// Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/container/internal/raw_hash_set.h" #include #include #include #include #include #include "absl/base/attributes.h" #include "absl/base/config.h" #include "absl/base/dynamic_annotations.h" #include "absl/base/internal/endian.h" #include "absl/base/internal/raw_logging.h" #include "absl/base/optimization.h" #include "absl/container/internal/container_memory.h" #include "absl/container/internal/hashtablez_sampler.h" #include "absl/hash/hash.h" #include "absl/numeric/bits.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace container_internal { // Represents a control byte corresponding to a full slot with arbitrary hash. constexpr ctrl_t ZeroCtrlT() { return static_cast(0); } // We have space for `growth_info` before a single block of control bytes. A // single block of empty control bytes for tables without any slots allocated. // This enables removing a branch in the hot path of find(). In order to ensure // that the control bytes are aligned to 16, we have 16 bytes before the control // bytes even though growth_info only needs 8. alignas(16) ABSL_CONST_INIT ABSL_DLL const ctrl_t kEmptyGroup[32] = { ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ctrl_t::kSentinel, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty}; // We need one full byte followed by a sentinel byte for iterator::operator++ to // work. We have a full group after kSentinel to be safe (in case operator++ is // changed to read a full group). ABSL_CONST_INIT ABSL_DLL const ctrl_t kSooControl[17] = { ZeroCtrlT(), ctrl_t::kSentinel, ZeroCtrlT(), ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty}; static_assert(NumControlBytes(SooCapacity()) <= 17, "kSooControl capacity too small"); #ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL constexpr size_t Group::kWidth; #endif namespace { // Returns "random" seed. inline size_t RandomSeed() { #ifdef ABSL_HAVE_THREAD_LOCAL static thread_local size_t counter = 0; // On Linux kernels >= 5.4 the MSAN runtime has a false-positive when // accessing thread local storage data from loaded libraries // (https://github.com/google/sanitizers/issues/1265), for this reason counter // needs to be annotated as initialized. ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(&counter, sizeof(size_t)); size_t value = ++counter; #else // ABSL_HAVE_THREAD_LOCAL static std::atomic counter(0); size_t value = counter.fetch_add(1, std::memory_order_relaxed); #endif // ABSL_HAVE_THREAD_LOCAL return value ^ static_cast(reinterpret_cast(&counter)); } bool ShouldRehashForBugDetection(const ctrl_t* ctrl, size_t capacity) { // Note: we can't use the abseil-random library because abseil-random // depends on swisstable. We want to return true with probability // `min(1, RehashProbabilityConstant() / capacity())`. In order to do this, // we probe based on a random hash and see if the offset is less than // RehashProbabilityConstant(). return probe(ctrl, capacity, absl::HashOf(RandomSeed())).offset() < RehashProbabilityConstant(); } // Find a non-deterministic hash for single group table. // Last two bits are used to find a position for a newly inserted element after // resize. // This function is mixing all bits of hash and control pointer to maximize // entropy. size_t SingleGroupTableH1(size_t hash, ctrl_t* control) { return static_cast(absl::popcount( hash ^ static_cast(reinterpret_cast(control)))); } } // namespace GenerationType* EmptyGeneration() { if (SwisstableGenerationsEnabled()) { constexpr size_t kNumEmptyGenerations = 1024; static constexpr GenerationType kEmptyGenerations[kNumEmptyGenerations]{}; return const_cast( &kEmptyGenerations[RandomSeed() % kNumEmptyGenerations]); } return nullptr; } bool CommonFieldsGenerationInfoEnabled:: should_rehash_for_bug_detection_on_insert(const ctrl_t* ctrl, size_t capacity) const { if (reserved_growth_ == kReservedGrowthJustRanOut) return true; if (reserved_growth_ > 0) return