//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This is the LLVM vectorization plan. It represents a candidate for /// vectorization, allowing to plan and optimize how to vectorize a given loop /// before generating LLVM-IR. /// The vectorizer uses vectorization plans to estimate the costs of potential /// candidates and if profitable to execute the desired plan, generating vector /// LLVM-IR code. /// //===----------------------------------------------------------------------===// #include "VPlan.h" #include "VPlanDominatorTree.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/IVDescriptors.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/GenericDomTreeConstruction.h" #include "llvm/Support/GraphWriter.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include #include #include #include using namespace llvm; extern cl::opt EnableVPlanNativePath; #define DEBUG_TYPE "vplan" #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { const VPInstruction *Instr = dyn_cast(&V); VPSlotTracker SlotTracker( (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); V.print(OS, SlotTracker); return OS; } #endif Value *VPLane::getAsRuntimeExpr(IRBuilder<> &Builder, const ElementCount &VF) const { switch (LaneKind) { case VPLane::Kind::ScalableLast: // Lane = RuntimeVF - VF.getKnownMinValue() + Lane return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), Builder.getInt32(VF.getKnownMinValue() - Lane)); case VPLane::Kind::First: return Builder.getInt32(Lane); } llvm_unreachable("Unknown lane kind"); } VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) : SubclassID(SC), UnderlyingVal(UV), Def(Def) { if (Def) Def->addDefinedValue(this); } VPValue::~VPValue() { assert(Users.empty() && "trying to delete a VPValue with remaining users"); if (Def) Def->removeDefinedValue(this); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { if (const VPRecipeBase *R = dyn_cast_or_null(Def)) R->print(OS, "", SlotTracker); else printAsOperand(OS, SlotTracker); } void VPValue::dump() const { const VPRecipeBase *Instr = dyn_cast_or_null(this->Def); VPSlotTracker SlotTracker( (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); print(dbgs(), SlotTracker); dbgs() << "\n"; } void VPDef::dump() const { const VPRecipeBase *Instr = dyn_cast_or_null(this); VPSlotTracker SlotTracker( (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); print(dbgs(), "", SlotTracker); dbgs() << "\n"; } #endif // Get the top-most entry block of \p Start. This is the entry block of the // containing VPlan. This function is templated to support both const and non-const blocks template static T *getPlanEntry(T *Start) { T *Next = Start; T *Current = Start; while ((Next = Next->getParent())) Current = Next; SmallSetVector WorkList; WorkList.insert(Current); for (unsigned i = 0; i < WorkList.size(); i++) { T *Current = WorkList[i]; if (Current->getNumPredecessors() == 0) return Current; auto &Predecessors = Current->getPredecessors(); WorkList.insert(Predecessors.begin(), Predecessors.end()); } llvm_unreachable("VPlan without any entry node without predecessors"); } VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { const VPBlockBase *Block = this; while (const VPRegionBlock *Region = dyn_cast(Block)) Block = Region->getEntry(); return cast(Block); } VPBasicBlock *VPBlockBase::getEntryBasicBlock() { VPBlockBase *Block = this; while (VPRegionBlock *Region = dyn_cast(Block)) Block = Region->getEntry(); return cast(Block); } void VPBlockBase::setPlan(VPlan *ParentPlan) { assert(ParentPlan->getEntry() == this && "Can only set plan on its entry block."); Plan = ParentPlan; } /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { const VPBlockBase *Block = this; while (const VPRegionBlock *Region = dyn_cast(Block)) Block = Region->getExit(); return cast(Block); } VPBasicBlock *VPBlockBase::getExitBasicBlock() { VPBlockBase *Block = this; while (VPRegionBlock *Region = dyn_cast(Block)) Block = Region->getExit(); return cast(Block); } VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { if (!Successors.empty() || !Parent) return this; assert(Parent->getExit() == this && "Block w/o successors not the exit of its parent."); return Parent->getEnclosingBlockWithSuccessors(); } VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { if (!Predecessors.empty() || !Parent) return this; assert(Parent->getEntry() == this && "Block w/o predecessors not the entry of its parent."); return Parent->getEnclosingBlockWithPredecessors(); } VPValue *VPBlockBase::getCondBit() { return CondBitUser.getSingleOperandOrNull(); } const VPValue *VPBlockBase::getCondBit() const { return CondBitUser.getSingleOperandOrNull(); } void VPBlockBase::setCondBit(VPValue *CV) { CondBitUser.resetSingleOpUser(CV); } VPValue *VPBlockBase::getPredicate() { return PredicateUser.getSingleOperandOrNull(); } const VPValue *VPBlockBase::getPredicate() const { return PredicateUser.getSingleOperandOrNull(); } void VPBlockBase::setPredicate(VPValue *CV) { PredicateUser.resetSingleOpUser(CV); } void VPBlockBase::deleteCFG(VPBlockBase *Entry) { SmallVector Blocks(depth_first(Entry)); for (VPBlockBase *Block : Blocks) delete Block; } VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { iterator It = begin(); while (It != end() && It->isPhi()) It++; return It; } Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { if (!Def->getDef()) return Def->getLiveInIRValue(); if (hasScalarValue(Def, Instance)) { return Data .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; } assert(hasVectorValue(Def, Instance.Part)); auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; if (!VecPart->getType()->isVectorTy()) { assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); return VecPart; } // TODO: Cache created scalar values. Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); auto *Extract = Builder.CreateExtractElement(VecPart, Lane); // set(Def, Extract, Instance); return Extract; } BasicBlock * VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. // Pred stands for Predessor. Prev stands for Previous - last visited/created. BasicBlock *PrevBB = CFG.PrevBB; BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), PrevBB->getParent(), CFG.LastBB); LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); // Hook up the new basic block to its predecessors. for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); auto &PredVPSuccessors = PredVPBB->getSuccessors(); BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; // In outer loop vectorization scenario, the predecessor BBlock may not yet // be visited(backedge). Mark the VPBasicBlock for fixup at the end of // vectorization. We do not encounter this case in inner loop vectorization // as we start out by building a loop skeleton with the vector loop header // and latch blocks. As a result, we never enter this function for the // header block in the non VPlan-native path. if (!PredBB) { assert(EnableVPlanNativePath && "Unexpected null predecessor in non VPlan-native path"); CFG.VPBBsToFix.push_back(PredVPBB); continue; } assert(PredBB && "Predecessor basic-block not found building successor."); auto *PredBBTerminator = PredBB->getTerminator(); LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); if (isa(PredBBTerminator)) { assert(PredVPSuccessors.size() == 1 && "Predecessor ending w/o branch must have single successor."); PredBBTerminator->eraseFromParent(); BranchInst::Create(NewBB, PredBB); } else { assert(PredVPSuccessors.size() == 2 && "Predecessor ending with branch must have two successors."); unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; assert(!PredBBTerminator->getSuccessor(idx) && "Trying to reset an existing successor block."); PredBBTerminator->setSuccessor(idx, NewBB); } } return NewBB; } void VPBasicBlock::execute(VPTransformState *State) { bool Replica = State->Instance && !State->Instance->isFirstIteration(); VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; VPBlockBase *SingleHPred = nullptr; BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. // 1. Create an IR basic block, or reuse the last one if possible. // The last IR basic block is reused, as an optimization, in three cases: // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; // B. when the current VPBB has a single (hierarchical) predecessor which // is PrevVPBB and the latter has a single (hierarchical) successor; and // C. when the current VPBB is an entry of a region replica - where PrevVPBB // is the exit of this region from a previous instance, or the predecessor // of this region. if (PrevVPBB && /* A */ !((SingleHPred = getSingleHierarchicalPredecessor()) && SingleHPred->getExitBasicBlock() == PrevVPBB && PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ !(Replica && getPredecessors().empty())) { /* C */ NewBB = createEmptyBasicBlock(State->CFG); State->Builder.SetInsertPoint(NewBB); // Temporarily terminate with unreachable until CFG is rewired. UnreachableInst *Terminator = State->Builder.CreateUnreachable(); State->Builder.SetInsertPoint(Terminator); // Register NewBB in its loop. In innermost loops its the same for all BB's. Loop *L = State->LI->getLoopFor(State->CFG.LastBB); L->addBasicBlockToLoop(NewBB, *State->LI); State->CFG.PrevBB = NewBB; } // 2. Fill the IR basic block with IR instructions. LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() << " in BB:" << NewBB->getName() << '\n'); State->CFG.VPBB2IRBB[this] = NewBB; State->CFG.PrevVPBB = this; for (VPRecipeBase &Recipe : Recipes) Recipe.execute(*State); VPValue *CBV; if (EnableVPlanNativePath && (CBV = getCondBit())) { assert(CBV->getUnderlyingValue() && "Unexpected null underlying value for condition bit"); // Condition bit value in a VPBasicBlock is used as the branch selector. In // the VPlan-native path case, since all branches are uniform we generate a // branch instruction using the condition value from vector lane 0 and dummy // successors. The successors are fixed later when the successor blocks are // visited. Value *NewCond = State->get(CBV, {0, 0}); // Replace the temporary unreachable terminator with the new conditional // branch. auto *CurrentTerminator = NewBB->getTerminator(); assert(isa(CurrentTerminator) && "Expected to replace unreachable terminator with conditional " "branch."); auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); CondBr->setSuccessor(0, nullptr); ReplaceInstWithInst(CurrentTerminator, CondBr); } LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); } void VPBasicBlock::dropAllReferences(VPValue *NewValue) { for (VPRecipeBase &R : Recipes) { for (auto *Def : R.definedValues()) Def->replaceAllUsesWith(NewValue); for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) R.setOperand(I, NewValue); } } VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { assert((SplitAt == end() || SplitAt->getParent() == this) && "can only split at a position in the same block"); SmallVector Succs(successors()); // First, disconnect the current block from its successors. for (VPBlockBase *Succ : Succs) VPBlockUtils::disconnectBlocks(this, Succ); // Create new empty block after the block to split. auto *SplitBlock = new VPBasicBlock(getName() + ".split"); VPBlockUtils::insertBlockAfter(SplitBlock, this); // Add successors for block to split to new block. for (VPBlockBase *Succ : Succs) VPBlockUtils::connectBlocks(SplitBlock, Succ); // Finally, move the recipes starting at SplitAt to new block. for (VPRecipeBase &ToMove : make_early_inc_range(make_range(SplitAt, this->end()))) ToMove.moveBefore(*SplitBlock, SplitBlock->end()); return SplitBlock; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { if (getSuccessors().empty()) { O << Indent << "No successors\n"; } else { O << Indent << "Successor(s): "; ListSeparator LS; for (auto *Succ : getSuccessors()) O << LS << Succ->getName(); O << '\n'; } } void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << Indent << getName() << ":\n"; if (const VPValue *Pred = getPredicate()) { O << Indent << "BlockPredicate:"; Pred->printAsOperand(O, SlotTracker); if (const auto *PredInst = dyn_cast(Pred)) O << " (" << PredInst->getParent()->getName() << ")"; O << '\n'; } auto RecipeIndent = Indent + " "; for (const VPRecipeBase &Recipe : *this) { Recipe.print(O, RecipeIndent, SlotTracker); O << '\n'; } printSuccessors(O, Indent); if (const VPValue *CBV = getCondBit()) { O << Indent << "CondBit: "; CBV->printAsOperand(O, SlotTracker); if (const auto *CBI = dyn_cast(CBV)) O << " (" << CBI->getParent()->getName() << ")"; O << '\n'; } } #endif void VPRegionBlock::dropAllReferences(VPValue *NewValue) { for (VPBlockBase *Block : depth_first(Entry)) // Drop all references in VPBasicBlocks and replace all uses with // DummyValue. Block->dropAllReferences(NewValue); } void VPRegionBlock::execute(VPTransformState *State) { ReversePostOrderTraversal RPOT(Entry); if (!isReplicator()) { // Visit the VPBlocks connected to "this", starting from it. for (VPBlockBase *Block : RPOT) { if (EnableVPlanNativePath) { // The inner loop vectorization path does not represent loop preheader // and exit blocks as part of the VPlan. In the VPlan-native path, skip // vectorizing loop preheader block. In future, we may replace this // check with the check for loop preheader. if (Block->getNumPredecessors() == 0) continue; // Skip vectorizing loop exit block. In future, we may replace this // check with the check for loop exit. if (Block->getNumSuccessors() == 0) continue; } LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); Block->execute(State); } return; } assert(!State->Instance && "Replicating a Region with non-null instance."); // Enter replicating mode. State->Instance = VPIteration(0, 0); for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { State->Instance->Part = Part; assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; ++Lane) { State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); // Visit the VPBlocks connected to \p this, starting from it. for (VPBlockBase *Block : RPOT) { LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); Block->execute(State); } } } // Exit replicating mode. State->Instance.reset(); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << Indent << (isReplicator() ? " " : " ") << getName() << ": {"; auto NewIndent = Indent + " "; for (auto *BlockBase : depth_first(Entry)) { O << '\n'; BlockBase->print(O, NewIndent, SlotTracker); } O << Indent << "}\n"; printSuccessors(O, Indent); } #endif bool VPRecipeBase::mayWriteToMemory() const { switch (getVPDefID()) { case VPWidenMemoryInstructionSC: { return cast(this)->isStore(); } case VPReplicateSC: case VPWidenCallSC: return cast(getVPSingleValue()->getUnderlyingValue()) ->mayWriteToMemory(); case VPBranchOnMaskSC: return false; case VPWidenIntOrFpInductionSC: case VPWidenCanonicalIVSC: case VPWidenPHISC: case VPBlendSC: case VPWidenSC: case VPWidenGEPSC: case VPReductionSC: case VPWidenSelectSC: { const Instruction *I = dyn_cast_or_null(getVPSingleValue()->getUnderlyingValue()); (void)I; assert((!I || !I->mayWriteToMemory()) && "underlying instruction may write to memory"); return false; } default: return true; } } bool VPRecipeBase::mayReadFromMemory() const { switch (getVPDefID()) { case VPWidenMemoryInstructionSC: { return !cast(this)->isStore(); } case VPReplicateSC: case VPWidenCallSC: return cast(getVPSingleValue()->getUnderlyingValue()) ->mayReadFromMemory(); case VPBranchOnMaskSC: return false; case VPWidenIntOrFpInductionSC: case VPWidenCanonicalIVSC: case VPWidenPHISC: case VPBlendSC: case VPWidenSC: case VPWidenGEPSC: case VPReductionSC: case VPWidenSelectSC: { const Instruction *I = dyn_cast_or_null(getVPSingleValue()->getUnderlyingValue()); (void)I; assert((!I || !I->mayReadFromMemory()) && "underlying instruction may read from memory"); return false; } default: return true; } } bool VPRecipeBase::mayHaveSideEffects() const { switch (getVPDefID()) { case VPBranchOnMaskSC: return false; case VPWidenIntOrFpInductionSC: case VPWidenCanonicalIVSC: case VPWidenPHISC: case VPBlendSC: case VPWidenSC: case VPWidenGEPSC: case VPReductionSC: case VPWidenSelectSC: { const Instruction *I = dyn_cast_or_null(getVPSingleValue()->getUnderlyingValue()); (void)I; assert((!I || !I->mayHaveSideEffects()) && "underlying instruction has side-effects"); return false; } case VPReplicateSC: { auto *R = cast(this); return R->getUnderlyingInstr()->mayHaveSideEffects(); } default: return true; } } void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { assert(!Parent && "Recipe already in some VPBasicBlock"); assert(InsertPos->getParent() && "Insertion position not in any VPBasicBlock"); Parent = InsertPos->getParent(); Parent->getRecipeList().insert(InsertPos->getIterator(), this); } void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { assert(!Parent && "Recipe already in some VPBasicBlock"); assert(InsertPos->getParent() && "Insertion position not in any VPBasicBlock"); Parent = InsertPos->getParent(); Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); } void VPRecipeBase::removeFromParent() { assert(getParent() && "Recipe not in any VPBasicBlock"); getParent()->getRecipeList().remove(getIterator()); Parent = nullptr; } iplist::iterator VPRecipeBase::eraseFromParent() { assert(getParent() && "Recipe not in any VPBasicBlock"); return getParent()->getRecipeList().erase(getIterator()); } void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { removeFromParent(); insertAfter(InsertPos); } void VPRecipeBase::moveBefore(VPBasicBlock &BB, iplist::iterator I) { assert(I == BB.end() || I->getParent() == &BB); removeFromParent(); Parent = &BB; BB.getRecipeList().insert(I, this); } void VPInstruction::generateInstruction(VPTransformState &State, unsigned Part) { IRBuilder<> &Builder = State.Builder; Builder.SetCurrentDebugLocation(DL); if (Instruction::isBinaryOp(getOpcode())) { Value *A = State.get(getOperand(0), Part); Value *B = State.get(getOperand(1), Part); Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); State.set(this, V, Part); return; } switch (getOpcode()) { case VPInstruction::Not: { Value *A = State.get(getOperand(0), Part); Value *V = Builder.CreateNot(A); State.set(this, V, Part); break; } case VPInstruction::ICmpULE: { Value *IV = State.get(getOperand(0), Part); Value *TC = State.get(getOperand(1), Part); Value *V = Builder.CreateICmpULE(IV, TC); State.set(this, V, Part); break; } case Instruction::Select: { Value *Cond = State.get(getOperand(0), Part); Value *Op1 = State.get(getOperand(1), Part); Value *Op2 = State.get(getOperand(2), Part); Value *V = Builder.CreateSelect(Cond, Op1, Op2); State.set(this, V, Part); break; } case VPInstruction::ActiveLaneMask: { // Get first lane of vector induction variable. Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0)); // Get the original loop tripcount. Value *ScalarTC = State.get(getOperand(1), Part); auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); auto *PredTy = VectorType::get(Int1Ty, State.VF); Instruction *Call = Builder.CreateIntrinsic( Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); State.set(this, Call, Part); break; } case VPInstruction::FirstOrderRecurrenceSplice: { // Generate code to combine the previous and current values in vector v3. // // vector.ph: // v_init = vector(..., ..., ..., a[-1]) // br vector.body // // vector.body // i = phi [0, vector.ph], [i+4, vector.body] // v1 = phi [v_init, vector.ph], [v2, vector.body] // v2 = a[i, i+1, i+2, i+3]; // v3 = vector(v1(3), v2(0, 1, 2)) // For the first part, use the recurrence phi (v1), otherwise v2. auto *V1 = State.get(getOperand(0), 0); Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1); if (!PartMinus1->getType()->isVectorTy()) { State.set(this, PartMinus1, Part); } else { Value *V2 = State.get(getOperand(1), Part); State.set(this, Builder.CreateVectorSplice(PartMinus1, V2, -1), Part); } break; } case VPInstruction::CanonicalIVIncrement: case VPInstruction::CanonicalIVIncrementNUW: { Value *Next = nullptr; if (Part == 0) { bool IsNUW = getOpcode() == VPInstruction::CanonicalIVIncrementNUW; auto *Phi = State.get(getOperand(0), 0); // The loop step is equal to the vectorization factor (num of SIMD // elements) times the unroll factor (num of SIMD instructions). Value *Step = createStepForVF(Builder, Phi->getType(), State.VF, State.UF); Next = Builder.CreateAdd(Phi, Step, "index.next", IsNUW, false); } else { Next = State.get(this, 0); } State.set(this, Next, Part); break; } case VPInstruction::BranchOnCount: { if (Part != 0) break; // First create the compare. Value *IV = State.get(getOperand(0), Part); Value *TC = State.get(getOperand(1), Part); Value *Cond = Builder.CreateICmpEQ(IV, TC); // Now create the branch. auto *Plan = getParent()->getPlan(); VPRegionBlock *TopRegion = Plan->getVectorLoopRegion(); VPBasicBlock *Header = TopRegion->getEntry()->getEntryBasicBlock(); if (Header->empty()) { assert(EnableVPlanNativePath && "empty entry block only expected in VPlanNativePath"); Header = cast(Header->getSingleSuccessor()); } // TODO: Once the exit block is modeled in VPlan, use it instead of going // through State.CFG.LastBB. BasicBlock *Exit = cast(State.CFG.LastBB->getTerminator())->getSuccessor(0); Builder.CreateCondBr(Cond, Exit, State.CFG.VPBB2IRBB[Header]); Builder.GetInsertBlock()->getTerminator()->eraseFromParent(); break; } default: llvm_unreachable("Unsupported opcode for instruction"); } } void VPInstruction::execute(VPTransformState &State) { assert(!State.Instance && "VPInstruction executing an Instance"); IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); State.Builder.setFastMathFlags(FMF); for (unsigned Part = 0; Part < State.UF; ++Part) generateInstruction(State, Part); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void VPInstruction::dump() const { VPSlotTracker SlotTracker(getParent()->getPlan()); print(dbgs(), "", SlotTracker); } void VPInstruction::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << Indent << "EMIT "; if (hasResult()) { printAsOperand(O, SlotTracker); O << " = "; } switch (getOpcode()) { case VPInstruction::Not: O << "not"; break; case VPInstruction::ICmpULE: O << "icmp ule"; break; case VPInstruction::SLPLoad: O << "combined load"; break; case VPInstruction::SLPStore: O << "combined store"; break; case VPInstruction::ActiveLaneMask: O << "active lane mask"; break; case VPInstruction::FirstOrderRecurrenceSplice: O << "first-order splice"; break; case VPInstruction::CanonicalIVIncrement: O << "VF * UF + "; break; case VPInstruction::CanonicalIVIncrementNUW: O << "VF * UF +(nuw) "; break; case VPInstruction::BranchOnCount: O << "branch-on-count "; break; default: O << Instruction::getOpcodeName(getOpcode()); } O << FMF; for (const VPValue *Operand : operands()) { O << " "; Operand->printAsOperand(O, SlotTracker); } if (DL) { O << ", !dbg "; DL.print(O); } } #endif void VPInstruction::setFastMathFlags(FastMathFlags FMFNew) { // Make sure the VPInstruction is a floating-point operation. assert((Opcode == Instruction::FAdd || Opcode == Instruction::FMul || Opcode == Instruction::FNeg || Opcode == Instruction::FSub || Opcode == Instruction::FDiv || Opcode == Instruction::FRem || Opcode == Instruction::FCmp) && "this op can't take fast-math flags"); FMF = FMFNew; } void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, Value *CanonicalIVStartValue, VPTransformState &State) { // Check if the trip count is needed, and if so build it. if (TripCount && TripCount->getNumUsers()) { for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) State.set(TripCount, TripCountV, Part); } // Check if the backedge taken count is needed, and if so build it. if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TripCountV->getType(), 1), "trip.count.minus.1"); auto