//===- PrologEpilogInserter.cpp - Insert Prolog/Epilog code in function ---===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass is responsible for finalizing the functions frame layout, saving // callee saved registers, and for emitting prolog & epilog code for the // function. // // This pass must be run after register allocation. After this pass is // executed, it is illegal to construct MO_FrameIndex operands. // //===----------------------------------------------------------------------===// #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGen/WinEHFuncInfo.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Function.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/LLVMContext.h" #include "llvm/InitializePasses.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Pass.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "prologepilog" using MBBVector = SmallVector; STATISTIC(NumLeafFuncWithSpills, "Number of leaf functions with CSRs"); STATISTIC(NumFuncSeen, "Number of functions seen in PEI"); namespace { class PEI : public MachineFunctionPass { public: static char ID; PEI() : MachineFunctionPass(ID) { initializePEIPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override; /// runOnMachineFunction - Insert prolog/epilog code and replace abstract /// frame indexes with appropriate references. bool runOnMachineFunction(MachineFunction &MF) override; private: RegScavenger *RS; // MinCSFrameIndex, MaxCSFrameIndex - Keeps the range of callee saved // stack frame indexes. unsigned MinCSFrameIndex = std::numeric_limits::max(); unsigned MaxCSFrameIndex = 0; // Save and Restore blocks of the current function. Typically there is a // single save block, unless Windows EH funclets are involved. MBBVector SaveBlocks; MBBVector RestoreBlocks; // Flag to control whether to use the register scavenger to resolve // frame index materialization registers. Set according to // TRI->requiresFrameIndexScavenging() for the current function. bool FrameIndexVirtualScavenging; // Flag to control whether the scavenger should be passed even though // FrameIndexVirtualScavenging is used. bool FrameIndexEliminationScavenging; // Emit remarks. MachineOptimizationRemarkEmitter *ORE = nullptr; void calculateCallFrameInfo(MachineFunction &MF); void calculateSaveRestoreBlocks(MachineFunction &MF); void spillCalleeSavedRegs(MachineFunction &MF); void calculateFrameObjectOffsets(MachineFunction &MF); void replaceFrameIndices(MachineFunction &MF); void replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &MF, int &SPAdj); void insertPrologEpilogCode(MachineFunction &MF); }; } // end anonymous namespace char PEI::ID = 0; char &llvm::PrologEpilogCodeInserterID = PEI::ID; INITIALIZE_PASS_BEGIN(PEI, DEBUG_TYPE, "Prologue/Epilogue Insertion", false, false) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) INITIALIZE_PASS_END(PEI, DEBUG_TYPE, "Prologue/Epilogue Insertion & Frame Finalization", false, false) MachineFunctionPass *llvm::createPrologEpilogInserterPass() { return new PEI(); } STATISTIC(NumBytesStackSpace, "Number of bytes used for stack in all functions"); void PEI::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addPreserved(); AU.addPreserved(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } /// StackObjSet - A set of stack object indexes using StackObjSet = SmallSetVector; using SavedDbgValuesMap = SmallDenseMap, 4>; /// Stash DBG_VALUEs that describe parameters and which are placed at the start /// of the block. Later on, after the prologue code has been emitted, the /// stashed DBG_VALUEs will be reinserted at the start of the block. static void stashEntryDbgValues(MachineBasicBlock &MBB, SavedDbgValuesMap &EntryDbgValues) { SmallVector FrameIndexValues; for (auto &MI : MBB) { if (!MI.isDebugInstr()) break; if (!MI.isDebugValue() || !MI.getDebugVariable()->isParameter()) continue; if (any_of(MI.debug_operands(), [](const MachineOperand &MO) { return MO.isFI(); })) { // We can only emit valid locations for frame indices after the frame // setup, so do not stash away them. FrameIndexValues.push_back(&MI); continue; } const DILocalVariable *Var = MI.getDebugVariable(); const DIExpression *Expr = MI.getDebugExpression(); auto Overlaps = [Var, Expr](const MachineInstr *DV) { return Var == DV->getDebugVariable() && Expr->fragmentsOverlap(DV->getDebugExpression()); }; // See if the debug value overlaps with any preceding debug value that will // not be stashed. If that is the case, then we can't stash this value, as // we would then reorder the values at reinsertion. if (llvm::none_of(FrameIndexValues, Overlaps)) EntryDbgValues[&MBB].push_back(&MI); } // Remove stashed debug values from the block. if (EntryDbgValues.count(&MBB)) for (auto *MI : EntryDbgValues[&MBB]) MI->removeFromParent(); } /// runOnMachineFunction - Insert prolog/epilog code and replace abstract /// frame indexes with appropriate references. bool PEI::runOnMachineFunction(MachineFunction &MF) { NumFuncSeen++; const Function &F = MF.getFunction(); const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); RS = TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr; FrameIndexVirtualScavenging = TRI->requiresFrameIndexScavenging(MF); ORE = &getAnalysis().getORE(); // Calculate the MaxCallFrameSize and AdjustsStack variables for the // function's frame information. Also eliminates call frame pseudo // instructions. calculateCallFrameInfo(MF); // Determine placement of CSR spill/restore code and prolog/epilog code: // place all spills in the entry block, all restores in return blocks. calculateSaveRestoreBlocks(MF); // Stash away DBG_VALUEs that should not be