//===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/ModuloSchedule.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/InitializePasses.h" #include "llvm/MC/MCContext.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #define DEBUG_TYPE "pipeliner" using namespace llvm; void ModuloSchedule::print(raw_ostream &OS) { for (MachineInstr *MI : ScheduledInstrs) OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI; } //===----------------------------------------------------------------------===// // ModuloScheduleExpander implementation //===----------------------------------------------------------------------===// /// Return the register values for the operands of a Phi instruction. /// This function assume the instruction is a Phi. static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, unsigned &InitVal, unsigned &LoopVal) { assert(Phi.isPHI() && "Expecting a Phi."); InitVal = 0; LoopVal = 0; for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) if (Phi.getOperand(i + 1).getMBB() != Loop) InitVal = Phi.getOperand(i).getReg(); else LoopVal = Phi.getOperand(i).getReg(); assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); } /// Return the Phi register value that comes from the incoming block. static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) if (Phi.getOperand(i + 1).getMBB() != LoopBB) return Phi.getOperand(i).getReg(); return 0; } /// Return the Phi register value that comes the loop block. static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) if (Phi.getOperand(i + 1).getMBB() == LoopBB) return Phi.getOperand(i).getReg(); return 0; } void ModuloScheduleExpander::expand() { BB = Schedule.getLoop()->getTopBlock(); Preheader = *BB->pred_begin(); if (Preheader == BB) Preheader = *std::next(BB->pred_begin()); // Iterate over the definitions in each instruction, and compute the // stage difference for each use. Keep the maximum value. for (MachineInstr *MI : Schedule.getInstructions()) { int DefStage = Schedule.getStage(MI); for (const MachineOperand &Op : MI->operands()) { if (!Op.isReg() || !Op.isDef()) continue; Register Reg = Op.getReg(); unsigned MaxDiff = 0; bool PhiIsSwapped = false; for (MachineOperand &UseOp : MRI.use_operands(Reg)) { MachineInstr *UseMI = UseOp.getParent(); int UseStage = Schedule.getStage(UseMI); unsigned Diff = 0; if (UseStage != -1 && UseStage >= DefStage) Diff = UseStage - DefStage; if (MI->isPHI()) { if (isLoopCarried(*MI)) ++Diff; else PhiIsSwapped = true; } MaxDiff = std::max(Diff, MaxDiff); } RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); } } generatePipelinedLoop(); } void ModuloScheduleExpander::generatePipelinedLoop() { LoopInfo = TII->analyzeLoopForPipelining(BB); assert(LoopInfo && "Must be able to analyze loop!"); // Create a new basic block for the kernel and add it to the CFG. MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); unsigned MaxStageCount = Schedule.getNumStages() - 1; // Remember the registers that are used in different stages. The index is // the iteration, or stage, that the instruction is scheduled in. This is // a map between register names in the original block and the names created // in each stage of the pipelined loop. ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; InstrMapTy InstrMap; SmallVector PrologBBs; // Generate the prolog instructions that set up the pipeline. generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs); MF.insert(BB->getIterator(), KernelBB); // Rearrange the instructions to generate the new, pipelined loop, // and update register names as needed. for (MachineInstr *CI : Schedule.getInstructions()) { if (CI->isPHI()) continue; unsigned StageNum = Schedule.getStage(CI); MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum); updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap); KernelBB->push_back(NewMI); InstrMap[NewMI] = CI; } // Copy any terminator instructions to the new kernel, and update // names as needed. for (MachineInstr &MI : BB->terminators()) { MachineInstr *NewMI = MF.CloneMachineInstr(&MI); updateInstruction(NewMI, false, MaxStageCount, 0, VRMap); KernelBB->push_back(NewMI); InstrMap[NewMI] = &MI; } NewKernel = KernelBB; KernelBB->transferSuccessors(BB); KernelBB->replaceSuccessor(BB, KernelBB); generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap, MaxStageCount, MaxStageCount, false); generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap, MaxStageCount, MaxStageCount, false); LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); SmallVector EpilogBBs; // Generate the epilog instructions to complete the pipeline. generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs); // We