executor.. if (pipe(ToExecutor) != 0 || pipe(FromExecutor) != 0) return make_error("Unable to create pipe for executor", inconvertibleErrorCode()); ChildPID = fork(); if (ChildPID == 0) { // In the child... // Close the parent ends of the pipes close(ToExecutor[WriteEnd]); close(FromExecutor[ReadEnd]); // Execute the child process. std::unique_ptr ExecutorPath, FDSpecifier; { ExecutorPath = std::make_unique(OutOfProcessExecutor.size() + 1); strcpy(ExecutorPath.get(), OutOfProcessExecutor.data()); std::string FDSpecifierStr("filedescs="); FDSpecifierStr += utostr(ToExecutor[ReadEnd]); FDSpecifierStr += ','; FDSpecifierStr += utostr(FromExecutor[WriteEnd]); FDSpecifier = std::make_unique(FDSpecifierStr.size() + 1); strcpy(FDSpecifier.get(), FDSpecifierStr.c_str()); } char *const Args[] = {ExecutorPath.get(), FDSpecifier.get(), nullptr}; int RC = execvp(ExecutorPath.get(), Args); if (RC != 0) { errs() << "unable to launch out-of-process executor \"" << ExecutorPath.get() << "\"\n"; exit(1); } } // else we're the parent... // Close the child ends of the pipes close(ToExecutor[ReadEnd]); close(FromExecutor[WriteEnd]); return SimpleRemoteEPC::Create( std::make_unique(), SimpleRemoteEPC::Setup(), FromExecutor[ReadEnd], ToExecutor[WriteEnd]); #endif } #if LLVM_ON_UNIX && LLVM_ENABLE_THREADS static Error createTCPSocketError(Twine Details) { return make_error( formatv("Failed to connect TCP socket '{0}': {1}", OutOfProcessExecutorConnect, Details), inconvertibleErrorCode()); } static Expected connectTCPSocket(std::string Host, std::string PortStr) { addrinfo *AI; addrinfo Hints{}; Hints.ai_family = AF_INET; Hints.ai_socktype = SOCK_STREAM; Hints.ai_flags = AI_NUMERICSERV; if (int EC = getaddrinfo(Host.c_str(), PortStr.c_str(), &Hints, &AI)) return createTCPSocketError("Address resolution failed (" + StringRef(gai_strerror(EC)) + ")"); // Cycle through the returned addrinfo structures and connect to the first // reachable endpoint. int SockFD; addrinfo *Server; for (Server = AI; Server != nullptr; Server = Server->ai_next) { // socket might fail, e.g. if the address family is not supported. Skip to // the next addrinfo structure in such a case. if ((SockFD = socket(AI->ai_family, AI->ai_socktype, AI->ai_protocol)) < 0) continue; // If connect returns null, we exit the loop with a working socket. if (connect(SockFD, Server->ai_addr, Server->ai_addrlen) == 0) break; close(SockFD); } freeaddrinfo(AI); // If we reached the end of the loop without connecting to a valid endpoint, // dump the last error that was logged in socket() or connect(). if (Server == nullptr) return createTCPSocketError(std::strerror(errno)); return SockFD; } #endif static Expected> connectToExecutor() { #ifndef LLVM_ON_UNIX // FIXME: Add TCP support for Windows. return make_error("-" + OutOfProcessExecutorConnect.ArgStr + " not supported on non-unix platforms", inconvertibleErrorCode()); #elif !LLVM_ENABLE_THREADS // Out of process mode using SimpleRemoteEPC depends on threads. return make_error( "-" + OutOfProcessExecutorConnect.ArgStr + " requires threads, but LLVM was built with " "LLVM_ENABLE_THREADS=Off", inconvertibleErrorCode()); #else StringRef Host, PortStr; std::tie(Host, PortStr) = StringRef(OutOfProcessExecutorConnect).split(':'); if (Host.empty()) return createTCPSocketError("Host name for -" + OutOfProcessExecutorConnect.ArgStr + " can not be empty"); if (PortStr.empty()) return createTCPSocketError("Port number in -" + OutOfProcessExecutorConnect.ArgStr + " can not be empty"); int Port = 0; if (PortStr.getAsInteger(10, Port)) return createTCPSocketError("Port number '" + PortStr + "' is not a valid integer"); Expected SockFD = connectTCPSocket(Host.str(), PortStr.str()); if (!SockFD) return SockFD.takeError(); return SimpleRemoteEPC::Create( std::make_unique(), SimpleRemoteEPC::Setup(), *SockFD, *SockFD); #endif } class PhonyExternalsGenerator : public DefinitionGenerator { public: Error tryToGenerate(LookupState &LS, LookupKind K, JITDylib &JD, JITDylibLookupFlags JDLookupFlags, const SymbolLookupSet &LookupSet) override { SymbolMap PhonySymbols; for (auto &KV : LookupSet) PhonySymbols[KV.first] = JITEvaluatedSymbol(0, JITSymbolFlags::Exported); return JD.define(absoluteSymbols(std::move(PhonySymbols))); } }; Expected> Session::Create(Triple TT) { std::unique_ptr EPC; if (OutOfProcessExecutor.getNumOccurrences()) { /// If -oop-executor is passed then launch the executor. if (auto REPC = launchExecutor()) EPC = std::move(*REPC); else return REPC.takeError(); } else if (OutOfProcessExecutorConnect.getNumOccurrences()) { /// If -oop-executor-connect is passed then connect to the executor. if (auto REPC = connectToExecutor()) EPC = std::move(*REPC); else return REPC.takeError(); } else { /// Otherwise use SelfExecutorProcessControl to target the current process. auto PageSize = sys::Process::getPageSize(); if (!PageSize) return PageSize.takeError(); EPC = std::make_unique( std::make_shared(), std::make_unique(), std::move(TT), *PageSize, createMemoryManager()); } Error Err = Error::success(); std::unique_ptr S(new Session(std::move(EPC), Err)); if (Err) return std::move(Err); return std::move(S); } Session::~Session() { if (auto Err = ES.endSession()) ES.reportError(std::move(Err)); } Session::Session(std::unique_ptr EPC, Error &Err) : ES(std::move(EPC)), ObjLayer(ES, ES.getExecutorProcessControl().getMemMgr()) { /// Local ObjectLinkingLayer::Plugin class to forward modifyPassConfig to the /// Session. class JITLinkSessionPlugin : public ObjectLinkingLayer::Plugin { public: JITLinkSessionPlugin(Session &S) : S(S) {} void modifyPassConfig(MaterializationResponsibility &MR, LinkGraph &G, PassConfiguration &PassConfig) override { S.modifyPassConfig(G.getTargetTriple(), PassConfig); } Error notifyFailed(MaterializationResponsibility &MR) override { return Error::success(); } Error notifyRemovingResources(ResourceKey K) override { return Error::success(); } void notifyTransferringResources(ResourceKey DstKey, ResourceKey SrcKey) override {} private: Session &S; }; ErrorAsOutParameter _(&Err); if (auto MainJDOrErr = ES.createJITDylib("main")) MainJD = &*MainJDOrErr; else { Err = MainJDOrErr.takeError(); return; } if (!NoProcessSymbols) ExitOnErr(loadProcessSymbols(*this)); ExitOnErr(loadDylibs(*this)); auto &TT = ES.getExecutorProcessControl().getTargetTriple(); if (DebuggerSupport && TT.isOSBinFormatMachO()) ObjLayer.addPlugin(ExitOnErr( GDBJITDebugInfoRegistrationPlugin::Create(this->ES, *MainJD, TT))); // Set up the platform. if (TT.isOSBinFormatMachO() && !OrcRuntime.empty()) { if (auto P = MachOPlatform::Create(ES, ObjLayer, *MainJD, OrcRuntime.c_str())) ES.setPlatform(std::move(*P)); else { Err = P.takeError(); return; } } else if (TT.isOSBinFormatELF() && !OrcRuntime.empty()) { if (auto P = ELFNixPlatform::Create(ES, ObjLayer, *MainJD, OrcRuntime.c_str())) ES.setPlatform(std::move(*P)); else { Err = P.takeError(); return; } } else if (!TT.isOSWindows() && !TT.isOSBinFormatMachO()) { if (!NoExec) ObjLayer.addPlugin(std::make_unique( ES, ExitOnErr(EPCEHFrameRegistrar::Create(this->ES)))); if (DebuggerSupport) ObjLayer.addPlugin(std::make_unique( ES, ExitOnErr(createJITLoaderGDBRegistrar(this->ES)))); } ObjLayer.addPlugin(std::make_unique(*this)); // Process any harness files. for (auto &HarnessFile : TestHarnesses) { HarnessFiles.insert(HarnessFile); auto ObjBuffer = ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(HarnessFile))); auto ObjInterface = ExitOnErr(getObjectFileInterface(ES, ObjBuffer->getMemBufferRef())); for (auto &KV : ObjInterface.SymbolFlags) HarnessDefinitions.insert(*KV.first); auto Obj = ExitOnErr( object::ObjectFile::createObjectFile(ObjBuffer->getMemBufferRef())); for (auto &Sym : Obj->symbols()) { uint32_t SymFlags = ExitOnErr(Sym.getFlags()); auto Name = ExitOnErr(Sym.getName()); if (Name.empty()) continue; if (SymFlags & object::BasicSymbolRef::SF_Undefined) HarnessExternals.insert(Name); } } // If a name is defined by some harness file then it's a definition, not an // external. for (auto &DefName : HarnessDefinitions) HarnessExternals.erase(DefName.getKey()); } void Session::dumpSessionInfo(raw_ostream &OS) { OS << "Registered addresses:\n" << SymbolInfos << FileInfos; } void Session::modifyPassConfig(const Triple &TT, PassConfiguration &PassConfig) { if (!CheckFiles.empty()) PassConfig.PostFixupPasses.push_back([this](LinkGraph &G) { auto &EPC = ES.getExecutorProcessControl(); if (EPC.getTargetTriple().getObjectFormat() == Triple::ELF) return registerELFGraphInfo(*this, G); if (EPC.getTargetTriple().getObjectFormat() == Triple::MachO) return registerMachOGraphInfo(*this, G); return make_error("Unsupported