moved by insertion of prolog code. SavedDbgValuesMap EntryDbgValues; for (MachineBasicBlock *SaveBlock : SaveBlocks) stashEntryDbgValues(*SaveBlock, EntryDbgValues); // Handle CSR spilling and restoring, for targets that need it. if (MF.getTarget().usesPhysRegsForValues()) spillCalleeSavedRegs(MF); // Allow the target machine to make final modifications to the function // before the frame layout is finalized. TFI->processFunctionBeforeFrameFinalized(MF, RS); // Calculate actual frame offsets for all abstract stack objects... calculateFrameObjectOffsets(MF); // Add prolog and epilog code to the function. This function is required // to align the stack frame as necessary for any stack variables or // called functions. Because of this, calculateCalleeSavedRegisters() // must be called before this function in order to set the AdjustsStack // and MaxCallFrameSize variables. if (!F.hasFnAttribute(Attribute::Naked)) insertPrologEpilogCode(MF); // Reinsert stashed debug values at the start of the entry blocks. for (auto &I : EntryDbgValues) I.first->insert(I.first->begin(), I.second.begin(), I.second.end()); // Allow the target machine to make final modifications to the function // before the frame layout is finalized. TFI->processFunctionBeforeFrameIndicesReplaced(MF, RS); // Replace all MO_FrameIndex operands with physical register references // and actual offsets. // replaceFrameIndices(MF); // If register scavenging is needed, as we've enabled doing it as a // post-pass, scavenge the virtual registers that frame index elimination // inserted. if (TRI->requiresRegisterScavenging(MF) && FrameIndexVirtualScavenging) scavengeFrameVirtualRegs(MF, *RS); // Warn on stack size when we exceeds the given limit. MachineFrameInfo &MFI = MF.getFrameInfo(); uint64_t StackSize = MFI.getStackSize(); unsigned Threshold = UINT_MAX; if (MF.getFunction().hasFnAttribute("warn-stack-size")) { bool Failed = MF.getFunction() .getFnAttribute("warn-stack-size") .getValueAsString() .getAsInteger(10, Threshold); // Verifier should have caught this. assert(!Failed && "Invalid warn-stack-size fn attr value"); (void)Failed; } if (StackSize > Threshold) { DiagnosticInfoStackSize DiagStackSize(F, StackSize, Threshold, DS_Warning); F.getContext().diagnose(DiagStackSize); } ORE->emit([&]() { return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "StackSize", MF.getFunction().getSubprogram(), &MF.front()) << ore::NV("NumStackBytes", StackSize) << " stack bytes in function"; }); delete RS; SaveBlocks.clear(); RestoreBlocks.clear(); MFI.setSavePoint(nullptr); MFI.setRestorePoint(nullptr); return true; } /// Calculate the MaxCallFrameSize and AdjustsStack /// variables for the function's frame information and eliminate call frame /// pseudo instructions. void PEI::calculateCallFrameInfo(MachineFunction &MF) { const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); MachineFrameInfo &MFI = MF.getFrameInfo(); unsigned MaxCallFrameSize = 0; bool AdjustsStack = MFI.adjustsStack(); // Get the function call frame set-up and tear-down instruction opcode unsigned FrameSetupOpcode = TII.getCallFrameSetupOpcode(); unsigned FrameDestroyOpcode = TII.getCallFrameDestroyOpcode(); // Early exit for targets which have no call frame setup/destroy pseudo // instructions. if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) return; std::vector FrameSDOps; for (MachineBasicBlock &BB : MF) for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) if (TII.isFrameInstr(*I)) { unsigned Size = TII.getFrameSize(*I); if (Size > MaxCallFrameSize) MaxCallFrameSize = Size; AdjustsStack = true; FrameSDOps.push_back(I); } else if (I->isInlineAsm()) { // Some inline asm's need a stack frame, as indicated by operand 1. unsigned ExtraInfo = I->getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); if (ExtraInfo & InlineAsm::Extra_IsAlignStack) AdjustsStack = true; } assert(!MFI.isMaxCallFrameSizeComputed() || (MFI.getMaxCallFrameSize() == MaxCallFrameSize && MFI.adjustsStack() == AdjustsStack)); MFI.setAdjustsStack(AdjustsStack); MFI.setMaxCallFrameSize(MaxCallFrameSize); for (MachineBasicBlock::iterator I : FrameSDOps) { // If call frames are not being included as part of the stack frame, and // the target doesn't indicate otherwise, remove the call frame pseudos // here. The sub/add sp instruction pairs are still inserted, but we don't // need to track the SP adjustment for frame index elimination. if (TFI->canSimplifyCallFramePseudos(MF)) TFI->eliminateCallFramePseudoInstr(MF, *I->getParent(), I); } } /// Compute the sets of entry and return blocks for saving and restoring /// callee-saved registers, and placing prolog and epilog code. void PEI::calculateSaveRestoreBlocks(MachineFunction &MF) { const MachineFrameInfo &MFI = MF.getFrameInfo(); // Even when we do not change any CSR, we still want to insert the // prologue and epilogue of the function. // So set the save points for those. // Use the points found by shrink-wrapping, if any. if (MFI.getSavePoint()) { SaveBlocks.push_back(MFI.getSavePoint()); assert(MFI.getRestorePoint() && "Both restore and save must be set"); MachineBasicBlock *RestoreBlock = MFI.getRestorePoint(); // If RestoreBlock does not have any successor and is not a return block // then the end point is unreachable and we do not need to insert any // epilogue. if (!RestoreBlock->succ_empty() || RestoreBlock->isReturnBlock()) RestoreBlocks.push_back(RestoreBlock); return; } // Save refs to entry and return blocks. SaveBlocks.push_back(&MF.front()); for (MachineBasicBlock &MBB : MF) { if (MBB.isEHFuncletEntry()) SaveBlocks.push_back(&MBB); if (MBB.isReturnBlock()) RestoreBlocks.push_back(&MBB); } } static