VF = State.VF; Value *VTCMO = VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) State.set(BackedgeTakenCount, VTCMO, Part); } for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) State.set(&VectorTripCount, VectorTripCountV, Part); // When vectorizing the epilogue loop, the canonical induction start value // needs to be changed from zero to the value after the main vector loop. if (CanonicalIVStartValue) { VPValue *VPV = new VPValue(CanonicalIVStartValue); addExternalDef(VPV); auto *IV = getCanonicalIV(); assert(all_of(IV->users(), [](const VPUser *U) { auto *VPI = cast(U); return VPI->getOpcode() == VPInstruction::CanonicalIVIncrement || VPI->getOpcode() == VPInstruction::CanonicalIVIncrementNUW; }) && "the canonical IV should only be used by its increments when " "resetting the start value"); IV->setOperand(0, VPV); } } /// Generate the code inside the body of the vectorized loop. Assumes a single /// LoopVectorBody basic-block was created for this. Introduce additional /// basic-blocks as needed, and fill them all. void VPlan::execute(VPTransformState *State) { // 0. Set the reverse mapping from VPValues to Values for code generation. for (auto &Entry : Value2VPValue) State->VPValue2Value[Entry.second] = Entry.first; BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; State->CFG.VectorPreHeader = VectorPreHeaderBB; BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); assert(VectorHeaderBB && "Loop preheader does not have a single successor."); // 1. Make room to generate basic-blocks inside loop body if needed. BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); Loop *L = State->LI->getLoopFor(VectorHeaderBB); L->addBasicBlockToLoop(VectorLatchBB, *State->LI); // Remove the edge between Header and Latch to allow other connections. // Temporarily terminate with unreachable until CFG is rewired. // Note: this asserts the generated code's assumption that // getFirstInsertionPt() can be dereferenced into an Instruction. VectorHeaderBB->getTerminator()->eraseFromParent(); State->Builder.SetInsertPoint(VectorHeaderBB); UnreachableInst *Terminator = State->Builder.CreateUnreachable(); State->Builder.SetInsertPoint(Terminator); // 2. Generate code in loop body. State->CFG.PrevVPBB = nullptr; State->CFG.PrevBB = VectorHeaderBB; State->CFG.LastBB = VectorLatchBB; for (VPBlockBase *Block : depth_first(Entry)) Block->execute(State); // Setup branch terminator successors for VPBBs in VPBBsToFix based on // VPBB's successors. for (auto VPBB : State->CFG.VPBBsToFix) { assert(EnableVPlanNativePath && "Unexpected VPBBsToFix in non VPlan-native path"); BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; assert(BB && "Unexpected null basic block for VPBB"); unsigned Idx = 0; auto *BBTerminator = BB->getTerminator(); for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); ++Idx; } } // 3. Merge the temporary latch created with the last basic-block filled. BasicBlock *LastBB = State->CFG.PrevBB; assert(isa(LastBB->getTerminator()) && "Expected VPlan CFG to terminate with branch"); // Move both the branch and check from LastBB to VectorLatchBB. auto *LastBranch = cast(LastBB->getTerminator()); LastBranch->moveBefore(VectorLatchBB->getTerminator()); VectorLatchBB->getTerminator()->eraseFromParent(); // Move condition so it is guaranteed to be next to branch. This is only done // to avoid excessive test updates. // TODO: Remove special handling once the increments for all inductions are // modeled explicitly in VPlan. cast(LastBranch->getCondition())->moveBefore(LastBranch); // Connect LastBB to VectorLatchBB to facilitate their merge. BranchInst::Create(VectorLatchBB, LastBB); // Merge LastBB with Latch. bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); (void)Merged; assert(Merged && "Could not merge last basic block with latch."); VectorLatchBB = LastBB; // Fix the latch value of canonical, reduction and first-order recurrences // phis in the vector loop. VPBasicBlock *Header = Entry->getEntryBasicBlock(); if (Header->empty()) { assert(EnableVPlanNativePath); Header = cast(Header->getSingleSuccessor()); } for (VPRecipeBase &R : Header->phis()) { // Skip phi-like recipes that generate their backedege values themselves. // TODO: Model their backedge values explicitly. if (isa(&R) || isa(&R)) continue; auto *PhiR = cast(&R); // For canonical IV, first-order recurrences and in-order reduction phis, // only a single part is generated, which provides the last part from the // previous iteration. For non-ordered reductions all UF parts are // generated. bool SinglePartNeeded = isa(PhiR) || isa(PhiR) || cast(PhiR)->isOrdered(); unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { Value *Phi = State->get(PhiR, Part); Value *Val = State->get(PhiR->getBackedgeValue(), SinglePartNeeded ? State->UF - 1 : Part); cast(Phi)->addIncoming(Val, VectorLatchBB); } } // We do not attempt to preserve DT for outer loop vectorization currently. if (!EnableVPlanNativePath) updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, L->getExitBlock()); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void VPlan::print(raw_ostream &O) const { VPSlotTracker SlotTracker(this); O << "VPlan '" << Name << "' {"; if (VectorTripCount.getNumUsers() > 0) { O << "\nLive-in "; VectorTripCount.printAsOperand(O, SlotTracker); O << " = vector-trip-count\n"; } if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { O << "\nLive-in "; BackedgeTakenCount->printAsOperand(O, SlotTracker); O << " = backedge-taken count\n"; } for (const VPBlockBase *Block : depth_first(getEntry())) { O << '\n'; Block->print(O, "", SlotTracker); } O << "}\n"; } LLVM_DUMP_METHOD void VPlan::printDOT(raw_ostream &O) const { VPlanPrinter Printer(O, *this); Printer.dump(); } LLVM_DUMP_METHOD void VPlan::dump() const { print(dbgs()); } #endif void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, BasicBlock *LoopLatchBB, BasicBlock *LoopExitBB) { BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); assert(LoopHeaderBB && "Loop preheader does not have a single successor."); // The vector body may be more than a single basic-block by this point. // Update the dominator tree information inside the vector body by propagating // it from header to latch, expecting only triangular control-flow, if any. BasicBlock *PostDomSucc = nullptr; for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { // Get the list of successors of this block. std::vector Succs(succ_begin(BB), succ_end(BB)); assert(Succs.size() <= 2 && "Basic block in vector loop has more than 2 successors."); PostDomSucc = Succs[0]; if (Succs.size() == 1) { assert(PostDomSucc->getSinglePredecessor() && "PostDom successor has more than one predecessor."); DT->addNewBlock(PostDomSucc, BB); continue; } BasicBlock *InterimSucc = Succs[1]; if (PostDomSucc->getSingleSuccessor() == InterimSucc) { PostDomSucc = Succs[1]; InterimSucc = Succs[0]; } assert(InterimSucc->getSingleSuccessor() == PostDomSucc && "One successor of a basic block does not lead to the other."); assert(InterimSucc->getSinglePredecessor() && "Interim successor has more than one predecessor."); assert(PostDomSucc->hasNPredecessors(2) && "PostDom successor has more than two predecessors."); DT->addNewBlock(InterimSucc, BB); DT->addNewBlock(PostDomSucc, BB); } // Latch block is a new dominator for the loop exit. DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); assert(DT->verify(DominatorTree::VerificationLevel::Fast)); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) Twine VPlanPrinter::getUID(const VPBlockBase *Block) { return (isa(Block) ? "cluster_N" : "N") + Twine(getOrCreateBID(Block)); } Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { const std::string &Name = Block->getName(); if (!Name.empty()) return Name; return "VPB" + Twine(getOrCreateBID(Block)); } void VPlanPrinter::dump() { Depth = 1; bumpIndent(0); OS << "digraph VPlan {\n"; OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; if (!Plan.getName().empty()) OS << "\\n" << DOT::EscapeString(Plan.getName()); if (Plan.BackedgeTakenCount) { OS << ", where:\\n"; Plan.BackedgeTakenCount->print(OS, SlotTracker); OS << " := BackedgeTakenCount"; } OS << "\"]\n"; OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; OS << "edge [fontname=Courier, fontsize=30]\n"; OS << "compound=true\n"; for (const VPBlockBase *Block : depth_first(Plan.getEntry())) dumpBlock(Block); OS << "}\n"; } void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { if (const VPBasicBlock *BasicBlock = dyn_cast(Block)) dumpBasicBlock(BasicBlock); else if (const VPRegionBlock *Region = dyn_cast(Block)) dumpRegion(Region); else llvm_unreachable("Unsupported kind of VPBlock."); } void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden, const Twine &Label) { // Due to "dot" we print an edge between two regions as an edge between the // exit basic block and the entry basic of the respective regions. const VPBlockBase *Tail = From->getExitBasicBlock(); const VPBlockBase *Head = To->getEntryBasicBlock(); OS << Indent << getUID(Tail) << " -> " << getUID(Head); OS << " [ label=\"" << Label << '\"'; if (Tail != From) OS << " ltail=" << getUID(From); if (Head != To) OS << " lhead=" << getUID(To); if (Hidden) OS << "; splines=none"; OS << "]\n"; } void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { auto &Successors = Block->getSuccessors(); if (Successors.size() == 1) drawEdge(Block, Successors.front(), false, ""); else if (Successors.size() == 2) { drawEdge(Block, Successors.front(), false, "T"); drawEdge(Block, Successors.back(), false, "F"); } else { unsigned SuccessorNumber = 0; for (auto *Successor : Successors) drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); } } void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { // Implement dot-formatted dump by performing plain-text dump into the // temporary storage followed by some post-processing. OS << Indent << getUID(BasicBlock) << " [label =\n"; bumpIndent(1); std::string Str; raw_string_ostream SS(Str); // Use no indentation as we need to wrap the lines into quotes ourselves. BasicBlock->print(SS, "", SlotTracker); // We need to process each line of the output separately, so split // single-string plain-text dump. SmallVector Lines; StringRef(Str).rtrim('\n').split(Lines, "\n"); auto EmitLine = [&](StringRef Line, StringRef Suffix) { OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; }; // Don't need the "+" after the last line. for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) EmitLine(Line, " +\n"); EmitLine(Lines.back(), "\n"); bumpIndent(-1); OS << Indent << "]\n"; dumpEdges(BasicBlock); } void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { OS << Indent << "subgraph " << getUID(Region) << " {\n"; bumpIndent(1); OS << Indent << "fontname=Courier\n" << Indent << "label=\"" << DOT::EscapeString(Region->isReplicator() ? " " : " ") << DOT::EscapeString(Region->getName()) << "\"\n"; // Dump the blocks of the region. assert(Region->getEntry() && "Region contains no inner blocks."); for (const VPBlockBase *Block : depth_first(Region->getEntry())) dumpBlock(Block); bumpIndent(-1); OS << Indent << "}\n"; dumpEdges(Region); } void VPlanIngredient::print(raw_ostream &O) const { if (auto *Inst = dyn_cast(V)) { if (!Inst->getType()->isVoidTy()) { Inst->printAsOperand(O, false); O << " = "; } O << Inst->getOpcodeName() << " "; unsigned E = Inst->getNumOperands(); if (E > 0) { Inst->getOperand(0)->printAsOperand(O, false); for (unsigned I = 1; I < E; ++I) Inst->getOperand(I)->printAsOperand(O << ", ", false); } } else // !Inst V->printAsOperand(O, false); } void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << Indent << "WIDEN-CALL "; auto *CI = cast(getUnderlyingInstr()); if (CI->getType()->isVoidTy()) O << "void "; else { printAsOperand(O, SlotTracker); O << " = "; } O << "call @" << CI->getCalledFunction()->getName() << "("; printOperands(O, SlotTracker); O << ")"; } void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << Indent << "WIDEN-SELECT "; printAsOperand(O, SlotTracker); O << " = select "; getOperand(0)->printAsOperand(O, SlotTracker); O << ", "; getOperand(1)->printAsOperand(O, SlotTracker); O << ", "; getOperand(2)->printAsOperand(O, SlotTracker); O << (InvariantCond ? " (condition is loop invariant)" : ""); } void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << Indent << "WIDEN "; printAsOperand(O, SlotTracker); O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; printOperands(O, SlotTracker); } void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << Indent << "WIDEN-INDUCTION"; if (getTruncInst()) { O << "\\l\""; O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; O << " +\n" << Indent << "\" "; getVPValue(0)->printAsOperand(O, SlotTracker); } else O << " " << VPlanIngredient(IV); } #endif bool VPWidenIntOrFpInductionRecipe::isCanonical() const { auto *StartC = dyn_cast(getStartValue()->getLiveInIRValue()); auto *StepC = dyn_cast(getInductionDescriptor().getStep()); return StartC && StartC->isZero() && StepC && StepC->isOne(); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << Indent << "WIDEN-GEP "; O << (IsPtrLoopInvariant ? "Inv" : "Var"); size_t IndicesNumber = IsIndexLoopInvariant.size(); for (size_t I = 0; I < IndicesNumber; ++I) O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; O << " "; printAsOperand(O, SlotTracker); O << " = getelementptr "; printOperands(O, SlotTracker); } void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << Indent << "WIDEN-PHI "; auto *OriginalPhi = cast(getUnderlyingValue()); // Unless all incoming values are modeled in VPlan print the original PHI // directly. // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming // values as VPValues. if (getNumOperands() != OriginalPhi->getNumOperands()) { O << VPlanIngredient(OriginalPhi); return; } printAsOperand(O, SlotTracker); O << " = phi "; printOperands(O, SlotTracker); } void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << Indent << "BLEND "; Phi->printAsOperand(O, false); O << " ="; if (getNumIncomingValues() == 1) { // Not a User of any mask: not really blending, this is a // single-predecessor phi. O << " "; getIncomingValue(0)->printAsOperand(O, SlotTracker); } else { for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { O << " "; getIncomingValue(I)->printAsOperand(O, SlotTracker); O << "/"; getMask(I)->printAsOperand(O, SlotTracker); } } } void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << Indent << "REDUCE "; printAsOperand(O, SlotTracker); O << " = "; getChainOp()->printAsOperand(O, SlotTracker); O << " +"; if (isa(getUnderlyingInstr())) O << getUnderlyingInstr()->getFastMathFlags(); O << " reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) << " ("; getVecOp()->printAsOperand(O, SlotTracker); if (getCondOp()) { O << ", "; getCondOp()->printAsOperand(O, SlotTracker); } O << ")"; } void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << Indent << (IsUniform ? "CLONE " : "REPLICATE "); if (!getUnderlyingInstr()->getType()->isVoidTy()) { printAsOperand(O, SlotTracker); O << " = "; } O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; printOperands(O, SlotTracker); if (AlsoPack) O << " (S->V)"; } void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << Indent << "PHI-PREDICATED-INSTRUCTION "; printAsOperand(O, SlotTracker); O << " = "; printOperands(O, SlotTracker); } void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << Indent << "WIDEN "; if (!isStore()) { printAsOperand(O, SlotTracker); O << " = "; } O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " "; printOperands(O, SlotTracker); } #endif void VPCanonicalIVPHIRecipe::execute(VPTransformState &State) { Value *Start = getStartValue()->getLiveInIRValue(); PHINode *EntryPart = PHINode::Create( Start->getType(), 2, "index", &*State.CFG.PrevBB->getFirstInsertionPt()); EntryPart->addIncoming(Start, State.CFG.VectorPreHeader); EntryPart->setDebugLoc(DL); for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) State.set(this, EntryPart, Part); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void VPCanonicalIVPHIRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << Indent << "EMIT "; printAsOperand(O, SlotTracker); O << " = CANONICAL-INDUCTION"; } #endif void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { Value *CanonicalIV = State.get(getOperand(0), 0); Type *STy = CanonicalIV->getType(); IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); ElementCount VF = State.VF; Value *VStart = VF.isScalar() ? CanonicalIV : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast"); for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { Value *VStep = createStepForVF(Builder, STy, VF, Part); if (VF.isVector()) { VStep = Builder.CreateVectorSplat(VF, VStep); VStep = Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType())); } Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); State.set(this, CanonicalVectorIV, Part); } } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << Indent << "EMIT "; printAsOperand(O, SlotTracker); O << " = WIDEN-CANONICAL-INDUCTION "; printOperands(O, SlotTracker); } #endif void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) { auto &Builder = State.Builder; // Create a vector from the initial value. auto *VectorInit = getStartValue()->getLiveInIRValue(); Type *VecTy = State.VF.isScalar() ? VectorInit->getType() : VectorType::get(VectorInit->getType(), State.VF); if (State.VF.isVector()) { auto *IdxTy = Builder.getInt32Ty(); auto *One = ConstantInt::get(IdxTy, 1); IRBuilder<>::InsertPointGuard Guard(Builder); Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF); auto *LastIdx = Builder.CreateSub(RuntimeVF, One); VectorInit = Builder.CreateInsertElement( PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init"); } // Create