object format for GOT/stub " "registration", inconvertibleErrorCode()); }); if (ShowLinkGraph) PassConfig.PostFixupPasses.push_back([](LinkGraph &G) -> Error { outs() << "Link graph \"" << G.getName() << "\" post-fixup:\n"; G.dump(outs()); return Error::success(); }); PassConfig.PrePrunePasses.push_back( [this](LinkGraph &G) { return applyHarnessPromotions(*this, G); }); if (ShowSizes) { PassConfig.PrePrunePasses.push_back([this](LinkGraph &G) -> Error { SizeBeforePruning += computeTotalBlockSizes(G); return Error::success(); }); PassConfig.PostFixupPasses.push_back([this](LinkGraph &G) -> Error { SizeAfterFixups += computeTotalBlockSizes(G); return Error::success(); }); } if (ShowRelocatedSectionContents) PassConfig.PostFixupPasses.push_back([](LinkGraph &G) -> Error { outs() << "Relocated section contents for " << G.getName() << ":\n"; dumpSectionContents(outs(), G); return Error::success(); }); if (AddSelfRelocations) PassConfig.PostPrunePasses.push_back(addSelfRelocations); } Expected Session::findFileInfo(StringRef FileName) { auto FileInfoItr = FileInfos.find(FileName); if (FileInfoItr == FileInfos.end()) return make_error("file \"" + FileName + "\" not recognized", inconvertibleErrorCode()); return FileInfoItr->second; } Expected Session::findSectionInfo(StringRef FileName, StringRef SectionName) { auto FI = findFileInfo(FileName); if (!FI) return FI.takeError(); auto SecInfoItr = FI->SectionInfos.find(SectionName); if (SecInfoItr == FI->SectionInfos.end()) return make_error("no section \"" + SectionName + "\" registered for file \"" + FileName + "\"", inconvertibleErrorCode()); return SecInfoItr->second; } Expected Session::findStubInfo(StringRef FileName, StringRef TargetName) { auto FI = findFileInfo(FileName); if (!FI) return FI.takeError(); auto StubInfoItr = FI->StubInfos.find(TargetName); if (StubInfoItr == FI->StubInfos.end()) return make_error("no stub for \"" + TargetName + "\" registered for file \"" + FileName + "\"", inconvertibleErrorCode()); return StubInfoItr->second; } Expected Session::findGOTEntryInfo(StringRef FileName, StringRef TargetName) { auto FI = findFileInfo(FileName); if (!FI) return FI.takeError(); auto GOTInfoItr = FI->GOTEntryInfos.find(TargetName); if (GOTInfoItr == FI->GOTEntryInfos.end()) return make_error("no GOT entry for \"" + TargetName + "\" registered for file \"" + FileName + "\"", inconvertibleErrorCode()); return GOTInfoItr->second; } bool Session::isSymbolRegistered(StringRef SymbolName) { return SymbolInfos.count(SymbolName); } Expected Session::findSymbolInfo(StringRef SymbolName, Twine ErrorMsgStem) { auto SymInfoItr = SymbolInfos.find(SymbolName); if (SymInfoItr == SymbolInfos.end()) return make_error(ErrorMsgStem + ": symbol " + SymbolName + " not found", inconvertibleErrorCode()); return SymInfoItr->second; } } // end namespace llvm static Triple getFirstFileTriple() { static Triple FirstTT = []() { assert(!InputFiles.empty() && "InputFiles can not be empty"); for (auto InputFile : InputFiles) { auto ObjBuffer = ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(InputFile))); switch (identify_magic(ObjBuffer->getBuffer())) { case file_magic::elf_relocatable: case file_magic::macho_object: case file_magic::coff_object: { auto Obj = ExitOnErr( object::ObjectFile::createObjectFile(ObjBuffer->getMemBufferRef())); return Obj->makeTriple(); } default: break; } } return Triple(); }(); return FirstTT; } static Error sanitizeArguments(const Triple &TT, const char *ArgV0) { // -noexec and --args should not be used together. if (NoExec && !InputArgv.empty()) errs() << "Warning: --args passed to -noexec run will be ignored.\n"; // Set the entry point name if not specified. if (EntryPointName.empty()) EntryPointName = TT.getObjectFormat() == Triple::MachO ? "_main" : "main"; // Disable debugger support by default in noexec tests. if (DebuggerSupport.getNumOccurrences() == 0 && NoExec) DebuggerSupport = false; // If -slab-allocate is passed, check that we're not trying to use it in // -oop-executor or -oop-executor-connect mode. // // FIXME: Remove once we enable remote slab allocation. if (SlabAllocateSizeString != "") { if (OutOfProcessExecutor.getNumOccurrences() || OutOfProcessExecutorConnect.getNumOccurrences()) return make_error( "-slab-allocate cannot be used with -oop-executor or " "-oop-executor-connect", inconvertibleErrorCode()); } // If -slab-address is passed, require -slab-allocate and -noexec if (SlabAddress != ~0ULL) { if (SlabAllocateSizeString == "" || !NoExec) return make_error( "-slab-address requires -slab-allocate and -noexec", inconvertibleErrorCode()); if (SlabPageSize == 0) errs() << "Warning: -slab-address used without -slab-page-size.