need this step because the register allocation doesn't handle some // situations well, so we insert copies to help out. splitLifetimes(KernelBB, EpilogBBs); // Remove dead instructions due to loop induction variables. removeDeadInstructions(KernelBB, EpilogBBs); // Add branches between prolog and epilog blocks. addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap); delete[] VRMap; } void ModuloScheduleExpander::cleanup() { // Remove the original loop since it's no longer referenced. for (auto &I : *BB) LIS.RemoveMachineInstrFromMaps(I); BB->clear(); BB->eraseFromParent(); } /// Generate the pipeline prolog code. void ModuloScheduleExpander::generateProlog(unsigned LastStage, MachineBasicBlock *KernelBB, ValueMapTy *VRMap, MBBVectorTy &PrologBBs) { MachineBasicBlock *PredBB = Preheader; InstrMapTy InstrMap; // Generate a basic block for each stage, not including the last stage, // which will be generated in the kernel. Each basic block may contain // instructions from multiple stages/iterations. for (unsigned i = 0; i < LastStage; ++i) { // Create and insert the prolog basic block prior to the original loop // basic block. The original loop is removed later. MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); PrologBBs.push_back(NewBB); MF.insert(BB->getIterator(), NewBB); NewBB->transferSuccessors(PredBB); PredBB->addSuccessor(NewBB); PredBB = NewBB; // Generate instructions for each appropriate stage. Process instructions // in original program order. for (int StageNum = i; StageNum >= 0; --StageNum) { for (MachineBasicBlock::iterator BBI = BB->instr_begin(), BBE = BB->getFirstTerminator(); BBI != BBE; ++BBI) { if (Schedule.getStage(&*BBI) == StageNum) { if (BBI->isPHI()) continue; MachineInstr *NewMI = cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum); updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap); NewBB->push_back(NewMI); InstrMap[NewMI] = &*BBI; } } } rewritePhiValues(NewBB, i, VRMap, InstrMap); LLVM_DEBUG({ dbgs() << "prolog:\n"; NewBB->dump(); }); } PredBB->replaceSuccessor(BB, KernelBB); // Check if we need to remove the branch from the preheader to the original // loop, and replace it with a branch to the new loop. unsigned numBranches = TII->removeBranch(*Preheader); if (numBranches) { SmallVector Cond; TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc()); } } /// Generate the pipeline epilog code. The epilog code finishes the iterations /// that were started in either the prolog or the kernel. We create a basic /// block for each stage that needs to complete. void ModuloScheduleExpander::generateEpilog(unsigned LastStage, MachineBasicBlock *KernelBB, ValueMapTy *VRMap, MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs) { // We need to change the branch from the kernel to the first epilog block, so // this call to analyze branch uses the kernel rather than the original BB. MachineBasicBlock *TBB = nullptr, *FBB = nullptr; SmallVector Cond; bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); assert(!checkBranch && "generateEpilog must be able to analyze the branch"); if (checkBranch) return; MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); if (*LoopExitI == KernelBB) ++LoopExitI; assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); MachineBasicBlock *LoopExitBB = *LoopExitI; MachineBasicBlock *PredBB = KernelBB; MachineBasicBlock *EpilogStart = LoopExitBB; InstrMapTy InstrMap; // Generate a basic block for each stage, not including the last stage, // which was generated for the kernel. Each basic block may contain // instructions from multiple stages/iterations. int EpilogStage = LastStage + 1; for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); EpilogBBs.push_back(NewBB); MF.insert(BB->getIterator(), NewBB); PredBB->replaceSuccessor(LoopExitBB, NewBB); NewBB->addSuccessor(LoopExitBB); if (EpilogStart == LoopExitBB) EpilogStart = NewBB; // Add instructions to the epilog depending on the current block. // Process instructions in original program order. for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { for (auto &BBI : *BB) { if (BBI.isPHI()) continue; MachineInstr *In = &BBI; if ((unsigned)Schedule.getStage(In) == StageNum) { // Instructions with memoperands in the epilog are updated with // conservative values. MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap); NewBB->push_back(NewMI); InstrMap[NewMI] = In; } } } generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap, LastStage, EpilogStage, i == 1); generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap, LastStage, EpilogStage, i == 1); PredBB = NewBB; LLVM_DEBUG({ dbgs() << "epilog:\n"; NewBB->dump(); }); } // Fix