void assignCalleeSavedSpillSlots(MachineFunction &F, const BitVector &SavedRegs, unsigned &MinCSFrameIndex, unsigned &MaxCSFrameIndex) { if (SavedRegs.empty()) return; const TargetRegisterInfo *RegInfo = F.getSubtarget().getRegisterInfo(); const MCPhysReg *CSRegs = F.getRegInfo().getCalleeSavedRegs(); BitVector CSMask(SavedRegs.size()); for (unsigned i = 0; CSRegs[i]; ++i) CSMask.set(CSRegs[i]); std::vector CSI; for (unsigned i = 0; CSRegs[i]; ++i) { unsigned Reg = CSRegs[i]; if (SavedRegs.test(Reg)) { bool SavedSuper = false; for (const MCPhysReg &SuperReg : RegInfo->superregs(Reg)) { // Some backends set all aliases for some registers as saved, such as // Mips's $fp, so they appear in SavedRegs but not CSRegs. if (SavedRegs.test(SuperReg) && CSMask.test(SuperReg)) { SavedSuper = true; break; } } if (!SavedSuper) CSI.push_back(CalleeSavedInfo(Reg)); } } const TargetFrameLowering *TFI = F.getSubtarget().getFrameLowering(); MachineFrameInfo &MFI = F.getFrameInfo(); if (!TFI->assignCalleeSavedSpillSlots(F, RegInfo, CSI, MinCSFrameIndex, MaxCSFrameIndex)) { // If target doesn't implement this, use generic code. if (CSI.empty()) return; // Early exit if no callee saved registers are modified! unsigned NumFixedSpillSlots; const TargetFrameLowering::SpillSlot *FixedSpillSlots = TFI->getCalleeSavedSpillSlots(NumFixedSpillSlots); // Now that we know which registers need to be saved and restored, allocate // stack slots for them. for (auto &CS : CSI) { // If the target has spilled this register to another register, we don't // need to allocate a stack slot. if (CS.isSpilledToReg()) continue; unsigned Reg = CS.getReg(); const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg); int FrameIdx; if (RegInfo->hasReservedSpillSlot(F, Reg, FrameIdx)) { CS.setFrameIdx(FrameIdx); continue; } // Check to see if this physreg must be spilled to a particular stack slot // on this target. const TargetFrameLowering::SpillSlot *FixedSlot = FixedSpillSlots; while (FixedSlot != FixedSpillSlots + NumFixedSpillSlots && FixedSlot->Reg != Reg) ++FixedSlot; unsigned Size = RegInfo->getSpillSize(*RC); if (FixedSlot == FixedSpillSlots + NumFixedSpillSlots) { // Nope, just spill it anywhere convenient. Align Alignment = RegInfo->getSpillAlign(*RC); // We may not be able to satisfy the desired alignment specification of // the TargetRegisterClass if the stack alignment is smaller. Use the // min. Alignment = std::min(Alignment, TFI->getStackAlign()); FrameIdx = MFI.CreateStackObject(Size, Alignment, true); if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx; if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx; } else { // Spill it to the stack where we must. FrameIdx = MFI.CreateFixedSpillStackObject(Size, FixedSlot->Offset); } CS.setFrameIdx(FrameIdx); } } MFI.setCalleeSavedInfo(CSI); } /// Helper function to update the liveness information for the callee-saved /// registers. static void updateLiveness(MachineFunction &MF) { MachineFrameInfo &MFI = MF.getFrameInfo(); // Visited will contain all the basic blocks that are in the region // where the callee saved registers are alive: // - Anything that is not Save or Restore -> LiveThrough. // - Save -> LiveIn. // - Restore -> LiveOut. // The live-out is not attached to the block, so no need to keep // Restore in this set. SmallPtrSet Visited; SmallVector WorkList; MachineBasicBlock *Entry = &MF.front(); MachineBasicBlock *Save = MFI.getSavePoint(); if (!Save) Save = Entry; if (Entry != Save) { WorkList.push_back(Entry); Visited.insert(Entry); } Visited.insert(Save); MachineBasicBlock *Restore = MFI.getRestorePoint(); if (Restore) // By construction Restore cannot be visited, otherwise it // means there exists a path to Restore that does not go // through Save. WorkList.push_back(Restore); while (!WorkList.empty()) { const MachineBasicBlock *CurBB = WorkList.pop_back_val(); // By construction, the region that is after the save point is // dominated by the Save and post-dominated by the Restore. if (CurBB == Save && Save != Restore) continue; // Enqueue all the successors not already visited. // Those are by construction either before Save or after Restore. for (MachineBasicBlock *SuccBB : CurBB->successors()) if (Visited.insert(SuccBB).second) WorkList.push_back(SuccBB); } const std::vector &CSI = MFI.getCalleeSavedInfo(); MachineRegisterInfo &MRI = MF.getRegInfo(); for (const CalleeSavedInfo &I : CSI) { for (MachineBasicBlock *MBB : Visited) { MCPhysReg Reg = I.getReg(); // Add the callee-saved register as live-in. // It's killed at the spill. if (!MRI.isReserved(Reg) && !MBB->isLiveIn(Reg)) MBB->addLiveIn(Reg); } // If callee-saved register is spilled to another register rather than // spilling to stack, the destination register has to be marked as live for // each MBB between the prologue and epilogue so that it is not clobbered // before it is reloaded in the epilogue. The Visited set contains all // blocks outside of the region delimited by prologue/epilogue. if (I.isSpilledToReg()) { for (MachineBasicBlock &MBB : MF) { if (Visited.count(&MBB)) continue; MCPhysReg DstReg = I.getDstReg(); if (!MBB.isLiveIn(DstReg)) MBB.addLiveIn(DstReg); } } } } /// Insert restore code for the callee-saved registers used in the function. static void insertCSRSaves(MachineBasicBlock &SaveBlock, ArrayRef CSI) { MachineFunction &MF = *SaveBlock.getParent(); const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); MachineBasicBlock::iterator I = SaveBlock.begin(); if (!TFI->spillCalleeSavedRegisters(SaveBlock, I, CSI, TRI)) { for (const CalleeSavedInfo &CS : CSI) { // Insert the spill to the stack