\n"; } if (SlabPageSize != 0) { // -slab-page-size requires slab alloc. if (SlabAllocateSizeString == "") return make_error("-slab-page-size requires -slab-allocate", inconvertibleErrorCode()); // Check -slab-page-size / -noexec interactions. if (!NoExec) { if (auto RealPageSize = sys::Process::getPageSize()) { if (SlabPageSize % *RealPageSize) return make_error( "-slab-page-size must be a multiple of real page size for exec " "tests (did you mean to use -noexec ?)\n", inconvertibleErrorCode()); } else { errs() << "Could not retrieve process page size:\n"; logAllUnhandledErrors(RealPageSize.takeError(), errs(), ""); errs() << "Executing with slab page size = " << formatv("{0:x}", SlabPageSize) << ".\n" << "Tool may crash if " << formatv("{0:x}", SlabPageSize) << " is not a multiple of the real process page size.\n" << "(did you mean to use -noexec ?)"; } } } // Only one of -oop-executor and -oop-executor-connect can be used. if (!!OutOfProcessExecutor.getNumOccurrences() && !!OutOfProcessExecutorConnect.getNumOccurrences()) return make_error( "Only one of -" + OutOfProcessExecutor.ArgStr + " and -" + OutOfProcessExecutorConnect.ArgStr + " can be specified", inconvertibleErrorCode()); // If -oop-executor was used but no value was specified then use a sensible // default. if (!!OutOfProcessExecutor.getNumOccurrences() && OutOfProcessExecutor.empty()) { SmallString<256> OOPExecutorPath(sys::fs::getMainExecutable( ArgV0, reinterpret_cast(&sanitizeArguments))); sys::path::remove_filename(OOPExecutorPath); sys::path::append(OOPExecutorPath, "llvm-jitlink-executor"); OutOfProcessExecutor = OOPExecutorPath.str().str(); } return Error::success(); } static void addPhonyExternalsGenerator(Session &S) { S.MainJD->addGenerator(std::make_unique()); } static Error createJITDylibs(Session &S, std::map &IdxToJD) { // First, set up JITDylibs. LLVM_DEBUG(dbgs() << "Creating JITDylibs...\n"); { // Create a "main" JITLinkDylib. IdxToJD[0] = S.MainJD; S.JDSearchOrder.push_back({S.MainJD, JITDylibLookupFlags::MatchAllSymbols}); LLVM_DEBUG(dbgs() << " 0: " << S.MainJD->getName() << "\n"); // Add any extra JITDylibs from the command line. for (auto JDItr = JITDylibs.begin(), JDEnd = JITDylibs.end(); JDItr != JDEnd; ++JDItr) { auto JD = S.ES.createJITDylib(*JDItr); if (!JD) return JD.takeError(); unsigned JDIdx = JITDylibs.getPosition(JDItr - JITDylibs.begin()); IdxToJD[JDIdx] = &*JD; S.JDSearchOrder.push_back({&*JD, JITDylibLookupFlags::MatchAllSymbols}); LLVM_DEBUG(dbgs() << " " << JDIdx << ": " << JD->getName() << "\n"); } } LLVM_DEBUG({ dbgs() << "Dylib search order is [ "; for (auto &KV : S.JDSearchOrder) dbgs() << KV.first->getName() << " "; dbgs() << "]\n"; }); return Error::success(); } static Error addAbsoluteSymbols(Session &S, const std::map &IdxToJD) { // Define absolute symbols. LLVM_DEBUG(dbgs() << "Defining absolute symbols...\n"); for (auto AbsDefItr = AbsoluteDefs.begin(), AbsDefEnd = AbsoluteDefs.end(); AbsDefItr != AbsDefEnd; ++AbsDefItr) { unsigned AbsDefArgIdx = AbsoluteDefs.getPosition(AbsDefItr - AbsoluteDefs.begin()); auto &JD = *std::prev(IdxToJD.lower_bound(AbsDefArgIdx))->second; StringRef AbsDefStmt = *AbsDefItr; size_t EqIdx = AbsDefStmt.find_first_of('='); if (EqIdx == StringRef::npos) return make_error("Invalid absolute define \"" + AbsDefStmt + "\". Syntax: =", inconvertibleErrorCode()); StringRef Name = AbsDefStmt.substr(0, EqIdx).trim(); StringRef AddrStr = AbsDefStmt.substr(EqIdx + 1).trim(); uint64_t Addr; if (AddrStr.getAsInteger(0, Addr)) return make_error("Invalid address expression \"" + AddrStr + "\" in absolute define \"" + AbsDefStmt + "\"", inconvertibleErrorCode()); JITEvaluatedSymbol AbsDef(Addr, JITSymbolFlags::Exported); if (auto Err = JD.define(absoluteSymbols({{S.ES.intern(Name), AbsDef}}))) return Err; // Register the absolute symbol with the session symbol infos. S.SymbolInfos[Name] = {ArrayRef(), Addr}; } return Error::success(); } static Error addTestHarnesses(Session &S) { LLVM_DEBUG(dbgs() << "Adding test harness objects...