/* * The copyright in this software is being made available under the 2-clauses * BSD License, included below. This software may be subject to other third * party and contributor rights, including patent rights, and no such rights * are granted under this license. * * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium * Copyright (c) 2002-2014, Professor Benoit Macq * Copyright (c) 2001-2003, David Janssens * Copyright (c) 2002-2003, Yannick Verschueren * Copyright (c) 2003-2007, Francois-Olivier Devaux * Copyright (c) 2003-2014, Antonin Descampe * Copyright (c) 2005, Herve Drolon, FreeImage Team * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef OPJ_INTMATH_H #define OPJ_INTMATH_H /** @file opj_intmath.h @brief Implementation of operations on integers (INT) The functions in OPJ_INTMATH.H have for goal to realize operations on integers. */ /** @defgroup OPJ_INTMATH OPJ_INTMATH - Implementation of operations on integers */ /*@{*/ /** @name Exported functions (see also openjpeg.h) */ /*@{*/ /* ----------------------------------------------------------------------- */ /** Get the minimum of two integers @return Returns a if a < b else b */ static INLINE OPJ_INT32 opj_int_min(OPJ_INT32 a, OPJ_INT32 b) { return a < b ? a : b; } /** Get the minimum of two integers @return Returns a if a < b else b */ static INLINE OPJ_UINT32 opj_uint_min(OPJ_UINT32 a, OPJ_UINT32 b) { return a < b ? a : b; } /** Get the maximum of two integers @return Returns a if a > b else b */ static INLINE OPJ_INT32 opj_int_max(OPJ_INT32 a, OPJ_INT32 b) { return (a > b) ? a : b; } /** Get the maximum of two integers @return Returns a if a > b else b */ static INLINE OPJ_UINT32 opj_uint_max(OPJ_UINT32 a, OPJ_UINT32 b) { return (a > b) ? a : b; } /** Get the saturated sum of two unsigned integers @return Returns saturated sum of a+b */ static INLINE OPJ_UINT32 opj_uint_adds(OPJ_UINT32 a, OPJ_UINT32 b) { OPJ_UINT64 sum = (OPJ_UINT64)a + (OPJ_UINT64)b; return (OPJ_UINT32)(-(OPJ_INT32)(sum >> 32)) | (OPJ_UINT32)sum; } /** Get the saturated difference of two unsigned integers @return Returns saturated sum of a-b */ static INLINE OPJ_UINT32 opj_uint_subs(OPJ_UINT32 a, OPJ_UINT32 b) { return (a >= b) ? a - b : 0; } /** Clamp an integer inside an interval @return */ static INLINE OPJ_INT32 opj_int_clamp(OPJ_INT32 a, OPJ_INT32 min, OPJ_INT32 max) { if (a < min) { return min; } if (a > max) { return max; } return a; } /** Clamp an integer inside an interval @return */ static INLINE OPJ_INT64 opj_int64_clamp(OPJ_INT64 a, OPJ_INT64 min, OPJ_INT64 max) { if (a < min) { return min; } if (a > max) { return max; } return a; } /** @return Get absolute value of integer */ static INLINE OPJ_INT32 opj_int_abs(OPJ_INT32 a) { return a < 0 ? -a : a; } /** Divide an integer and round upwards @return Returns a divided by b */ static INLINE OPJ_INT32 opj_int_ceildiv(OPJ_INT32 a, OPJ_INT32 b) { assert(b); return (OPJ_INT32)(((OPJ_INT64)a + b - 1) / b); } /** Divide an integer and round upwards @return Returns a divided by b */ static INLINE OPJ_UINT32 opj_uint_ceildiv(OPJ_UINT32 a, OPJ_UINT32 b) { assert(b); return (OPJ_UINT32)(((OPJ_UINT64)a + b - 1) / b); } /** Divide an integer and round upwards @return Returns a divided by b */ static INLINE OPJ_UINT32 opj_uint64_ceildiv_res_uint32(OPJ_UINT64 a, OPJ_UINT64 b) { assert(b); return (OPJ_UINT32)((a + b - 1) / b); } /** Divide an integer by a power of 2 