frame. unsigned Reg = CS.getReg(); if (CS.isSpilledToReg()) { BuildMI(SaveBlock, I, DebugLoc(), TII.get(TargetOpcode::COPY), CS.getDstReg()) .addReg(Reg, getKillRegState(true)); } else { const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); TII.storeRegToStackSlot(SaveBlock, I, Reg, true, CS.getFrameIdx(), RC, TRI); } } } } /// Insert restore code for the callee-saved registers used in the function. static void insertCSRRestores(MachineBasicBlock &RestoreBlock, std::vector &CSI) { MachineFunction &MF = *RestoreBlock.getParent(); const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); // Restore all registers immediately before the return and any // terminators that precede it. MachineBasicBlock::iterator I = RestoreBlock.getFirstTerminator(); if (!TFI->restoreCalleeSavedRegisters(RestoreBlock, I, CSI, TRI)) { for (const CalleeSavedInfo &CI : reverse(CSI)) { unsigned Reg = CI.getReg(); if (CI.isSpilledToReg()) { BuildMI(RestoreBlock, I, DebugLoc(), TII.get(TargetOpcode::COPY), Reg) .addReg(CI.getDstReg(), getKillRegState(true)); } else { const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); TII.loadRegFromStackSlot(RestoreBlock, I, Reg, CI.getFrameIdx(), RC, TRI); assert(I != RestoreBlock.begin() && "loadRegFromStackSlot didn't insert any code!"); // Insert in reverse order. loadRegFromStackSlot can insert // multiple instructions. } } } } void PEI::spillCalleeSavedRegs(MachineFunction &MF) { // We can't list this requirement in getRequiredProperties because some // targets (WebAssembly) use virtual registers past this point, and the pass // pipeline is set up without giving the passes a chance to look at the // TargetMachine. // FIXME: Find a way to express this in getRequiredProperties. assert(MF.getProperties().hasProperty( MachineFunctionProperties::Property::NoVRegs)); const Function &F = MF.getFunction(); const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); MachineFrameInfo &MFI = MF.getFrameInfo(); MinCSFrameIndex = std::numeric_limits::max(); MaxCSFrameIndex = 0; // Determine which of the registers in the callee save list should be saved. BitVector SavedRegs; TFI->determineCalleeSaves(MF, SavedRegs, RS); // Assign stack slots for any callee-saved registers that must be spilled. assignCalleeSavedSpillSlots(MF, SavedRegs, MinCSFrameIndex, MaxCSFrameIndex); // Add the code to save and restore the callee saved registers. if (!F.hasFnAttribute(Attribute::Naked)) { MFI.setCalleeSavedInfoValid(true); std::vector &CSI = MFI.getCalleeSavedInfo(); if (!CSI.empty()) { if (!MFI.hasCalls()) NumLeafFuncWithSpills++; for (MachineBasicBlock *SaveBlock : SaveBlocks) insertCSRSaves(*SaveBlock, CSI); // Update the live-in information of all the blocks up to the save point. updateLiveness(MF); for (MachineBasicBlock *RestoreBlock : RestoreBlocks) insertCSRRestores(*RestoreBlock, CSI); } } } /// AdjustStackOffset - Helper function used to adjust the stack frame offset. static inline void AdjustStackOffset(MachineFrameInfo &MFI, int FrameIdx, bool StackGrowsDown, int64_t &Offset, Align &MaxAlign, unsigned Skew) { // If the stack grows down, add the object size to find the lowest address. if (StackGrowsDown) Offset += MFI.getObjectSize(FrameIdx); Align Alignment = MFI.getObjectAlign(FrameIdx); // If the alignment of this object is greater than that of the stack, then // increase the stack alignment to match. MaxAlign = std::max(MaxAlign, Alignment); // Adjust to alignment boundary. Offset = alignTo(Offset, Alignment, Skew); if (StackGrowsDown) { LLVM_DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") at SP[" << -Offset << "]\n"); MFI.setObjectOffset(FrameIdx, -Offset); // Set the computed offset } else { LLVM_DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") at SP[" << Offset << "]\n"); MFI.setObjectOffset(FrameIdx, Offset); Offset += MFI.getObjectSize(FrameIdx); } } /// Compute which bytes of fixed and callee-save stack area are unused and keep /// track of them in StackBytesFree. static inline void computeFreeStackSlots(MachineFrameInfo &MFI, bool StackGrowsDown, unsigned MinCSFrameIndex, unsigned MaxCSFrameIndex, int64_t FixedCSEnd, BitVector &StackBytesFree) { // Avoid undefined int64_t -> int conversion below in extreme case. if (FixedCSEnd > std::numeric_limits::max()) return; StackBytesFree.resize(FixedCSEnd, true); SmallVector AllocatedFrameSlots; // Add fixed objects. for (int i = MFI.getObjectIndexBegin(); i != 0; ++i) // StackSlot scavenging is only implemented for the default stack. if (MFI.getStackID(i) == TargetStackID::Default) AllocatedFrameSlots.push_back(i); // Add callee-save objects if there are any. if (MinCSFrameIndex <= MaxCSFrameIndex) { for (int i = MinCSFrameIndex; i <= (int)MaxCSFrameIndex; ++i) if (MFI.getStackID(i) == TargetStackID::Default) AllocatedFrameSlots.push_back(i); } for (int i : AllocatedFrameSlots) { // These are converted from int64_t, but they should always fit in int // because of the FixedCSEnd check above. int ObjOffset = MFI.getObjectOffset(i); int ObjSize = MFI.getObjectSize(i); int ObjStart, ObjEnd; if (StackGrowsDown) { // ObjOffset is negative when StackGrowsDown is true. ObjStart = -ObjOffset - ObjSize; ObjEnd = -ObjOffset; } else { ObjStart = ObjOffset; ObjEnd = ObjOffset + ObjSize; } // Ignore fixed holes that are in the previous stack frame. if (ObjEnd > 0) StackBytesFree.reset(ObjStart, ObjEnd); } } /// Assign frame object to an unused portion of the stack in the fixed stack /// object range. Return true if the allocation was successful. static inline bool scavengeStackSlot(MachineFrameInfo &MFI, int FrameIdx, bool StackGrowsDown, Align MaxAlign, BitVector &StackBytesFree) { if (MFI.isVariableSizedObjectIndex(FrameIdx)) return false; if (StackBytesFree.none()) { // clear it to speed up later scavengeStackSlot calls to // StackBytesFree.none() StackBytesFree.clear(); return false; } Align ObjAlign = MFI.getObjectAlign(FrameIdx); if (ObjAlign > MaxAlign) return false; int64_t ObjSize = MFI.getObjectSize(FrameIdx); int FreeStart; for (FreeStart = StackBytesFree.find_first(); FreeStart != -1; FreeStart = StackBytesFree.find_next(FreeStart)) { // Check that free space has suitable alignment. unsigned ObjStart = StackGrowsDown ? FreeStart + ObjSize : FreeStart; if (alignTo(ObjStart, ObjAlign) != ObjStart) continue; if (FreeStart + ObjSize > StackBytesFree.size()) return false; bool AllBytesFree = true; for (unsigned Byte = 0; Byte < ObjSize; ++Byte) if (!StackBytesFree.test(FreeStart + Byte)) { AllBytesFree = false; break; } if (AllBytesFree) break; } if (FreeStart == -1) return false; if (StackGrowsDown) { int ObjStart = -(FreeStart + ObjSize); LLVM_DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") scavenged at SP[" << ObjStart << "]\n"); MFI.setObjectOffset(FrameIdx, ObjStart); } else { LLVM_DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") scavenged at SP[" << FreeStart << "]\n"); MFI.setObjectOffset(FrameIdx, FreeStart); } StackBytesFree.reset(FreeStart, FreeStart + ObjSize); return true; } /// AssignProtectedObjSet - Helper function to assign large stack objects (i.e., /// those required to be close to the Stack Protector) to stack offsets. static void AssignProtectedObjSet(const StackObjSet &UnassignedObjs, SmallSet &ProtectedObjs, MachineFrameInfo &MFI, bool StackGrowsDown, int64_t &Offset, Align &MaxAlign, unsigned Skew) { for (int i : UnassignedObjs) { AdjustStackOffset(MFI, i, StackGrowsDown, Offset, MaxAlign, Skew); ProtectedObjs.insert(i); } } /// calculateFrameObjectOffsets - Calculate actual frame offsets for all of the /// abstract stack objects. void PEI::calculateFrameObjectOffsets(MachineFunction &MF) { const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); bool StackGrowsDown = TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; // Loop over all of the stack objects, assigning sequential addresses... MachineFrameInfo &MFI = MF.getFrameInfo(); // Start at the beginning of the local area. // The Offset is the distance from the stack top in the direction // of stack growth -- so it's always nonnegative. int LocalAreaOffset = TFI.getOffsetOfLocalArea(); if (StackGrowsDown) LocalAreaOffset = -LocalAreaOffset; assert(LocalAreaOffset >= 0 && "Local area offset should be in direction of stack growth"); int64_t Offset = LocalAreaOffset; // Skew to be applied to alignment. unsigned Skew = TFI.getStackAlignmentSkew(MF); #ifdef EXPENSIVE_CHECKS for (unsigned i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) if (!MFI.isDeadObjectIndex(i) && MFI.getStackID(i) == TargetStackID::Default) assert(MFI.getObjectAlign(i) <= MFI.getMaxAlign() && "MaxAlignment is invalid"); #endif // If there are fixed sized objects that are preallocated in the local area, // non-fixed objects can't be allocated right at the start of local area. // Adjust 'Offset' to point to the end of last fixed sized preallocated // object. for (int i = MFI.getObjectIndexBegin(); i != 0; ++i) { if (MFI.getStackID(i) != TargetStackID::Default) // Only allocate objects on the default stack. continue; int64_t FixedOff; if (StackGrowsDown) { // The maximum distance from the stack pointer is at lower address of // the object -- which is given by offset. For down growing stack // the offset is negative, so we negate the offset to get the distance. FixedOff = -MFI.getObjectOffset(i); } else { // The maximum distance from the start pointer is at the upper // address of the object. FixedOff = MFI.getObjectOffset(i) + MFI.getObjectSize(i); } if (FixedOff > Offset) Offset = FixedOff; } // First assign frame offsets to stack objects that are used to spill // callee saved registers. if (StackGrowsDown && MaxCSFrameIndex >= MinCSFrameIndex) { for (unsigned i = MinCSFrameIndex; i <= MaxCSFrameIndex; ++i) { if (MFI.getStackID(i) != TargetStackID::Default) // Only allocate objects on the default stack. continue; // If the stack grows down, we need to add the size to find the lowest // address of the object. Offset += MFI.getObjectSize(i); // Adjust to alignment boundary Offset = alignTo(Offset, MFI.getObjectAlign(i), Skew); LLVM_DEBUG(dbgs() << "alloc FI(" << i << ") at SP[" << -Offset << "]\n"); MFI.setObjectOffset(i, -Offset); // Set the computed offset } } else if (MaxCSFrameIndex >= MinCSFrameIndex) { // Be careful about underflow in comparisons agains MinCSFrameIndex. for (unsigned i = MaxCSFrameIndex; i != MinCSFrameIndex - 1; --i) { if (MFI.getStackID(i) != TargetStackID::Default) // Only allocate objects on the default stack. continue; if (MFI.isDeadObjectIndex(i)) continue; // Adjust to alignment boundary Offset = alignTo(Offset, MFI.getObjectAlign(i), Skew); LLVM_DEBUG(dbgs() << "alloc FI(" << i << ") at SP[" << Offset << "]\n"); MFI.setObjectOffset(i, Offset); Offset += MFI.getObjectSize(i); } } // FixedCSEnd is the stack offset to the end of the fixed and callee-save // stack area. int64_t FixedCSEnd = Offset; Align MaxAlign = MFI.getMaxAlign(); // Make sure the special register scavenging spill slot is closest to the // incoming stack pointer if a frame pointer is required and is closer // to the incoming rather than the final stack pointer. const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); bool EarlyScavengingSlots = TFI.allocateScavengingFrameIndexesNearIncomingSP(MF); if (RS && EarlyScavengingSlots) { SmallVector