false; return ShouldRehashForBugDetection(ctrl, capacity); } bool CommonFieldsGenerationInfoEnabled::should_rehash_for_bug_detection_on_move( const ctrl_t* ctrl, size_t capacity) const { return ShouldRehashForBugDetection(ctrl, capacity); } bool ShouldInsertBackwardsForDebug(size_t capacity, size_t hash, const ctrl_t* ctrl) { // To avoid problems with weak hashes and single bit tests, we use % 13. // TODO(kfm,sbenza): revisit after we do unconditional mixing return !is_small(capacity) && (H1(hash, ctrl) ^ RandomSeed()) % 13 > 6; } size_t PrepareInsertAfterSoo(size_t hash, size_t slot_size, CommonFields& common) { assert(common.capacity() == NextCapacity(SooCapacity())); // After resize from capacity 1 to 3, we always have exactly the slot with // index 1 occupied, so we need to insert either at index 0 or index 2. assert(HashSetResizeHelper::SooSlotIndex() == 1); PrepareInsertCommon(common); const size_t offset = SingleGroupTableH1(hash, common.control()) & 2; common.growth_info().OverwriteEmptyAsFull(); SetCtrlInSingleGroupTable(common, offset, H2(hash), slot_size); common.infoz().RecordInsert(hash, /*distance_from_desired=*/0); return offset; } void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity) { assert(ctrl[capacity] == ctrl_t::kSentinel); assert(IsValidCapacity(capacity)); for (ctrl_t* pos = ctrl; pos < ctrl + capacity; pos += Group::kWidth) { Group{pos}.ConvertSpecialToEmptyAndFullToDeleted(pos); } // Copy the cloned ctrl bytes. std::memcpy(ctrl + capacity + 1, ctrl, NumClonedBytes()); ctrl[capacity] = ctrl_t::kSentinel; } // Extern template instantiation for inline function. template FindInfo find_first_non_full(const CommonFields&, size_t); FindInfo find_first_non_full_outofline(const CommonFields& common, size_t hash) { return find_first_non_full(common, hash); } namespace { // Returns the address of the slot just after slot assuming each slot has the // specified size. static inline void* NextSlot(void* slot, size_t slot_size) { return reinterpret_cast(reinterpret_cast(slot) + slot_size); } // Returns the address of the slot just before slot assuming each slot has the // specified size. static inline void* PrevSlot(void* slot, size_t slot_size) { return reinterpret_cast(reinterpret_cast(slot) - slot_size); } // Finds guaranteed to exists empty slot from the given position. // NOTE: this function is almost never triggered inside of the // DropDeletesWithoutResize, so we keep it simple. // The table is rather sparse, so empty slot will be found very quickly. size_t FindEmptySlot(size_t start, size_t end, const ctrl_t* ctrl) { for (size_t i = start; i < end; ++i) { if (IsEmpty(ctrl[i])) { return i; } } assert(false && "no empty slot"); return ~size_t{}; } void DropDeletesWithoutResize(CommonFields& common, const PolicyFunctions& policy) { void* set = &common; void* slot_array = common.slot_array(); const size_t capacity = common.capacity(); assert(IsValidCapacity(capacity)); assert(!is_small(capacity)); // Algorithm: // - mark all DELETED slots as EMPTY // - mark all FULL slots as DELETED // - for each slot marked as DELETED // hash = Hash(element) // target = find_first_non_full(hash) // if target is in the same group // mark slot as FULL // else if target is EMPTY // transfer element to target // mark slot as EMPTY // mark target as FULL // else if target is DELETED // swap current element with target element // mark target as FULL // repeat procedure for current slot with moved from element (target) ctrl_t* ctrl = common.control(); ConvertDeletedToEmptyAndFullToDeleted(ctrl, capacity); const void* hash_fn = policy.hash_fn(common); auto hasher = policy.hash_slot; auto transfer = policy.transfer; const size_t slot_size = policy.slot_size; size_t total_probe_length = 0; void* slot_ptr = SlotAddress(slot_array, 0, slot_size); // The index of an empty slot that can be used as temporary memory for // the swap operation. constexpr size_t kUnknownId = ~size_t{}; size_t