\n"); for (auto HarnessFile : TestHarnesses) { LLVM_DEBUG(dbgs() << " " << HarnessFile << "\n"); auto ObjBuffer = errorOrToExpected(MemoryBuffer::getFile(HarnessFile)); if (!ObjBuffer) return ObjBuffer.takeError(); if (auto Err = S.ObjLayer.add(*S.MainJD, std::move(*ObjBuffer))) return Err; } return Error::success(); } static Error addObjects(Session &S, const std::map &IdxToJD) { // Load each object into the corresponding JITDylib.. LLVM_DEBUG(dbgs() << "Adding objects...\n"); for (auto InputFileItr = InputFiles.begin(), InputFileEnd = InputFiles.end(); InputFileItr != InputFileEnd; ++InputFileItr) { unsigned InputFileArgIdx = InputFiles.getPosition(InputFileItr - InputFiles.begin()); const std::string &InputFile = *InputFileItr; if (StringRef(InputFile).endswith(".a")) continue; auto &JD = *std::prev(IdxToJD.lower_bound(InputFileArgIdx))->second; LLVM_DEBUG(dbgs() << " " << InputFileArgIdx << ": \"" << InputFile << "\" to " << JD.getName() << "\n";); auto ObjBuffer = errorOrToExpected(MemoryBuffer::getFile(InputFile)); if (!ObjBuffer) return ObjBuffer.takeError(); if (S.HarnessFiles.empty()) { if (auto Err = S.ObjLayer.add(JD, std::move(*ObjBuffer))) return Err; } else { // We're in -harness mode. Use a custom interface for this // test object. auto ObjInterface = getTestObjectFileInterface(S, (*ObjBuffer)->getMemBufferRef()); if (!ObjInterface) return ObjInterface.takeError(); if (auto Err = S.ObjLayer.add(JD, std::move(*ObjBuffer), std::move(*ObjInterface))) return Err; } } return Error::success(); } static Expected getObjectFileInterfaceHidden(ExecutionSession &ES, MemoryBufferRef ObjBuffer) { auto I = getObjectFileInterface(ES, ObjBuffer); if (I) { for (auto &KV : I->SymbolFlags) KV.second &= ~JITSymbolFlags::Exported; } return I; } static Error addLibraries(Session &S, const std::map &IdxToJD) { // 1. Collect search paths for each JITDylib. DenseMap> JDSearchPaths; for (auto LSPItr = LibrarySearchPaths.begin(), LSPEnd = LibrarySearchPaths.end(); LSPItr != LSPEnd; ++LSPItr) { unsigned LibrarySearchPathIdx = LibrarySearchPaths.getPosition(LSPItr - LibrarySearchPaths.begin()); auto &JD = *std::prev(IdxToJD.lower_bound(LibrarySearchPathIdx))->second; StringRef LibrarySearchPath = *LSPItr; if (sys::fs::get_file_type(LibrarySearchPath) != sys::fs::file_type::directory_file) return make_error("While linking " + JD.getName() + ", -L" + LibrarySearchPath + " does not point to a directory", inconvertibleErrorCode()); JDSearchPaths[&JD].push_back(*LSPItr); } LLVM_DEBUG({ if (!JDSearchPaths.empty()) dbgs() << "Search paths:\n"; for (auto &KV : JDSearchPaths) { dbgs() << " " << KV.first->getName() << ": ["; for (auto &LibSearchPath : KV.second) dbgs() << " \"" << LibSearchPath << "\""; dbgs() << " ]\n"; } }); // 2. Collect library loads struct LibraryLoad { StringRef LibName; bool IsPath = false; unsigned Position; StringRef *CandidateExtensions; enum { Standard, Hidden } Modifier; }; std::vector LibraryLoads; // Add archive files from the inputs to LibraryLoads. for (auto InputFileItr = InputFiles.begin(), InputFileEnd = InputFiles.end(); InputFileItr != InputFileEnd; ++InputFileItr) { StringRef InputFile = *InputFileItr; if (!InputFile.endswith(".a")) continue; LibraryLoad LL; LL.LibName = InputFile; LL.IsPath = true; LL.Position = InputFiles.getPosition(InputFileItr - InputFiles.begin()); LL.CandidateExtensions = nullptr; LL.Modifier = LibraryLoad::Standard; LibraryLoads.push_back(std::move(LL)); } // Add -load_hidden arguments to LibraryLoads. for (auto LibItr = LoadHidden.begin(), LibEnd = LoadHidden.end(); LibItr != LibEnd; ++LibItr) { LibraryLoad LL; LL.LibName = *LibItr; LL.IsPath = true; LL.Position = LoadHidden.getPosition(LibItr - LoadHidden.begin()); LL.CandidateExtensions = nullptr; LL.Modifier = LibraryLoad::Hidden; LibraryLoads.push_back(std::move(LL)); } StringRef StandardExtensions[] = {".so", ".dylib", ".a"}; StringRef ArchiveExtensionsOnly[] = {".a"}; // Add -lx arguments to LibraryLoads. for (auto LibItr = Libraries.begin(), LibEnd = Libraries.end(); LibItr != LibEnd; ++LibItr) { LibraryLoad LL; LL.LibName = *LibItr; LL.Position = Libraries.getPosition(LibItr - Libraries.begin()); LL.CandidateExtensions = StandardExtensions; LL.Modifier = LibraryLoad::Standard; LibraryLoads.push_back(std::move(LL)); } // Add -hidden-lx arguments to LibraryLoads. for (auto LibHiddenItr = LibrariesHidden.begin(), LibHiddenEnd = LibrariesHidden.end(); LibHiddenItr != LibHiddenEnd; ++LibHiddenItr) { LibraryLoad LL; LL.LibName = *LibHiddenItr; LL.Position = LibrariesHidden.getPosition(LibHiddenItr - LibrariesHidden.begin()); LL.CandidateExtensions = ArchiveExtensionsOnly; LL.Modifier = LibraryLoad::Hidden; LibraryLoads.push_back(std::move(LL)); } // If there are any load- options then turn on flag overrides // to avoid flag mismatch errors. if (!LibrariesHidden.empty() || !LoadHidden.empty()) S.ObjLayer.setOverrideObjectFlagsWithResponsibilityFlags(true); // Sort library loads by position in the argument list. llvm::sort(LibraryLoads, [](const LibraryLoad &LHS, const LibraryLoad &RHS) { return LHS.Position < RHS.Position; }); // 3. Process library loads. auto AddArchive = [&](const char *Path, const LibraryLoad &LL) -> Expected> { unique_function( ExecutionSession & ES, MemoryBufferRef ObjBuffer)> GetObjFileInterface; switch (LL.Modifier) { case LibraryLoad::Standard: GetObjFileInterface = getObjectFileInterface; break; case LibraryLoad::Hidden: GetObjFileInterface = getObjectFileInterfaceHidden; break; } return StaticLibraryDefinitionGenerator::Load( S.ObjLayer, Path, S.ES.getExecutorProcessControl().getTargetTriple(), std::move(GetObjFileInterface)); }; for (auto &LL : LibraryLoads) { bool LibFound = false; auto &JD = *std::prev(IdxToJD.lower_bound(LL.Position))->second; // If this is the name of a JITDylib then link against that. if (auto *LJD = S.ES.getJITDylibByName(LL.LibName)) { JD.addToLinkOrder(*LJD); continue; } if (LL.IsPath) { auto G = AddArchive(LL.LibName.str().c_str(), LL); if (!G) return createFileError(LL.LibName, G.takeError()); JD.addGenerator(std::move(*G)); LLVM_DEBUG({ dbgs() << "Adding generator for static library " << LL.LibName << " to " << JD.getName() << "\n"; }); continue; } // Otherwise look through the search paths. auto JDSearchPathsItr = JDSearchPaths.find(&JD); if (JDSearchPathsItr != JDSearchPaths.end()) { for (StringRef SearchPath : JDSearchPathsItr->second) { for (const char *LibExt : {".dylib", ".so", ".a"}) { SmallVector LibPath; LibPath.reserve(SearchPath.size() + strlen("lib") + LL.LibName.size() + strlen(LibExt) + 2); // +2 for pathsep, null term. llvm::copy(SearchPath, std::back_inserter(LibPath)); sys::path::append(LibPath, "lib" + LL.LibName + LibExt); LibPath.push_back('\0'); // Skip missing or non-regular paths. if (sys::fs::get_file_type(LibPath.data()) != sys::fs::file_type::regular_file) { continue; } file_magic Magic; if (auto EC = identify_magic(LibPath, Magic)) { // If there was an error loading the file then skip it. LLVM_DEBUG({ dbgs() << "Library search found \"" << LibPath << "\", but could not identify file type (" << EC.message() << "). Skipping.\n"; }); continue; } // We identified the magic. Assume that we can load it -- we'll reset // in the default case. LibFound = true; switch (Magic) { case file_magic::elf_shared_object: case file_magic::macho_dynamically_linked_shared_lib: { // TODO: On first reference to LibPath this should create a JITDylib // with a generator and add it to JD's links-against list. Subsquent // references should use the JITDylib created on the first // reference. auto G = EPCDynamicLibrarySearchGenerator::Load(S.ES, LibPath.data()); if (!G) return G.takeError(); LLVM_DEBUG({ dbgs() << "Adding generator for dynamic library " << LibPath.data() << " to " << JD.getName() << "\n"; }); JD.addGenerator(std::move(*G)); break; } case file_magic::archive: case file_magic::macho_universal_binary: { auto G = AddArchive(LibPath.data(), LL); if (!G) return G.takeError(); JD.addGenerator(std::move(*G)); LLVM_DEBUG({ dbgs() << "Adding generator for static library " << LibPath.data() << " to " << JD.getName() << "\n"; }); break; } default: // This file isn't a recognized library kind. LLVM_DEBUG({ dbgs() << "Library search found \"" << LibPath << "\", but file type is not supported. Skipping.