SFIs; RS->getScavengingFrameIndices(SFIs); for (int SFI : SFIs) AdjustStackOffset(MFI, SFI, StackGrowsDown, Offset, MaxAlign, Skew); } // FIXME: Once this is working, then enable flag will change to a target // check for whether the frame is large enough to want to use virtual // frame index registers. Functions which don't want/need this optimization // will continue to use the existing code path. if (MFI.getUseLocalStackAllocationBlock()) { Align Alignment = MFI.getLocalFrameMaxAlign(); // Adjust to alignment boundary. Offset = alignTo(Offset, Alignment, Skew); LLVM_DEBUG(dbgs() << "Local frame base offset: " << Offset << "\n"); // Resolve offsets for objects in the local block. for (unsigned i = 0, e = MFI.getLocalFrameObjectCount(); i != e; ++i) { std::pair Entry = MFI.getLocalFrameObjectMap(i); int64_t FIOffset = (StackGrowsDown ? -Offset : Offset) + Entry.second; LLVM_DEBUG(dbgs() << "alloc FI(" << Entry.first << ") at SP[" << FIOffset << "]\n"); MFI.setObjectOffset(Entry.first, FIOffset); } // Allocate the local block Offset += MFI.getLocalFrameSize(); MaxAlign = std::max(Alignment, MaxAlign); } // Retrieve the Exception Handler registration node. int EHRegNodeFrameIndex = std::numeric_limits::max(); if (const WinEHFuncInfo *FuncInfo = MF.getWinEHFuncInfo()) EHRegNodeFrameIndex = FuncInfo->EHRegNodeFrameIndex; // Make sure that the stack protector comes before the local variables on the // stack. SmallSet ProtectedObjs; if (MFI.hasStackProtectorIndex()) { int StackProtectorFI = MFI.getStackProtectorIndex(); StackObjSet LargeArrayObjs; StackObjSet SmallArrayObjs; StackObjSet AddrOfObjs; // If we need a stack protector, we need to make sure that // LocalStackSlotPass didn't already allocate a slot for it. // If we are told to use the LocalStackAllocationBlock, the stack protector // is expected to be already pre-allocated. if (MFI.getStackID(StackProtectorFI) != TargetStackID::Default) { // If the stack protector isn't on the default stack then it's up to the // target to set the stack offset. assert(MFI.getObjectOffset(StackProtectorFI) != 0 && "Offset of stack protector on non-default stack expected to be " "already set."); assert(!MFI.isObjectPreAllocated(MFI.getStackProtectorIndex()) && "Stack protector on non-default stack expected to not be " "pre-allocated by LocalStackSlotPass."); } else if (!MFI.getUseLocalStackAllocationBlock()) { AdjustStackOffset(MFI, StackProtectorFI, StackGrowsDown, Offset, MaxAlign, Skew); } else if (!MFI.isObjectPreAllocated(MFI.getStackProtectorIndex())) { llvm_unreachable( "Stack protector not pre-allocated by LocalStackSlotPass."); } // Assign large stack objects first. for (unsigned i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) { if (MFI.isObjectPreAllocated(i) && MFI.getUseLocalStackAllocationBlock()) continue; if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex) continue; if (RS && RS->isScavengingFrameIndex((int)i)) continue; if (MFI.isDeadObjectIndex(i)) continue; if (StackProtectorFI == (int)i || EHRegNodeFrameIndex == (int)i) continue; if (MFI.getStackID(i) != TargetStackID::Default) // Only allocate objects on the default stack. continue; switch (MFI.getObjectSSPLayout(i)) { case MachineFrameInfo::SSPLK_None: continue; case MachineFrameInfo::SSPLK_SmallArray: SmallArrayObjs.insert(i); continue; case MachineFrameInfo::SSPLK_AddrOf: AddrOfObjs.insert(i); continue; case MachineFrameInfo::SSPLK_LargeArray: LargeArrayObjs.insert(i); continue; } llvm_unreachable("Unexpected SSPLayoutKind."); } // We expect **all** the protected stack objects to be pre-allocated by // LocalStackSlotPass. If it turns out that PEI still has to allocate some // of them, we may end up messing up the expected order of the objects. if (MFI.getUseLocalStackAllocationBlock() && !(LargeArrayObjs.empty() && SmallArrayObjs.empty() && AddrOfObjs.empty())) llvm_unreachable("Found protected stack objects not pre-allocated by " "LocalStackSlotPass."); AssignProtectedObjSet(LargeArrayObjs, ProtectedObjs, MFI, StackGrowsDown, Offset, MaxAlign, Skew); AssignProtectedObjSet(SmallArrayObjs, ProtectedObjs, MFI, StackGrowsDown, Offset, MaxAlign, Skew); AssignProtectedObjSet(AddrOfObjs, ProtectedObjs, MFI, StackGrowsDown, Offset, MaxAlign, Skew); } SmallVector ObjectsToAllocate; // Then prepare to assign frame offsets to stack objects that are not used to // spill callee saved registers. for (unsigned i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) { if (MFI.isObjectPreAllocated(i) && MFI.getUseLocalStackAllocationBlock()) continue; if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex) continue; if (RS && RS->isScavengingFrameIndex((int)i)) continue; if (MFI.isDeadObjectIndex(i)) continue; if (MFI.getStackProtectorIndex() == (int)i || EHRegNodeFrameIndex == (int)i) continue; if (ProtectedObjs.count(i)) continue; if (MFI.getStackID(i) != TargetStackID::Default) // Only allocate objects on the default stack. continue; // Add the objects that we need to allocate to our working set. ObjectsToAllocate.push_back(i); } // Allocate the EH registration node first if one is present. if (EHRegNodeFrameIndex != std::numeric_limits::max()) AdjustStackOffset(MFI, EHRegNodeFrameIndex, StackGrowsDown, Offset, MaxAlign, Skew); // Give the targets a chance to order the objects the way they like it. if (MF.getTarget().getOptLevel() != CodeGenOpt::None && MF.getTarget().Options.StackSymbolOrdering) TFI.orderFrameObjects(MF, ObjectsToAllocate); // Keep track of which bytes in the fixed and callee-save range are used so we // can use the holes when allocating later stack objects. Only do this if // stack protector isn't