and round upwards @return Returns a divided by 2^b */ static INLINE OPJ_INT32 opj_int_ceildivpow2(OPJ_INT32 a, OPJ_INT32 b) { return (OPJ_INT32)((a + ((OPJ_INT64)1 << b) - 1) >> b); } /** Divide a 64bits integer by a power of 2 and round upwards @return Returns a divided by 2^b */ static INLINE OPJ_INT32 opj_int64_ceildivpow2(OPJ_INT64 a, OPJ_INT32 b) { return (OPJ_INT32)((a + ((OPJ_INT64)1 << b) - 1) >> b); } /** Divide an integer by a power of 2 and round upwards @return Returns a divided by 2^b */ static INLINE OPJ_UINT32 opj_uint_ceildivpow2(OPJ_UINT32 a, OPJ_UINT32 b) { return (OPJ_UINT32)((a + ((OPJ_UINT64)1U << b) - 1U) >> b); } /** Divide an integer by a power of 2 and round downwards @return Returns a divided by 2^b */ static INLINE OPJ_INT32 opj_int_floordivpow2(OPJ_INT32 a, OPJ_INT32 b) { return a >> b; } /** Divide an integer by a power of 2 and round downwards @return Returns a divided by 2^b */ static INLINE OPJ_UINT32 opj_uint_floordivpow2(OPJ_UINT32 a, OPJ_UINT32 b) { return a >> b; } /** Get logarithm of an integer and round downwards @return Returns log2(a) */ static INLINE OPJ_INT32 opj_int_floorlog2(OPJ_INT32 a) { OPJ_INT32 l; for (l = 0; a > 1; l++) { a >>= 1; } return l; } /** Get logarithm of an integer and round downwards @return Returns log2(a) */ static INLINE OPJ_UINT32 opj_uint_floorlog2(OPJ_UINT32 a) { OPJ_UINT32 l; for (l = 0; a > 1; ++l) { a >>= 1; } return l; } /** Multiply two fixed-precision rational numbers. @param a @param b @return Returns a * b */ static INLINE OPJ_INT32 opj_int_fix_mul(OPJ_INT32 a, OPJ_INT32 b) { #if defined(_MSC_VER) && (_MSC_VER >= 1400) && !defined(__INTEL_COMPILER) && defined(_M_IX86) OPJ_INT64 temp = __emul(a, b); #else OPJ_INT64 temp = (OPJ_INT64) a * (OPJ_INT64) b ; #endif temp += 4096; assert((temp >> 13) <= (OPJ_INT64)0x7FFFFFFF); assert((temp >> 13) >= (-(OPJ_INT64)0x7FFFFFFF - (OPJ_INT64)1)); return (OPJ_INT32)(temp >> 13); } static INLINE OPJ_INT32 opj_int_fix_mul_t1(OPJ_INT32 a, OPJ_INT32 b) { #if defined(_MSC_VER) && (_MSC_VER >= 1400) && !defined(__INTEL_COMPILER) && defined(_M_IX86) OPJ_INT64 temp = __emul(a, b); #else OPJ_INT64 temp = (OPJ_INT64) a * (OPJ_INT64) b ; #endif temp += 4096; assert((temp >> (13 + 11 - T1_NMSEDEC_FRACBITS)) <= (OPJ_INT64)0x7FFFFFFF); assert((temp >> (13 + 11 - T1_NMSEDEC_FRACBITS)) >= (-(OPJ_INT64)0x7FFFFFFF - (OPJ_INT64)1)); return (OPJ_INT32)(temp >> (13 + 11 - T1_NMSEDEC_FRACBITS)) ; } /** Addition two signed integers with a wrap-around behaviour. Assumes complement-to-two signed integers. @param a @param b @return Returns a + b */ static INLINE OPJ_INT32 opj_int_add_no_overflow(OPJ_INT32 a, OPJ_INT32 b) { void* pa = &a; void* pb = &b; OPJ_UINT32* upa = (OPJ_UINT32*)pa; OPJ_UINT32* upb = (OPJ_UINT32*)pb; OPJ_UINT32 ures = *upa + *upb; void* pures = &ures; OPJ_INT32* ipres = (OPJ_INT32*)pures; return *ipres; } /** Subtract two signed integers with a wrap-around behaviour. Assumes complement-to-two signed integers. @param a @param b @return Returns a - b */ static INLINE OPJ_INT32 opj_int_sub_no_overflow(OPJ_INT32 a, OPJ_INT32 b) { void* pa = &a; void* pb = &b; OPJ_UINT32* upa = (OPJ_UINT32*)pa; OPJ_UINT32* upb = (OPJ_UINT32*)pb; OPJ_UINT32 ures = *upa - *upb; void* pures = &ures; OPJ_INT32* ipres = (OPJ_INT32*)pures; return *ipres; } /* ----------------------------------------------------------------------- */ /*@}*/ /*@}*/ #endif /* OPJ_INTMATH_H */