any Phi nodes in the loop exit block. LoopExitBB->replacePhiUsesWith(BB, PredBB); // Create a branch to the new epilog from the kernel. // Remove the original branch and add a new branch to the epilog. TII->removeBranch(*KernelBB); TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); // Add a branch to the loop exit. if (EpilogBBs.size() > 0) { MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); SmallVector Cond1; TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); } } /// Replace all uses of FromReg that appear outside the specified /// basic block with ToReg. static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, MachineBasicBlock *MBB, MachineRegisterInfo &MRI, LiveIntervals &LIS) { for (MachineOperand &O : llvm::make_early_inc_range(MRI.use_operands(FromReg))) if (O.getParent()->getParent() != MBB) O.setReg(ToReg); if (!LIS.hasInterval(ToReg)) LIS.createEmptyInterval(ToReg); } /// Return true if the register has a use that occurs outside the /// specified loop. static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, MachineRegisterInfo &MRI) { for (const MachineOperand &MO : MRI.use_operands(Reg)) if (MO.getParent()->getParent() != BB) return true; return false; } /// Generate Phis for the specific block in the generated pipelined code. /// This function looks at the Phis from the original code to guide the /// creation of new Phis. void ModuloScheduleExpander::generateExistingPhis( MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { // Compute the stage number for the initial value of the Phi, which // comes from the prolog. The prolog to use depends on to which kernel/ // epilog that we're adding the Phi. unsigned PrologStage = 0; unsigned PrevStage = 0; bool InKernel = (LastStageNum == CurStageNum); if (InKernel) { PrologStage = LastStageNum - 1; PrevStage = CurStageNum; } else { PrologStage = LastStageNum - (CurStageNum - LastStageNum); PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; } for (MachineBasicBlock::iterator BBI = BB->instr_begin(), BBE = BB->getFirstNonPHI(); BBI != BBE; ++BBI) { Register Def = BBI->getOperand(0).getReg(); unsigned InitVal = 0; unsigned LoopVal = 0; getPhiRegs(*BBI, BB, InitVal, LoopVal); unsigned PhiOp1 = 0; // The Phi value from the loop body typically is defined in the loop, but // not always. So, we need to check if the value is defined in the loop. unsigned PhiOp2 = LoopVal; if (VRMap[LastStageNum].count(LoopVal)) PhiOp2 = VRMap[LastStageNum][LoopVal]; int StageScheduled = Schedule.getStage(&*BBI); int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal)); unsigned NumStages = getStagesForReg(Def, CurStageNum); if (NumStages == 0) { // We don't need to generate a Phi anymore, but we need to rename any uses // of the Phi value. unsigned NewReg = VRMap[PrevStage][LoopVal]; rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def, InitVal, NewReg); if (VRMap[CurStageNum].count(LoopVal)) VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; } // Adjust the number of Phis needed depending on the number of prologs left, // and the distance from where the Phi is first scheduled. The number of // Phis cannot exceed the number of prolog stages. Each stage can // potentially define two values. unsigned MaxPhis = PrologStage + 2; if (!InKernel && (int)PrologStage <= LoopValStage) MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); unsigned NumPhis = std::min(NumStages, MaxPhis); unsigned NewReg = 0; unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; // In the epilog, we may need to look back one stage to get the correct // Phi name, because the epilog and prolog blocks execute the same stage. // The correct name is from the previous block only when the Phi has // been completely scheduled prior to the epilog, and Phi value is not // needed in multiple stages. int StageDiff = 0; if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && NumPhis == 1) StageDiff = 1; // Adjust the computations below when the phi and the loop definition // are scheduled in different stages. if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) StageDiff = StageScheduled - LoopValStage; for (unsigned np = 0; np < NumPhis; ++np) { // If the Phi hasn't been scheduled, then use the initial Phi operand // value. Otherwise, use the scheduled version of the instruction. This // is a little complicated when a Phi references another Phi. if (np > PrologStage || StageScheduled >= (int)LastStageNum) PhiOp1 = InitVal; // Check if the Phi has already been scheduled in a prolog stage. else if (PrologStage >= AccessStage + StageDiff + np && VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; // Check if the Phi has