//===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Eliminate conditions based on constraints collected from dominating // conditions. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/ConstraintElimination.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/ConstraintSystem.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/PatternMatch.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Support/DebugCounter.h" #include "llvm/Transforms/Scalar.h" #include using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "constraint-elimination" STATISTIC(NumCondsRemoved, "Number of instructions removed"); DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", "Controls which conditions are eliminated"); static int64_t MaxConstraintValue = std::numeric_limits::max(); namespace { struct ConstraintTy { SmallVector Coefficients; ConstraintTy(SmallVector Coefficients) : Coefficients(Coefficients) {} unsigned size() const { return Coefficients.size(); } }; /// Struct to manage a list of constraints. struct ConstraintListTy { SmallVector Constraints; ConstraintListTy() {} ConstraintListTy(const SmallVector &Constraints) : Constraints(Constraints) {} void mergeIn(const ConstraintListTy &Other) { append_range(Constraints, Other.Constraints); } unsigned size() const { return Constraints.size(); } unsigned empty() const { return Constraints.empty(); } /// Returns true if any constraint has a non-zero coefficient for any of the /// newly added indices. Zero coefficients for new indices are removed. If it /// returns true, no new variable need to be added to the system. bool needsNewIndices(const DenseMap &NewIndices) { assert(size() == 1); for (unsigned I = 0; I < NewIndices.size(); ++I) { int64_t Last = get(0).Coefficients.pop_back_val(); if (Last != 0) return true; } return false; } ConstraintTy &get(unsigned I) { return Constraints[I]; } }; } // namespace // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The // sum of the pairs equals \p V. The first pair is the constant-factor and X // must be nullptr. If the expression cannot be decomposed, returns an empty // vector. static SmallVector, 4> decompose(Value *V) { if (auto *CI = dyn_cast(V)) { if (CI->isNegative() || CI->uge(MaxConstraintValue)) return {}; return {{CI->getSExtValue(), nullptr}}; } auto *GEP = dyn_cast(V); if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) { Value *Op0, *Op1; ConstantInt *CI; // If the index is zero-extended, it is guaranteed to be positive. if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ZExt(m_Value(Op0)))) { if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI)))) return {{0, nullptr}, {1, GEP->getPointerOperand()}, {std::pow(int64_t(2), CI->getSExtValue()), Op1}}; if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI)))) return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}, {1, Op1}}; return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; } if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) && !CI->isNegative()) return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}}; SmallVector, 4> Result; if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_NUWShl(m_Value(Op0), m_ConstantInt(CI)))) Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {std::pow(int64_t(2), CI->getSExtValue()), Op0}}; else if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_NSWAdd(m_Value(Op0), m_ConstantInt(CI)))) Result = {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; else { Op0 = GEP->getOperand(GEP->getNumOperands() - 1); Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; } return Result; } Value *Op0; if (match(V, m_ZExt(m_Value(Op0)))) V = Op0; Value *Op1; ConstantInt *CI; if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI)))) return {{CI->getSExtValue(), nullptr}, {1, Op0}}; if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) return {{0, nullptr}, {1, Op0}, {1, Op1}}; if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI)))) return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}}; if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) return {{0, nullptr}, {1, Op0}, {-1, Op1}}; return {{0, nullptr}, {1, V}}; } /// Turn a condition \p CmpI into a vector of constraints, using indices from \p /// Value2Index. Additional indices for newly discovered values are added to \p /// NewIndices. static ConstraintListTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, const DenseMap &Value2Index, DenseMap &NewIndices) { int64_t Offset1 = 0; int64_t Offset2 = 0; // First try to look up \p V in Value2Index and NewIndices. Otherwise add a // new entry to NewIndices. auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned { auto V2I = Value2Index.find(V); if (V2I != Value2Index.end()) return V2I->second; auto NewI = NewIndices.find(V); if (NewI != NewIndices.end()) return NewI->second; auto Insert = NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1}); return Insert.first->second; }; if (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE) return getConstraint(CmpInst::getSwappedPredicate(Pred), Op1, Op0, Value2Index, NewIndices); if (Pred == CmpInst::ICMP_EQ) { if (match(Op1, m_Zero())) return getConstraint(CmpInst::ICMP_ULE, Op0, Op1, Value2Index, NewIndices); auto A = getConstraint(CmpInst::ICMP_UGE, Op0, Op1, Value2Index, NewIndices); auto B = getConstraint(CmpInst::ICMP_ULE, Op0, Op1, Value2Index, NewIndices); A.mergeIn(B); return A; } if (Pred == CmpInst::ICMP_NE && match(Op1, m_Zero())) { return getConstraint(CmpInst::ICMP_UGT, Op0, Op1, Value2Index, NewIndices); } // Only ULE and ULT predicates are supported at the moment. if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT) return {}; auto ADec = decompose(Op0->stripPointerCastsSameRepresentation()); auto BDec = decompose(Op1->stripPointerCastsSameRepresentation()); // Skip if decomposing either of the values failed. if (ADec.empty() || BDec.empty()) return {}; // Skip trivial constraints without any variables. if (ADec.size() == 1 && BDec.size() == 1) return {}; Offset1 = ADec[0].first; Offset2 = BDec[0].first; Offset1 *= -1; // Create iterator ranges that skip the constant-factor. auto VariablesA = llvm::drop_begin(ADec); auto VariablesB = llvm::drop_begin(BDec); // Make sure all variables have entries in Value2Index or NewIndices. for (const auto &KV : concat>(VariablesA, VariablesB)) GetOrAddIndex(KV.second); // Build result constraint, by first adding all coefficients from A and then // subtracting all coefficients from B. SmallVector R(Value2Index.size() + NewIndices.size() + 1, 0); for (const auto &KV : VariablesA) R[GetOrAddIndex(KV.second)] += KV.first; for (const auto &KV : VariablesB) R[GetOrAddIndex(KV.second)] -= KV.first; R[0] = Offset1 + Offset2 + (Pred == CmpInst::ICMP_ULT ? -1 : 0); return {{R}}; } static ConstraintListTy getConstraint(CmpInst *Cmp, const DenseMap &Value2Index, DenseMap &NewIndices) { return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0), Cmp->getOperand(1), Value2Index, NewIndices); } namespace { /// Represents either a condition that holds on entry to a block or a basic /// block, with their respective Dominator DFS in and out numbers. struct ConstraintOrBlock { unsigned NumIn; unsigned NumOut; bool IsBlock; bool Not; union { BasicBlock *BB; CmpInst *Condition; }; ConstraintOrBlock(DomTreeNode *DTN) : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true), BB(DTN->getBlock()) {} ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not) : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false), Not(Not), Condition(Condition) {} }; struct StackEntry { unsigned NumIn; unsigned NumOut; CmpInst *Condition; bool IsNot; StackEntry(unsigned NumIn, unsigned NumOut, CmpInst *Condition, bool IsNot) : NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot) {} }; } // namespace #ifndef NDEBUG static void dumpWithNames(ConstraintTy &C, DenseMap &Value2Index) { SmallVector Names(Value2Index.size(), ""); for (auto &KV : Value2Index) { Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); } ConstraintSystem CS; CS.addVariableRowFill(C.Coefficients); CS.dump(Names); } #endif static bool eliminateConstraints(Function &F, DominatorTree &DT) { bool Changed = false; DT.updateDFSNumbers(); ConstraintSystem CS; SmallVector WorkList; // First, collect conditions implied by branches and blocks with their // Dominator DFS in and out numbers. for (BasicBlock &BB : F) { if (!DT.getNode(&BB)) continue; WorkList.emplace_back(DT.getNode(&BB)); // True as long as long as the current instruction is guaranteed to execute. bool GuaranteedToExecute = true; // Scan BB for assume calls. // TODO: also use this scan to queue conditions to simplify, so we can // interleave facts from assumes and conditions to simplify in a single // basic block. And to skip another traversal of each basic block when // simplifying. for (Instruction &I : BB) { Value *Cond; // For now, just handle assumes with a single compare as condition. if (match(&I, m_Intrinsic(m_Value(Cond))) && isa(Cond)) { if (GuaranteedToExecute) { // The assume is guaranteed to execute when BB is entered, hence Cond // holds on entry to BB. WorkList.emplace_back(DT.getNode(&BB), cast(Cond), false); } else { // Otherwise the condition only holds in the successors. for (BasicBlock *Succ : successors(&BB)) WorkList.emplace_back(DT.getNode(Succ), cast(Cond), false); } } GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); } auto *Br = dyn_cast(BB.getTerminator()); if (!Br || !Br->isConditional()) continue; // Returns true if we can add a known condition from BB to its successor // block Succ. Each predecessor of Succ can either be BB or be dominated by // Succ (e.g. the case when adding a condition from a pre-header to a loop // header). auto CanAdd = [&BB, &DT](BasicBlock *Succ) { return all_of(predecessors(Succ), [&BB, &DT, Succ](BasicBlock *Pred) { return Pred == &BB || DT.dominates(Succ, Pred); }); }; // If the condition is an OR of 2 compares and the false successor only has // the current block as predecessor, queue both negated conditions for the // false successor. Value *Op0, *Op1; if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) && match(Op0, m_Cmp()) && match(Op1, m_Cmp())) { BasicBlock *FalseSuccessor = Br->getSuccessor(1); if (CanAdd(FalseSuccessor)) { WorkList.emplace_back(DT.getNode(FalseSuccessor), cast(Op0), true); WorkList.emplace_back(DT.getNode(FalseSuccessor), cast(Op1), true); } continue; } // If the condition is an AND of 2 compares and the true successor only has // the current block as predecessor, queue both conditions for the true // successor. if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) && match(Op0, m_Cmp()) && match(Op1, m_Cmp())) { BasicBlock *TrueSuccessor = Br->getSuccessor(0); if (CanAdd(TrueSuccessor)) { WorkList.emplace_back(DT.getNode(TrueSuccessor), cast(Op0), false); WorkList.emplace_back(DT.getNode(TrueSuccessor), cast(Op1), false); } continue; } auto *CmpI = dyn_cast(Br->getCondition()); if (!CmpI) continue; if (CanAdd(Br->getSuccessor(0))) WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false); if (CanAdd(Br->getSuccessor(1))) WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true); } // Next, sort worklist by dominance, so that dominating blocks and conditions // come before blocks and conditions dominated by them. If a block and a // condition have the same numbers, the condition comes before the block, as // it holds on entry to the block. sort(WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) { return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock); }); // Finally, process ordered worklist and eliminate implied conditions. SmallVector DFSInStack; DenseMap Value2Index; for (ConstraintOrBlock &CB : WorkList) { // First, pop entries from the stack that are out-of-scope for CB. Remove // the corresponding entry from the constraint system. while (!DFSInStack.empty()) { auto &E = DFSInStack.back(); LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut << "\n"); LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); assert(E.NumIn <= CB.NumIn); if (CB.NumOut <= E.NumOut) break; LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot << "\n"); DFSInStack.pop_back(); CS.popLastConstraint(); } LLVM_DEBUG({ dbgs() << "Processing "; if (CB.IsBlock) dbgs() << *CB.BB; else dbgs() << *CB.Condition; dbgs() << "\n"; }); // For a block, check if any CmpInsts become known based on the current set // of constraints. if (CB.IsBlock) { for (Instruction &I : *CB.BB) { auto *Cmp = dyn_cast(&I); if (!Cmp) continue; DenseMap NewIndices; auto R = getConstraint(Cmp, Value2Index, NewIndices); if (R.size() != 1) continue; if (R.needsNewIndices(NewIndices)) continue; if (CS.isConditionImplied(R.get(0).Coefficients)) { if (!DebugCounter::shouldExecute(EliminatedCounter)) continue; LLVM_DEBUG(dbgs() << "Condition " << *Cmp << " implied by dominating constraints\n"); LLVM_DEBUG({ for (auto &E : reverse(DFSInStack)) dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n"; }); Cmp->replaceUsesWithIf( ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) { // Conditions in an assume trivially simplify to true. Skip uses // in assume calls to not destroy the available information. auto *II = dyn_cast(U.getUser()); return !II || II->getIntrinsicID() != Intrinsic::assume; }); NumCondsRemoved++; Changed = true; } if (CS.isConditionImplied( ConstraintSystem::negate(R.get(0).Coefficients))) { if (!DebugCounter::shouldExecute(EliminatedCounter)) continue; LLVM_DEBUG(dbgs() << "Condition !" << *Cmp << " implied by dominating constraints\n"); LLVM_DEBUG({ for (auto &E : reverse(DFSInStack)) dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n"; }); Cmp->replaceAllUsesWith( ConstantInt::getFalse(F.getParent()->getContext())); NumCondsRemoved++; Changed = true; } } continue; } // Set up a function to restore the predicate at the end of the scope if it // has been negated. Negate the predicate in-place, if required. auto *CI = dyn_cast(CB.Condition); auto PredicateRestorer = make_scope_exit([CI, &CB]() { if (CB.Not && CI) CI->setPredicate(CI->getInversePredicate()); }); if (CB.Not) { if (CI) { CI->setPredicate(CI->getInversePredicate()); } else { LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n"); continue; } } // Otherwise, add the condition to the system and stack, if we can transform // it into a constraint. DenseMap NewIndices; auto R = getConstraint(CB.Condition, Value2Index, NewIndices); if (R.empty()) continue; for (auto &KV : NewIndices) Value2Index.insert(KV); LLVM_DEBUG(dbgs() << "Adding " << *CB.Condition << " " << CB.Not << "\n"); bool Added = false; for (auto &C : R.Constraints) { auto Coeffs = C.Coefficients; LLVM_DEBUG({ dbgs() << " constraint: "; dumpWithNames(C, Value2Index); }); Added |= CS.addVariableRowFill(Coeffs); // If R has been added to the system, queue it for removal once it goes // out-of-scope. if (Added) DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not); } } assert(CS.size() == DFSInStack.size() && "updates to CS and DFSInStack are out of sync"); return Changed; } PreservedAnalyses ConstraintEliminationPass::run(Function &F, FunctionAnalysisManager &AM) { auto &DT = AM.getResult(F); if (!eliminateConstraints(F, DT)) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); PA.preserveSet(); return PA; } namespace { class ConstraintElimination : public FunctionPass { public: static char ID; ConstraintElimination() : FunctionPass(ID) { initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { auto &DT = getAnalysis().getDomTree(); return eliminateConstraints(F, DT); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); } }; } // end anonymous namespace char ConstraintElimination::ID = 0; INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", "Constraint Elimination", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", "Constraint Elimination", false, false) FunctionPass *llvm::createConstraintEliminationPass() { return new ConstraintElimination(); }