\n"; }); LibFound = false; break; } if (LibFound) break; } if (LibFound) break; } } if (!LibFound) return make_error("While linking " + JD.getName() + ", could not find library for -l" + LL.LibName, inconvertibleErrorCode()); } return Error::success(); } static Error addProcessSymbols(Session &S, const std::map &IdxToJD) { if (NoProcessSymbols) return Error::success(); for (auto &KV : IdxToJD) { auto &JD = *KV.second; JD.addGenerator(ExitOnErr( orc::EPCDynamicLibrarySearchGenerator::GetForTargetProcess(S.ES))); } return Error::success(); } static Error addSessionInputs(Session &S) { std::map IdxToJD; if (auto Err = createJITDylibs(S, IdxToJD)) return Err; if (auto Err = addAbsoluteSymbols(S, IdxToJD)) return Err; if (!TestHarnesses.empty()) if (auto Err = addTestHarnesses(S)) return Err; if (auto Err = addObjects(S, IdxToJD)) return Err; if (auto Err = addLibraries(S, IdxToJD)) return Err; if (auto Err = addProcessSymbols(S, IdxToJD)) return Err; return Error::success(); } namespace { struct TargetInfo { const Target *TheTarget; std::unique_ptr STI; std::unique_ptr MRI; std::unique_ptr MAI; std::unique_ptr Ctx; std::unique_ptr Disassembler; std::unique_ptr MII; std::unique_ptr MIA; std::unique_ptr InstPrinter; }; } // anonymous namespace static TargetInfo getTargetInfo(const Triple &TT) { auto TripleName = TT.str(); std::string ErrorStr; const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, ErrorStr); if (!TheTarget) ExitOnErr(make_error("Error accessing target '" + TripleName + "': " + ErrorStr, inconvertibleErrorCode())); std::unique_ptr STI( TheTarget->createMCSubtargetInfo(TripleName, "", "")); if (!STI) ExitOnErr( make_error("Unable to create subtarget for " + TripleName, inconvertibleErrorCode())); std::unique_ptr MRI(TheTarget->createMCRegInfo(TripleName)); if (!MRI) ExitOnErr(make_error("Unable to create target register info " "for " + TripleName, inconvertibleErrorCode())); MCTargetOptions MCOptions; std::unique_ptr MAI( TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions)); if (!MAI) ExitOnErr(make_error("Unable to create target asm info " + TripleName, inconvertibleErrorCode())); auto Ctx = std::make_unique(Triple(TripleName), MAI.get(), MRI.get(), STI.get()); std::unique_ptr Disassembler( TheTarget->createMCDisassembler(*STI, *Ctx)); if (!Disassembler) ExitOnErr(make_error("Unable to create disassembler for " + TripleName, inconvertibleErrorCode())); std::unique_ptr MII(TheTarget->createMCInstrInfo()); if (!MII) ExitOnErr(make_error("Unable to create instruction info for" + TripleName, inconvertibleErrorCode())); std::unique_ptr MIA( TheTarget->createMCInstrAnalysis(MII.get())); if (!MIA) ExitOnErr(make_error( "Unable to create instruction analysis for" + TripleName, inconvertibleErrorCode())); std::unique_ptr InstPrinter( TheTarget->createMCInstPrinter(Triple(TripleName), 0, *MAI, *MII, *MRI)); if (!InstPrinter) ExitOnErr(make_error( "Unable to create instruction printer for" + TripleName, inconvertibleErrorCode())); return {TheTarget, std::move(STI), std::move(MRI), std::move(MAI), std::move(Ctx), std::move(Disassembler), std::move(MII), std::move(MIA), std::move(InstPrinter)}; } static Error runChecks(Session &S) { const auto &TT = S.ES.getExecutorProcessControl().getTargetTriple(); if (CheckFiles.empty()) return Error::success(); LLVM_DEBUG(dbgs() << "Running checks...\n"); auto TI = getTargetInfo(TT); auto IsSymbolValid = [&S](StringRef Symbol) { return S.isSymbolRegistered(Symbol); }; auto GetSymbolInfo = [&S](StringRef Symbol) { return S.findSymbolInfo(Symbol, "Can not get symbol info"); }; auto GetSectionInfo = [&S](StringRef FileName, StringRef SectionName) { return S.findSectionInfo(FileName, SectionName); }; auto GetStubInfo = [&S](StringRef FileName, StringRef SectionName) { return S.findStubInfo(FileName, SectionName); }; auto GetGOTInfo = [&S](StringRef FileName, StringRef SectionName) { return S.findGOTEntryInfo(FileName, SectionName); }; RuntimeDyldChecker Checker( IsSymbolValid, GetSymbolInfo, GetSectionInfo, GetStubInfo, GetGOTInfo, TT.isLittleEndian() ? support::little : support::big, TI.Disassembler.get(), TI.InstPrinter.get(), dbgs()); std::string CheckLineStart = "# " + CheckName + ":"; for (auto &CheckFile : CheckFiles) { auto CheckerFileBuf = ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(CheckFile))); if (!Checker.checkAllRulesInBuffer(CheckLineStart, &*CheckerFileBuf)) ExitOnErr(make_error( "Some checks in " + CheckFile + " failed", inconvertibleErrorCode())); } return Error::success(); } static Error addSelfRelocations(LinkGraph &G) { auto TI = getTargetInfo(G.getTargetTriple()); for (auto *Sym : G.defined_symbols()) if (Sym->isCallable()) if (auto Err = addFunctionPointerRelocationsToCurrentSymbol( *Sym, G, *TI.Disassembler, *TI.MIA)) return Err; return Error::success(); } static void dumpSessionStats(Session &S) { if (!ShowSizes) return; if (!OrcRuntime.empty()) outs() << "Note: Session stats include runtime and entry point lookup, but " "not JITDylib initialization/deinitialization.