tmp_space_id = kUnknownId; for (size_t i = 0; i != capacity; ++i, slot_ptr = NextSlot(slot_ptr, slot_size)) { assert(slot_ptr == SlotAddress(slot_array, i, slot_size)); if (IsEmpty(ctrl[i])) { tmp_space_id = i; continue; } if (!IsDeleted(ctrl[i])) continue; const size_t hash = (*hasher)(hash_fn, slot_ptr); const FindInfo target = find_first_non_full(common, hash); const size_t new_i = target.offset; total_probe_length += target.probe_length; // Verify if the old and new i fall within the same group wrt the hash. // If they do, we don't need to move the object as it falls already in the // best probe we can. const size_t probe_offset = probe(common, hash).offset(); const auto probe_index = [probe_offset, capacity](size_t pos) { return ((pos - probe_offset) & capacity) / Group::kWidth; }; // Element doesn't move. if (ABSL_PREDICT_TRUE(probe_index(new_i) == probe_index(i))) { SetCtrl(common, i, H2(hash), slot_size); continue; } void* new_slot_ptr = SlotAddress(slot_array, new_i, slot_size); if (IsEmpty(ctrl[new_i])) { // Transfer element to the empty spot. // SetCtrl poisons/unpoisons the slots so we have to call it at the // right time. SetCtrl(common, new_i, H2(hash), slot_size); (*transfer)(set, new_slot_ptr, slot_ptr); SetCtrl(common, i, ctrl_t::kEmpty, slot_size); // Initialize or change empty space id. tmp_space_id = i; } else { assert(IsDeleted(ctrl[new_i])); SetCtrl(common, new_i, H2(hash), slot_size); // Until we are done rehashing, DELETED marks previously FULL slots. if (tmp_space_id == kUnknownId) { tmp_space_id = FindEmptySlot(i + 1, capacity, ctrl); } void* tmp_space = SlotAddress(slot_array, tmp_space_id, slot_size); SanitizerUnpoisonMemoryRegion(tmp_space, slot_size); // Swap i and new_i elements. (*transfer)(set, tmp_space, new_slot_ptr); (*transfer)(set, new_slot_ptr, slot_ptr); (*transfer)(set, slot_ptr, tmp_space); SanitizerPoisonMemoryRegion(tmp_space, slot_size); // repeat the processing of the ith slot --i; slot_ptr = PrevSlot(slot_ptr, slot_size); } } ResetGrowthLeft(common); common.infoz().RecordRehash(total_probe_length); } static bool WasNeverFull(CommonFields& c, size_t index) { if (is_single_group(c.capacity())) { return true; } const size_t index_before = (index - Group::kWidth) & c.capacity(); const auto empty_after = Group(c.control() + index).MaskEmpty(); const auto empty_before = Group(c.control() + index_before).MaskEmpty(); // We count how many consecutive non empties we have to the right and to the // left of `it`. If the sum is >= kWidth then there is at least one probe // window that might have seen a full group. return empty_before && empty_after && static_cast(empty_after.TrailingZeros()) + empty_before.LeadingZeros() < Group::kWidth; } } // namespace void EraseMetaOnly(CommonFields& c, size_t index, size_t slot_size) { assert(IsFull(c.control()[index]) && "erasing a dangling iterator"); c.decrement_size(); c.infoz().RecordErase(); if (WasNeverFull(c, index)) { SetCtrl(c, index, ctrl_t::kEmpty, slot_size); c.growth_info().OverwriteFullAsEmpty(); return; } c.growth_info().OverwriteFullAsDeleted(); SetCtrl(c, index, ctrl_t::kDeleted, slot_size); } void ClearBackingArray(CommonFields& c, const PolicyFunctions& policy, bool reuse, bool soo_enabled) { c.set_size(0); if (reuse) { assert(!soo_enabled || c.capacity() > SooCapacity()); ResetCtrl(c, policy.slot_size); ResetGrowthLeft(c); c.infoz().RecordStorageChanged(0, c.capacity()); } else { // We need to record infoz before calling dealloc, which will unregister // infoz. c.infoz().RecordClearedReservation(); c.infoz().RecordStorageChanged(0, soo_enabled ? SooCapacity() : 0); (*policy.dealloc)(c, policy); c = soo_enabled ? CommonFields{soo_tag_t{}} : CommonFields{non_soo_tag_t{}}; } } void HashSetResizeHelper::GrowIntoSingleGroupShuffleControlBytes( ctrl_t* __restrict new_ctrl, size_t new_capacity) const { assert(is_single_group(new_capacity)); constexpr size_t kHalfWidth = Group::kWidth / 