being used and the target requests it and we're // optimizing. BitVector StackBytesFree; if (!ObjectsToAllocate.empty() && MF.getTarget().getOptLevel() != CodeGenOpt::None && MFI.getStackProtectorIndex() < 0 && TFI.enableStackSlotScavenging(MF)) computeFreeStackSlots(MFI, StackGrowsDown, MinCSFrameIndex, MaxCSFrameIndex, FixedCSEnd, StackBytesFree); // Now walk the objects and actually assign base offsets to them. for (auto &Object : ObjectsToAllocate) if (!scavengeStackSlot(MFI, Object, StackGrowsDown, MaxAlign, StackBytesFree)) AdjustStackOffset(MFI, Object, StackGrowsDown, Offset, MaxAlign, Skew); // Make sure the special register scavenging spill slot is closest to the // stack pointer. if (RS && !EarlyScavengingSlots) { SmallVector SFIs; RS->getScavengingFrameIndices(SFIs); for (int SFI : SFIs) AdjustStackOffset(MFI, SFI, StackGrowsDown, Offset, MaxAlign, Skew); } if (!TFI.targetHandlesStackFrameRounding()) { // If we have reserved argument space for call sites in the function // immediately on entry to the current function, count it as part of the // overall stack size. if (MFI.adjustsStack() && TFI.hasReservedCallFrame(MF)) Offset += MFI.getMaxCallFrameSize(); // Round up the size to a multiple of the alignment. If the function has // any calls or alloca's, align to the target's StackAlignment value to // ensure that the callee's frame or the alloca data is suitably aligned; // otherwise, for leaf functions, align to the TransientStackAlignment // value. Align StackAlign; if (MFI.adjustsStack() || MFI.hasVarSizedObjects() || (RegInfo->hasStackRealignment(MF) && MFI.getObjectIndexEnd() != 0)) StackAlign = TFI.getStackAlign(); else StackAlign = TFI.getTransientStackAlign(); // If the frame pointer is eliminated, all frame offsets will be relative to // SP not FP. Align to MaxAlign so this works. StackAlign = std::max(StackAlign, MaxAlign); int64_t OffsetBeforeAlignment = Offset; Offset = alignTo(Offset, StackAlign, Skew); // If we have increased the offset to fulfill the alignment constrants, // then the scavenging spill slots may become harder to reach from the // stack pointer, float them so they stay close. if (StackGrowsDown && OffsetBeforeAlignment != Offset && RS && !EarlyScavengingSlots) { SmallVector SFIs; RS->getScavengingFrameIndices(SFIs); LLVM_DEBUG(if (!SFIs.empty()) llvm::dbgs() << "Adjusting emergency spill slots!\n";); int64_t Delta = Offset - OffsetBeforeAlignment; for (int SFI : SFIs) { LLVM_DEBUG(llvm::dbgs() << "Adjusting offset of emergency spill slot #" << SFI << " from " << MFI.getObjectOffset(SFI);); MFI.setObjectOffset(SFI, MFI.getObjectOffset(SFI) - Delta); LLVM_DEBUG(llvm::dbgs() << " to " << MFI.getObjectOffset(SFI) << "\n";); } } } // Update frame info to pretend that this is part of the stack... int64_t StackSize = Offset - LocalAreaOffset; MFI.setStackSize(StackSize); NumBytesStackSpace += StackSize; } /// insertPrologEpilogCode - Scan the function for modified callee saved /// registers, insert spill code for these callee saved registers, then add /// prolog and epilog code to the function. void PEI::insertPrologEpilogCode(MachineFunction &MF) { const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); // Add prologue to the function... for (MachineBasicBlock *SaveBlock : SaveBlocks) TFI.emitPrologue(MF, *SaveBlock); // Add epilogue to restore the callee-save registers in each exiting block. for (MachineBasicBlock *RestoreBlock : RestoreBlocks) TFI.emitEpilogue(MF, *RestoreBlock); for (MachineBasicBlock *SaveBlock : SaveBlocks) TFI.inlineStackProbe(MF, *SaveBlock); // Emit additional code that is required to support segmented stacks, if // we've been asked for it. This, when linked with a runtime with support // for segmented stacks (libgcc is one), will result in allocating stack // space in small chunks instead of one large contiguous block. if (MF.shouldSplitStack()) { for (MachineBasicBlock *SaveBlock : SaveBlocks) TFI.adjustForSegmentedStacks(MF, *SaveBlock); // Record that there are split-stack functions, so we will emit a // special section to tell the linker. MF.getMMI().setHasSplitStack(true); } else MF.getMMI().setHasNosplitStack(true); // Emit additional code that is required to explicitly handle the stack in // HiPE native code (if needed) when loaded in the Erlang/OTP runtime. The // approach is rather similar to that of Segmented Stacks, but it uses a // different conditional check and another BIF for allocating more stack // space. if (MF.getFunction().getCallingConv() == CallingConv::HiPE) for (MachineBasicBlock *SaveBlock : SaveBlocks) TFI.adjustForHiPEPrologue(MF, *SaveBlock); } /// replaceFrameIndices - Replace all MO_FrameIndex operands with physical /// register references and actual offsets. void PEI::replaceFrameIndices(MachineFunction &MF) { const auto &ST = MF.getSubtarget(); const TargetFrameLowering &TFI = *ST.getFrameLowering(); if (!TFI.needsFrameIndexResolution(MF)) return; const TargetRegisterInfo *TRI = ST.getRegisterInfo(); // Allow the target to determine this after knowing the frame size. FrameIndexEliminationScavenging = (RS && !FrameIndexVirtualScavenging) || TRI->requiresFrameIndexReplacementScavenging(MF); // Store SPAdj at exit of a basic block. SmallVector SPState; SPState.resize(MF.getNumBlockIDs()); df_iterator_default_set Reachable; // Iterate over the reachable blocks in DFS order. for (auto DFI = df_ext_begin(&MF, Reachable), DFE = df_ext_end(&MF, Reachable); DFI != DFE; ++DFI) { int SPAdj = 0; // Check the exit state of the DFS stack predecessor. if (DFI.getPathLength() >= 2) { MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); assert(Reachable.count(StackPred) && "DFS stack predecessor is already visited.