\n"; if (ShowSizes) outs() << " Total size of all blocks before pruning: " << S.SizeBeforePruning << "\n Total size of all blocks after fixups: " << S.SizeAfterFixups << "\n"; } static Expected getMainEntryPoint(Session &S) { return S.ES.lookup(S.JDSearchOrder, S.ES.intern(EntryPointName)); } static Expected getOrcRuntimeEntryPoint(Session &S) { std::string RuntimeEntryPoint = "__orc_rt_run_program_wrapper"; const auto &TT = S.ES.getExecutorProcessControl().getTargetTriple(); if (TT.getObjectFormat() == Triple::MachO) RuntimeEntryPoint = '_' + RuntimeEntryPoint; return S.ES.lookup(S.JDSearchOrder, S.ES.intern(RuntimeEntryPoint)); } static Expected runWithRuntime(Session &S, ExecutorAddr EntryPointAddr) { StringRef DemangledEntryPoint = EntryPointName; const auto &TT = S.ES.getExecutorProcessControl().getTargetTriple(); if (TT.getObjectFormat() == Triple::MachO && DemangledEntryPoint.front() == '_') DemangledEntryPoint = DemangledEntryPoint.drop_front(); using SPSRunProgramSig = int64_t(SPSString, SPSString, SPSSequence); int64_t Result; if (auto Err = S.ES.callSPSWrapper( EntryPointAddr, Result, S.MainJD->getName(), DemangledEntryPoint, static_cast &>(InputArgv))) return std::move(Err); return Result; } static Expected runWithoutRuntime(Session &S, ExecutorAddr EntryPointAddr) { return S.ES.getExecutorProcessControl().runAsMain(EntryPointAddr, InputArgv); } namespace { struct JITLinkTimers { TimerGroup JITLinkTG{"llvm-jitlink timers", "timers for llvm-jitlink phases"}; Timer LoadObjectsTimer{"load", "time to load/add object files", JITLinkTG}; Timer LinkTimer{"link", "time to link object files", JITLinkTG}; Timer RunTimer{"run", "time to execute jitlink'd code", JITLinkTG}; }; } // namespace int main(int argc, char *argv[]) { InitLLVM X(argc, argv); InitializeAllTargetInfos(); InitializeAllTargetMCs(); InitializeAllDisassemblers(); cl::HideUnrelatedOptions({&JITLinkCategory, &getColorCategory()}); cl::ParseCommandLineOptions(argc, argv, "llvm jitlink tool"); ExitOnErr.setBanner(std::string(argv[0]) + ": "); /// If timers are enabled, create a JITLinkTimers instance. std::unique_ptr Timers = ShowTimes ? std::make_unique() : nullptr; ExitOnErr(sanitizeArguments(getFirstFileTriple(), argv[0])); auto S = ExitOnErr(Session::Create(getFirstFileTriple())); { TimeRegion TR(Timers ? &Timers->LoadObjectsTimer : nullptr); ExitOnErr(addSessionInputs(*S)); } if (PhonyExternals) addPhonyExternalsGenerator(*S); if (ShowInitialExecutionSessionState) S->ES.dump(outs()); JITEvaluatedSymbol EntryPoint = nullptr; { TimeRegion TR(Timers ? &Timers->LinkTimer : nullptr); // Find the entry-point function unconditionally, since we want to force // it to be materialized to collect stats. EntryPoint = ExitOnErr(getMainEntryPoint(*S)); LLVM_DEBUG({ dbgs() << "Using entry point \"" << EntryPointName << "\": " << formatv("{0:x16}", EntryPoint.getAddress()) << "\n"; }); // If we're running with the ORC runtime then replace the entry-point // with the __orc_rt_run_program symbol. if (!OrcRuntime.empty()) { EntryPoint = ExitOnErr(getOrcRuntimeEntryPoint(*S)); LLVM_DEBUG({ dbgs() << "(called via __orc_rt_run_program_wrapper at " << formatv("{0:x16}", EntryPoint.getAddress()) << ")\n"; }); } } if (ShowEntryExecutionSessionState) S->ES.dump(outs()); if (ShowAddrs) S->dumpSessionInfo(outs()); ExitOnErr(runChecks(*S)); dumpSessionStats(*S); if (NoExec) return 0; int Result = 0; { LLVM_DEBUG(dbgs() << "Running \"" << EntryPointName << "\"...\n"); TimeRegion TR(Timers ? &Timers->RunTimer : nullptr); if (!OrcRuntime.empty()) Result = ExitOnErr(runWithRuntime(*S, ExecutorAddr(EntryPoint.getAddress()))); else Result = ExitOnErr( runWithoutRuntime(*S, ExecutorAddr(EntryPoint.getAddress()))); } // Destroy the session. ExitOnErr(S->ES.endSession()); S.reset(); // If the executing code set a test result override then use that. if (UseTestResultOverride) Result = TestResultOverride; return Result; }