2; ABSL_ASSUME(old_capacity_ < kHalfWidth); ABSL_ASSUME(old_capacity_ > 0); static_assert(Group::kWidth == 8 || Group::kWidth == 16, "Group size is not supported."); // NOTE: operations are done with compile time known size = 8. // Compiler optimizes that into single ASM operation. // Load the bytes from old_capacity. This contains // - the sentinel byte // - all the old control bytes // - the rest is filled with kEmpty bytes // Example: // old_ctrl = 012S012EEEEEEEEE... // copied_bytes = S012EEEE uint64_t copied_bytes = absl::little_endian::Load64(old_ctrl() + old_capacity_); // We change the sentinel byte to kEmpty before storing to both the start of // the new_ctrl, and past the end of the new_ctrl later for the new cloned // bytes. Note that this is faster than setting the sentinel byte to kEmpty // after the copy directly in new_ctrl because we are limited on store // bandwidth. static constexpr uint64_t kEmptyXorSentinel = static_cast(ctrl_t::kEmpty) ^ static_cast(ctrl_t::kSentinel); // Replace the first byte kSentinel with kEmpty. // Resulting bytes will be shifted by one byte old control blocks. // Example: // old_ctrl = 012S012EEEEEEEEE... // before = S012EEEE // after = E012EEEE copied_bytes ^= kEmptyXorSentinel; if (Group::kWidth == 8) { // With group size 8, we can grow with two write operations. assert(old_capacity_ < 8 && "old_capacity_ is too large for group size 8"); absl::little_endian::Store64(new_ctrl, copied_bytes); static constexpr uint64_t kSentinal64 = static_cast(ctrl_t::kSentinel); // Prepend kSentinel byte to the beginning of copied_bytes. // We have maximum 3 non-empty bytes at the beginning of copied_bytes for // group size 8. // Example: // old_ctrl = 012S012EEEE // before = E012EEEE // after = SE012EEE copied_bytes = (copied_bytes << 8) ^ kSentinal64; absl::little_endian::Store64(new_ctrl + new_capacity, copied_bytes); // Example for capacity 3: // old_ctrl = 012S012EEEE // After the first store: // >! // new_ctrl = E012EEEE??????? // After the second store: // >! // new_ctrl = E012EEESE012EEE return; } assert(Group::kWidth == 16); // Fill the second half of the main control bytes with kEmpty. // For small capacity that may write into mirrored control bytes. // It is fine as we will overwrite all the bytes later. std::memset(new_ctrl + kHalfWidth, static_cast(ctrl_t::kEmpty), kHalfWidth); // Fill the second half of the mirrored control bytes with kEmpty. std::memset(new_ctrl + new_capacity + kHalfWidth, static_cast(ctrl_t::kEmpty), kHalfWidth); // Copy the first half of the non-mirrored control bytes. absl::little_endian::Store64(new_ctrl, copied_bytes); new_ctrl[new_capacity] = ctrl_t::kSentinel; // Copy the first half of the mirrored control bytes. absl::little_endian::Store64(new_ctrl + new_capacity + 1, copied_bytes); // Example for growth capacity 1->3: // old_ctrl = 0S0EEEEEEEEEEEEEE // new_ctrl at the end = E0ESE0EEEEEEEEEEEEE // >! // new_ctrl after 1st memset = ????????EEEEEEEE??? // >! // new_ctrl after 2nd memset = ????????EEEEEEEEEEE // >! // new_ctrl after 1st store = E0EEEEEEEEEEEEEEEEE // new_ctrl after kSentinel = E0ESEEEEEEEEEEEEEEE // >! // new_ctrl after 2nd store = E0ESE0EEEEEEEEEEEEE // Example for growth capacity 3->7: // old_ctrl = 012S012EEEEEEEEEEEE // new_ctrl at the end = E012EEESE012EEEEEEEEEEE // >! // new_ctrl after 1st memset = ????????EEEEEEEE??????? // >! // new_ctrl after 2nd memset = ????????EEEEEEEEEEEEEEE // >! // new_ctrl after 1st store = E012EEEEEEEEEEEEEEEEEEE // new_ctrl after kSentinel = E012EEESEEEEEEEEEEEEEEE // >! // new_ctrl after 2nd store = E012EEESE012EEEEEEEEEEE // Example for growth capacity 7->15: // old_ctrl = 0123456S0123456EEEEEEEE // new_ctrl at the end = E0123456EEEEEEESE0123456EEEEEEE // >! // new_ctrl after 1st memset = ????????EEEEEEEE??????????????? // >! // new_ctrl after 2nd memset = ????????EEEEEEEE???????EEEEEEEE // >! // new_ctrl after 1st store = E0123456EEEEEEEE???????EEEEEEEE // new_ctrl after kSentinel = E0123456EEEEEEES???????EEEEEEEE // >! // new_ctrl after 2nd store = E0123456EEEEEEESE0123456EEEEEEE } void HashSetResizeHelper::InitControlBytesAfterSoo(ctrl_t* new_ctrl, ctrl_t h2, size_t new_capacity) { assert(is_single_group(new_capacity)); std::memset(new_ctrl, static_cast(ctrl_t::kEmpty), NumControlBytes(new_capacity)); assert(HashSetResizeHelper::SooSlotIndex() == 1); // This allows us to avoid branching on had_soo_slot_. assert(had_soo_slot_ || h2 == ctrl_t::kEmpty); new_ctrl[1] = new_ctrl[new_capacity + 2] = h2; new_ctrl[new_capacity] = ctrl_t::kSentinel; } void HashSetResizeHelper::GrowIntoSingleGroupShuffleTransferableSlots( void* new_slots, size_t slot_size) const { ABSL_ASSUME(old_capacity_ > 0); SanitizerUnpoisonMemoryRegion(old_slots(), slot_size * old_capacity_); std::memcpy(SlotAddress(new_slots, 1, slot_size), old_slots(), slot_size * old_capacity_); } void HashSetResizeHelper::GrowSizeIntoSingleGroupTransferable( CommonFields& c, size_t slot_size) { assert(old_capacity_ < Group::kWidth / 2); assert(is_single_group(c.capacity())); assert(IsGrowingIntoSingleGroupApplicable(old_capacity_, c.capacity())); GrowIntoSingleGroupShuffleControlBytes(c.control(), c.capacity()); GrowIntoSingleGroupShuffleTransferableSlots(c.slot_array(), slot_size); // We poison since GrowIntoSingleGroupShuffleTransferableSlots // may leave empty slots unpoisoned. PoisonSingleGroupEmptySlots(c, slot_size); } void HashSetResizeHelper::TransferSlotAfterSoo(CommonFields& c, size_t slot_size) { assert(was_soo_); assert(had_soo_slot_); assert(is_single_group(c.capacity())); std::memcpy(SlotAddress(c.slot_array(), SooSlotIndex(), slot_size), old_soo_data(), slot_size); PoisonSingleGroupEmptySlots(c, slot_size); } namespace { // Called whenever the table needs to vacate empty slots either by removing // tombstones via rehash or growth. ABSL_ATTRIBUTE_NOINLINE FindInfo FindInsertPositionWithGrowthOrRehash(CommonFields& common, size_t hash, const PolicyFunctions& policy) { const size_t cap = common.capacity(); if (cap > Group::kWidth && // Do these calculations in 64-bit to avoid overflow. common.size() * uint64_t{32} <= cap * uint64_t{25}) { // Squash DELETED without growing if there is enough capacity. // // Rehash in place if the current size is <= 25/32 of capacity. // Rationale for such a high factor: 1) DropDeletesWithoutResize() is // faster than resize, and 2) it takes quite a bit of work to add // tombstones. In the worst case, seems to take approximately 4 // insert/erase pairs to create a single tombstone and so if we are // rehashing because of tombstones, we can afford to rehash-in-place as // long as we are reclaiming at least 1/8 the capacity without doing more // than 2X the work. (Where "work" is defined to be size() for rehashing // or rehashing in place, and 1 for an insert or erase.) But rehashing in // place is faster per operation than inserting or even doubling the size // of the table, so we actually afford to reclaim even less space from a // resize-in-place. The decision is to rehash in place if we can reclaim // at about 1/8th of the usable capacity (specifically 3/28 of the // capacity) which means that the total cost of rehashing will be a small // fraction of the total work. // // Here is output of an experiment using the BM_CacheInSteadyState // benchmark running the old case (where we rehash-in-place only if we can // reclaim at least 7/16*capacity) vs. this code (which rehashes in place // if we can recover 3/32*capacity). // // Note that although in the worst-case number of rehashes jumped up from // 15 to 190, but the number of operations per second is almost the same. // // Abridged output of running BM_CacheInSteadyState benchmark from // raw_hash_set_benchmark. N is the number of insert/erase operations. // // | OLD (recover >= 7/16 | NEW (recover >= 3/32) // size | N/s LoadFactor NRehashes | N/s LoadFactor NRehashes // 448 | 145284 