\n"); SPAdj = SPState[StackPred->getNumber()]; } MachineBasicBlock *BB = *DFI; replaceFrameIndices(BB, MF, SPAdj); SPState[BB->getNumber()] = SPAdj; } // Handle the unreachable blocks. for (auto &BB : MF) { if (Reachable.count(&BB)) // Already handled in DFS traversal. continue; int SPAdj = 0; replaceFrameIndices(&BB, MF, SPAdj); } } void PEI::replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &MF, int &SPAdj) { assert(MF.getSubtarget().getRegisterInfo() && "getRegisterInfo() must be implemented!"); const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); if (RS && FrameIndexEliminationScavenging) RS->enterBasicBlock(*BB); bool InsideCallSequence = false; for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) { if (TII.isFrameInstr(*I)) { InsideCallSequence = TII.isFrameSetup(*I); SPAdj += TII.getSPAdjust(*I); I = TFI->eliminateCallFramePseudoInstr(MF, *BB, I); continue; } MachineInstr &MI = *I; bool DoIncr = true; bool DidFinishLoop = true; for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { if (!MI.getOperand(i).isFI()) continue; // Frame indices in debug values are encoded in a target independent // way with simply the frame index and offset rather than any // target-specific addressing mode. if (MI.isDebugValue()) { MachineOperand &Op = MI.getOperand(i); assert( MI.isDebugOperand(&Op) && "Frame indices can only appear as a debug operand in a DBG_VALUE*" " machine instruction"); Register Reg; unsigned FrameIdx = Op.getIndex(); unsigned Size = MF.getFrameInfo().getObjectSize(FrameIdx); StackOffset Offset = TFI->getFrameIndexReference(MF, FrameIdx, Reg); Op.ChangeToRegister(Reg, false /*isDef*/); const DIExpression *DIExpr = MI.getDebugExpression(); // If we have a direct DBG_VALUE, and its location expression isn't // currently complex, then adding an offset will morph it into a // complex location that is interpreted as being a memory address. // This changes a pointer-valued variable to dereference that pointer, // which is incorrect. Fix by adding DW_OP_stack_value. if (MI.isNonListDebugValue()) { unsigned PrependFlags = DIExpression::ApplyOffset; if (!MI.isIndirectDebugValue() && !DIExpr->isComplex()) PrependFlags |= DIExpression::StackValue; // If we have DBG_VALUE that is indirect and has a Implicit location // expression need to insert a deref before prepending a Memory // location expression. Also after doing this we change the DBG_VALUE // to be direct. if (MI.isIndirectDebugValue() && DIExpr->isImplicit()) { SmallVector Ops = {dwarf::DW_OP_deref_size, Size}; bool WithStackValue = true; DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); // Make the DBG_VALUE direct. MI.getDebugOffset().ChangeToRegister(0, false); } DIExpr = TRI.prependOffsetExpression(DIExpr, PrependFlags, Offset); } else { // The debug operand at DebugOpIndex was a frame index at offset // `Offset`; now the operand has been replaced with the frame // register, we must add Offset with `register x, plus Offset`. unsigned DebugOpIndex = MI.getDebugOperandIndex(&Op); SmallVector Ops; TRI.getOffsetOpcodes(Offset, Ops); DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, DebugOpIndex); } MI.getDebugExpressionOp().setMetadata(DIExpr); continue; } else if (MI.isDebugPHI()) { // Allow stack ref to continue onwards. continue; } // TODO: This code should be commoned with the code for // PATCHPOINT. There's no good reason for the difference in // implementation other than historical accident. The only // remaining difference is the unconditional use of the stack // pointer as the base register. if (MI.getOpcode() == TargetOpcode::STATEPOINT) { assert((!MI.isDebugValue() || i == 0) && "Frame indicies can only appear as the first operand of a " "DBG_VALUE machine instruction"); Register Reg; MachineOperand &Offset = MI.getOperand(i + 1); StackOffset refOffset = TFI->getFrameIndexReferencePreferSP( MF, MI.getOperand(i).getIndex(), Reg, /*IgnoreSPUpdates*/ false); assert(!refOffset.getScalable() && "Frame offsets with a scalable component are not supported"); Offset.setImm(Offset.getImm() + refOffset.getFixed() + SPAdj); MI.getOperand(i).ChangeToRegister(Reg, false /*isDef*/); continue; } // Some instructions (e.g. inline asm instructions) can have // multiple frame indices and/or cause eliminateFrameIndex // to insert more than one instruction. We need the register // scavenger to go through all of these instructions so that // it can update its register information. We keep the // iterator at the point before insertion so that we can // revisit them in full. bool AtBeginning = (I == BB->begin()); if (!AtBeginning) --I; // If this instruction has a FrameIndex operand, we need to // use that target machine register info object to eliminate // it. TRI.eliminateFrameIndex(MI, SPAdj, i, FrameIndexEliminationScavenging ? RS : nullptr); // Reset the iterator if we were at the beginning of the BB. if (AtBeginning) { I = BB->begin(); DoIncr = false; } DidFinishLoop = false; break; } // If we are looking at a call sequence, we need to keep track of // the SP adjustment made by each instruction in the sequence. // This includes both the frame setup/destroy pseudos (handled above), // as well as other instructions that have side effects w.r.t the SP. // Note that this must come after eliminateFrameIndex, because // if I itself referred to a frame index, we shouldn't count its own // adjustment. if (DidFinishLoop && InsideCallSequence) SPAdj += TII.getSPAdjust(MI); if (DoIncr && I != BB->end()) ++I; // Update register states. if (RS && FrameIndexEliminationScavenging && DidFinishLoop) RS->forward(MI); } }