a phi node for the new recurrence. PHINode *EntryPart = PHINode::Create( VecTy, 2, "vector.recur", &*State.CFG.PrevBB->getFirstInsertionPt()); EntryPart->addIncoming(VectorInit, State.CFG.VectorPreHeader); State.set(this, EntryPart, 0); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << Indent << "FIRST-ORDER-RECURRENCE-PHI "; printAsOperand(O, SlotTracker); O << " = phi "; printOperands(O, SlotTracker); } #endif void VPReductionPHIRecipe::execute(VPTransformState &State) { PHINode *PN = cast(getUnderlyingValue()); auto &Builder = State.Builder; // In order to support recurrences we need to be able to vectorize Phi nodes. // Phi nodes have cycles, so we need to vectorize them in two stages. This is // stage #1: We create a new vector PHI node with no incoming edges. We'll use // this value when we vectorize all of the instructions that use the PHI. bool ScalarPHI = State.VF.isScalar() || IsInLoop; Type *VecTy = ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); BasicBlock *HeaderBB = State.CFG.PrevBB; assert(State.LI->getLoopFor(HeaderBB)->getHeader() == HeaderBB && "recipe must be in the vector loop header"); unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF; for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { Value *EntryPart = PHINode::Create(VecTy, 2, "vec.phi", &*HeaderBB->getFirstInsertionPt()); State.set(this, EntryPart, Part); } // Reductions do not have to start at zero. They can start with // any loop invariant values. VPValue *StartVPV = getStartValue(); Value *StartV = StartVPV->getLiveInIRValue(); Value *Iden = nullptr; RecurKind RK = RdxDesc.getRecurrenceKind(); if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK) || RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) { // MinMax reduction have the start value as their identify. if (ScalarPHI) { Iden = StartV; } else { IRBuilderBase::InsertPointGuard IPBuilder(Builder); Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); StartV = Iden = Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); } } else { Iden = RdxDesc.getRecurrenceIdentity(RK, VecTy->getScalarType(), RdxDesc.getFastMathFlags()); if (!ScalarPHI) { Iden = Builder.CreateVectorSplat(State.VF, Iden); IRBuilderBase::InsertPointGuard IPBuilder(Builder); Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); Constant *Zero = Builder.getInt32(0); StartV = Builder.CreateInsertElement(Iden, StartV, Zero); } } for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { Value *EntryPart = State.get(this, Part); // Make sure to add the reduction start value only to the // first unroll part. Value *StartVal = (Part == 0) ? StartV : Iden; cast(EntryPart)->addIncoming(StartVal, State.CFG.VectorPreHeader); } } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const { O << Indent << "WIDEN-REDUCTION-PHI "; printAsOperand(O, SlotTracker); O << " = phi "; printOperands(O, SlotTracker); } #endif template void DomTreeBuilder::Calculate(VPDominatorTree &DT); void VPValue::replaceAllUsesWith(VPValue *New) { for (unsigned J = 0; J < getNumUsers();) { VPUser *User = Users[J]; unsigned NumUsers = getNumUsers(); for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) if (User->getOperand(I) == this) User->setOperand(I, New); // If a user got removed after updating the current user, the next user to // update will be moved to the current position, so we only need to // increment the index if the number of users did not change. if (NumUsers == getNumUsers()) J++; } } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { if (const Value *UV = getUnderlyingValue()) { OS << "ir<"; UV->printAsOperand(OS, false); OS << ">"; return; } unsigned Slot = Tracker.getSlot(this); if (Slot == unsigned(-1)) OS << ""; else OS << "vp<%" << Tracker.getSlot(this) << ">"; } void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { Op->printAsOperand(O, SlotTracker); }); } #endif void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New, InterleavedAccessInfo &IAI) { ReversePostOrderTraversal RPOT(Region->getEntry()); for (VPBlockBase *Base : RPOT) { visitBlock(Base, Old2New, IAI); } } void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, InterleavedAccessInfo &IAI) { if (VPBasicBlock *VPBB = dyn_cast(Block)) { for (VPRecipeBase &VPI : *VPBB) { if (isa(&VPI)) continue; assert(isa(&VPI) && "Can only handle VPInstructions"); auto *VPInst = cast(&VPI); auto *Inst = cast(VPInst->getUnderlyingValue()); auto *IG = IAI.getInterleaveGroup(Inst); if (!IG) continue; auto NewIGIter = Old2New.find(IG); if (NewIGIter == Old2New.end()) Old2New[IG] = new InterleaveGroup( IG->getFactor(), IG->isReverse(), IG->getAlign()); if (Inst == IG->getInsertPos()) Old2New[IG]->setInsertPos(VPInst); InterleaveGroupMap[VPInst] = Old2New[IG]; InterleaveGroupMap[VPInst]->insertMember( VPInst, IG->getIndex(Inst), Align(IG->isReverse() ? (-1) * int(IG->getFactor()) : IG->getFactor())); } } else if (VPRegionBlock *Region = dyn_cast(Block)) visitRegion(Region, Old2New, IAI); else llvm_unreachable("Unsupported kind of VPBlock."); } VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI) { Old2NewTy Old2New; visitRegion(cast(Plan.getEntry()), Old2New, IAI); } void VPSlotTracker::assignSlot(const VPValue *V) { assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); Slots[V] = NextSlot++; } void VPSlotTracker::assignSlots(const VPlan &Plan) { for (const VPValue *V : Plan.VPExternalDefs) assignSlot(V); assignSlot(&Plan.VectorTripCount); if (Plan.BackedgeTakenCount) assignSlot(Plan.BackedgeTakenCount); ReversePostOrderTraversal< VPBlockRecursiveTraversalWrapper> RPOT(VPBlockRecursiveTraversalWrapper( Plan.getEntry())); for (const VPBasicBlock *VPBB : VPBlockUtils::blocksOnly(RPOT)) for (const VPRecipeBase &Recipe : *VPBB) for (VPValue *Def : Recipe.definedValues()) assignSlot(Def); } bool vputils::onlyFirstLaneUsed(VPValue *Def) { return all_of(Def->users(), [Def](VPUser *U) { return cast(U)->onlyFirstLaneUsed(Def); }); }