0.44 18 | 140118 0.44 19 // 493 | 152546 0.24 11 | 151417 0.48 28 // 538 | 151439 0.26 11 | 151152 0.53 38 // 583 | 151765 0.28 11 | 150572 0.57 50 // 628 | 150241 0.31 11 | 150853 0.61 66 // 672 | 149602 0.33 12 | 150110 0.66 90 // 717 | 149998 0.35 12 | 149531 0.70 129 // 762 | 149836 0.37 13 | 148559 0.74 190 // 807 | 149736 0.39 14 | 151107 0.39 14 // 852 | 150204 0.42 15 | 151019 0.42 15 DropDeletesWithoutResize(common, policy); } else { // Otherwise grow the container. policy.resize(common, NextCapacity(cap), HashtablezInfoHandle{}); } // This function is typically called with tables containing deleted slots. // The table will be big and `FindFirstNonFullAfterResize` will always // fallback to `find_first_non_full`. So using `find_first_non_full` directly. return find_first_non_full(common, hash); } } // namespace const void* GetHashRefForEmptyHasher(const CommonFields& common) { // Empty base optimization typically make the empty base class address to be // the same as the first address of the derived class object. // But we generally assume that for empty hasher we can return any valid // pointer. return &common; } FindInfo HashSetResizeHelper::FindFirstNonFullAfterResize(const CommonFields& c, size_t old_capacity, size_t hash) { size_t new_capacity = c.capacity(); if (!IsGrowingIntoSingleGroupApplicable(old_capacity, new_capacity)) { return find_first_non_full(c, hash); } // We put the new element either at the beginning or at the end of the table // with approximately equal probability. size_t offset = SingleGroupTableH1(hash, c.control()) & 1 ? 0 : new_capacity - 1; assert(IsEmpty(c.control()[offset])); return FindInfo{offset, 0}; } size_t PrepareInsertNonSoo(CommonFields& common, size_t hash, FindInfo target, const PolicyFunctions& policy) { // When there are no deleted slots in the table // and growth_left is positive, we can insert at the first // empty slot in the probe sequence (target). const bool use_target_hint = // Optimization is disabled when generations are enabled. // We have to rehash even sparse tables randomly in such mode. !SwisstableGenerationsEnabled() && common.growth_info().HasNoDeletedAndGrowthLeft(); if (ABSL_PREDICT_FALSE(!use_target_hint)) { // Notes about optimized mode when generations are disabled: // We do not enter this branch if table has no deleted slots // and growth_left is positive. // We enter this branch in the following cases listed in decreasing // frequency: // 1. Table without deleted slots (>95% cases) that needs to be resized. // 2. Table with deleted slots that has space for the inserting element. // 3. Table with deleted slots that needs to be rehashed or resized. if (ABSL_PREDICT_TRUE(common.growth_info().HasNoGrowthLeftAndNoDeleted())) { const size_t old_capacity = common.capacity(); policy.resize(common, NextCapacity(old_capacity), HashtablezInfoHandle{}); target = HashSetResizeHelper::FindFirstNonFullAfterResize( common, old_capacity, hash); } else { // Note: the table may have no deleted slots here when generations // are enabled. const bool rehash_for_bug_detection = common.should_rehash_for_bug_detection_on_insert(); if (rehash_for_bug_detection) { // Move to a different heap allocation in order to detect bugs. const size_t cap = common.capacity(); policy.resize(common, common.growth_left() > 0 ? cap : NextCapacity(cap), HashtablezInfoHandle{}); } if (ABSL_PREDICT_TRUE(common.growth_left() > 0)) { target = find_first_non_full(common, hash); } else { target = FindInsertPositionWithGrowthOrRehash(common, hash, policy); } } } PrepareInsertCommon(common); common.growth_info().OverwriteControlAsFull(common.control()[target.offset]); SetCtrl(common, target.offset, H2(hash), policy.slot_size); common.infoz().RecordInsert(hash, target.probe_length); return target.offset; } void HashTableSizeOverflow() { ABSL_RAW_LOG(FATAL, "Hash table size overflow"); } } // namespace container_internal ABSL_NAMESPACE_END } // namespace absl