already been scheduled, but the loop instruction // is either another Phi, or doesn't occur in the loop. else if (PrologStage >= AccessStage + StageDiff + np) { // If the Phi references another Phi, we need to examine the other // Phi to get the correct value. PhiOp1 = LoopVal; MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); int Indirects = 1; while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { int PhiStage = Schedule.getStage(InstOp1); if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) PhiOp1 = getInitPhiReg(*InstOp1, BB); else PhiOp1 = getLoopPhiReg(*InstOp1, BB); InstOp1 = MRI.getVRegDef(PhiOp1); int PhiOpStage = Schedule.getStage(InstOp1); int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; break; } ++Indirects; } } else PhiOp1 = InitVal; // If this references a generated Phi in the kernel, get the Phi operand // from the incoming block. if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); // In the epilog, a map lookup is needed to get the value from the kernel, // or previous epilog block. How is does this depends on if the // instruction is scheduled in the previous block. if (!InKernel) { int StageDiffAdj = 0; if (LoopValStage != -1 && StageScheduled > LoopValStage) StageDiffAdj = StageScheduled - LoopValStage; // Use the loop value defined in the kernel, unless the kernel // contains the last definition of the Phi. if (np == 0 && PrevStage == LastStageNum && (StageScheduled != 0 || LoopValStage != 0) && VRMap[PrevStage - StageDiffAdj].count(LoopVal)) PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; // Use the value defined by the Phi. We add one because we switch // from looking at the loop value to the Phi definition. else if (np > 0 && PrevStage == LastStageNum && VRMap[PrevStage - np + 1].count(Def)) PhiOp2 = VRMap[PrevStage - np + 1][Def]; // Use the loop value defined in the kernel. else if (static_cast(LoopValStage) > PrologStage + 1 && VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; // Use the value defined by the Phi, unless we're generating the first // epilog and the Phi refers to a Phi in a different stage. else if (VRMap[PrevStage - np].count(Def) && (!LoopDefIsPhi || (PrevStage != LastStageNum) || (LoopValStage == StageScheduled))) PhiOp2 = VRMap[PrevStage - np][Def]; } // Check if we can reuse an existing Phi. This occurs when a Phi // references another Phi, and the other Phi is scheduled in an // earlier stage. We can try to reuse an existing Phi up until the last // stage of the current Phi. if (LoopDefIsPhi) { if (static_cast(PrologStage - np) >= StageScheduled) { int LVNumStages = getStagesForPhi(LoopVal); int StageDiff = (StageScheduled - LoopValStage); LVNumStages -= StageDiff; // Make sure the loop value Phi has been processed already. if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { NewReg = PhiOp2; unsigned ReuseStage = CurStageNum; if (isLoopCarried(*PhiInst)) ReuseStage -= LVNumStages; // Check if the Phi to reuse has been generated yet. If not, then // there is nothing to reuse. if (VRMap[ReuseStage - np].count(LoopVal)) { NewReg = VRMap[ReuseStage - np][LoopVal]; rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, NewReg); // Update the map with the new Phi name. VRMap[CurStageNum - np][Def] = NewReg; PhiOp2 = NewReg; if (VRMap[LastStageNum - np - 1].count(LoopVal)) PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; if (IsLast && np == NumPhis - 1) replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); continue; } } } if (InKernel && StageDiff > 0 && VRMap[CurStageNum - StageDiff - np].count(LoopVal)) PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; } const TargetRegisterClass *RC = MRI.getRegClass(Def); NewReg = MRI.createVirtualRegister(RC); MachineInstrBuilder NewPhi = BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), NewReg); NewPhi.addReg(PhiOp1).addMBB(BB1); NewPhi.addReg(PhiOp2).addMBB(BB2); if (np == 0) InstrMap[NewPhi] = &*BBI; // We define the Phis after creating the new pipelined code, so // we need to rename the Phi values in scheduled instructions. unsigned PrevReg = 0; if (InKernel && VRMap[PrevStage - np].count(LoopVal)) PrevReg = VRMap[PrevStage - np][LoopVal]; rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, NewReg, PrevReg); // If the Phi has been scheduled, use the new name for rewriting. if (VRMap[CurStageNum - np].count(Def)) { unsigned R = VRMap[CurStageNum - np][Def]; rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R, NewReg); } // Check if we need to rename any uses that occurs after the loop. The // register to replace depends on whether the Phi is scheduled in the // epilog. if (IsLast && np == NumPhis - 1) replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); // In the kernel, a dependent Phi uses the value from this Phi. if (InKernel) PhiOp2 = NewReg; // Update the map with the new Phi name. VRMap[CurStageNum - np][Def] = NewReg; } while (NumPhis++ < NumStages) { rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def, NewReg, 0); } // Check if we need to rename a Phi that has been eliminated due to // scheduling. if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); } } /// Generate Phis for the specified block in the generated pipelined code. /// These are new Phis needed because the definition is scheduled after the /// use in the pipelined sequence. void ModuloScheduleExpander::generatePhis( MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { // Compute the stage number that contains the initial Phi value, and // the Phi from the previous stage. unsigned PrologStage = 0; unsigned PrevStage = 0; unsigned StageDiff = CurStageNum - LastStageNum; bool InKernel = (StageDiff == 0); if (InKernel) { PrologStage = LastStageNum - 1; PrevStage = CurStageNum; } else { PrologStage = LastStageNum - StageDiff; PrevStage = LastStageNum + StageDiff - 1; } for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), BBE = BB->instr_end(); BBI != BBE; ++BBI) { for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { MachineOperand &MO = BBI->getOperand(i); if (!MO.isReg() || !MO.isDef() || !Register::isVirtualRegister(MO.getReg())) continue; int StageScheduled = Schedule.getStage(&*BBI); assert(StageScheduled != -1 && "Expecting scheduled instruction."); Register Def = MO.getReg(); unsigned NumPhis = getStagesForReg(Def, CurStageNum); // An instruction scheduled in stage 0 and is used after the loop // requires a phi in the epilog for the last definition from either // the kernel or prolog. if (!InKernel && NumPhis == 0 && StageScheduled == 0 && hasUseAfterLoop(Def, BB, MRI)) NumPhis = 1; if (!InKernel && (unsigned)StageScheduled > PrologStage) continue; unsigned PhiOp2 = VRMap[PrevStage][Def]; if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) PhiOp2 = getLoopPhiReg(*InstOp2, BB2); // The number of Phis can't exceed the number of prolog stages. The // prolog stage number is zero based. if (NumPhis > PrologStage + 1 - StageScheduled) NumPhis = PrologStage + 1 - StageScheduled; for (unsigned np = 0; np < NumPhis; ++np) { unsigned PhiOp1 = VRMap[PrologStage][Def]; if (np <= PrologStage) PhiOp1 = VRMap[PrologStage - np][Def]; if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) PhiOp1 = getInitPhiReg(*InstOp1, NewBB); } if (!InKernel) PhiOp2 = VRMap[PrevStage - np][Def]; const TargetRegisterClass *RC = MRI.getRegClass(Def); Register NewReg = MRI.createVirtualRegister(RC); MachineInstrBuilder NewPhi = BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), NewReg); NewPhi.addReg(PhiOp1).addMBB(BB1); NewPhi.addReg(PhiOp2).addMBB(BB2); if (np == 0) InstrMap[NewPhi] = &*BBI; // Rewrite uses and update the map. The actions depend upon whether // we generating code for the kernel or epilog blocks. if (InKernel) { rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1, NewReg); rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2, NewReg); PhiOp2 = NewReg; VRMap[PrevStage - np - 1][Def] = NewReg; } else { VRMap[CurStageNum - np][Def] = NewReg; if (np == NumPhis - 1) rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, NewReg); } if (IsLast && np == NumPhis - 1) replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); } } } } /// Remove instructions that generate values with no uses. /// Typically, these are induction variable operations that generate values /// used in the loop itself. A dead instruction has a definition with /// no uses, or uses that occur in the original loop only. void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs) { // For each epilog block, check that the value defined by each instruction // is used. If not, delete it. for (MachineBasicBlock *MBB : llvm::reverse(EpilogBBs)) for (MachineBasicBlock::reverse_instr_iterator MI = MBB->instr_rbegin(), ME = MBB->instr_rend(); MI != ME;) { // From DeadMachineInstructionElem. Don't delete inline assembly. if (MI->isInlineAsm()) { ++MI; continue; } bool SawStore = false; // Check if it's safe to remove the instruction due to side effects. // We can, and want to, remove Phis here. if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { ++MI; continue; } bool used = true; for (const MachineOperand &MO : MI->operands()) { if (!MO.isReg() || !MO.isDef()) continue; Register reg = MO.getReg(); // Assume physical registers are used, unless they are marked dead. if (Register::isPhysicalRegister(reg)) { used = !MO.isDead(); if (used) break; continue; } unsigned realUses = 0; for (const MachineOperand &U : MRI.use_operands(reg)) { // Check if there are any uses that occur only in the original // loop. If so, that's not a real use. if (U.getParent()->getParent() != BB) { realUses++; used = true; break; } } if (realUses > 0) break; used = false; } if (!used) { LIS.RemoveMachineInstrFromMaps(*MI); MI++->eraseFromParent(); continue; } ++MI; } // In the kernel block, check if we can remove a Phi that generates a value // used in an instruction removed in the epilog block. for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) { Register reg = MI.getOperand(0).getReg(); if (MRI.use_begin(reg) == MRI.use_end()) { LIS.RemoveMachineInstrFromMaps(MI); MI.eraseFromParent(); } } } /// For loop carried definitions, we split the lifetime of a virtual register /// that has uses past the definition in the next iteration. A copy with a new /// virtual register is inserted before the definition, which helps with /// generating a better register assignment. /// /// v1 = phi(a, v2) v1 = phi(a, v2) /// v2 = phi(b, v3) v2 = phi(b, v3) /// v3 = .. v4 = copy v1 /// .. = V1 v3 = .. /// .. = v4 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs) { const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); for (auto &PHI : KernelBB->phis()) { Register Def = PHI.getOperand(0).getReg(); // Check for any Phi definition that used as an operand of another Phi // in the same block. for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), E = MRI.use_instr_end(); I != E; ++I) { if (I->isPHI() && I->getParent() == KernelBB) { // Get the loop carried definition. unsigned LCDef = getLoopPhiReg(PHI, KernelBB); if (!LCDef) continue; MachineInstr *MI = MRI.getVRegDef(LCDef); if (!MI || MI->getParent() != KernelBB || MI->isPHI()) continue; // Search through the rest of the block looking for uses of the Phi // definition. If one occurs, then split the lifetime. unsigned SplitReg = 0; for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), KernelBB->instr_end())) if (BBJ.readsRegister(Def)) { // We split the lifetime when we find the first use. if (SplitReg == 0) { SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); BuildMI(*KernelBB, MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY), SplitReg) .addReg(Def); } BBJ.substituteRegister(Def, SplitReg, 0, *TRI); } if (!SplitReg) continue; // Search through each of the epilog blocks for any uses to be renamed. for (auto &Epilog : EpilogBBs) for (auto &I : *Epilog) if (I.readsRegister(Def)) I.substituteRegister(Def, SplitReg, 0, *TRI); break; } } } } /// Remove the incoming block from the Phis in a basic block. static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { for (MachineInstr &MI : *BB) { if (!MI.isPHI()) break; for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) if (MI.getOperand(i + 1).getMBB() == Incoming) { MI.RemoveOperand(i + 1); MI.RemoveOperand(i); break; } } } /// Create branches from each prolog basic block to the appropriate epilog /// block. These edges are needed if the loop ends before reaching the /// kernel. void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB, MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, ValueMapTy *VRMap) { assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); MachineBasicBlock *LastPro = KernelBB; MachineBasicBlock *LastEpi = KernelBB; // Start from the blocks connected to the kernel and work "out" // to the first prolog and the last epilog blocks. SmallVector PrevInsts; unsigned MaxIter = PrologBBs.size() - 1; for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { // Add branches to the prolog that go to the corresponding // epilog, and the fall-thru prolog/kernel block. MachineBasicBlock *Prolog = PrologBBs[j]; MachineBasicBlock *Epilog = EpilogBBs[i]; SmallVector Cond; Optional StaticallyGreater = LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond); unsigned numAdded = 0; if (!StaticallyGreater.hasValue()) { Prolog->addSuccessor(Epilog); numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); } else if (*StaticallyGreater == false) { Prolog->addSuccessor(Epilog); Prolog->removeSuccessor(LastPro); LastEpi->removeSuccessor(Epilog); numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); removePhis(Epilog, LastEpi); // Remove the blocks that are no longer referenced. if (LastPro != LastEpi) { LastEpi->clear(); LastEpi->eraseFromParent(); } if (LastPro == KernelBB) { LoopInfo->disposed(); NewKernel = nullptr; } LastPro->clear(); LastPro->eraseFromParent(); } else { numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); removePhis(Epilog, Prolog); } LastPro = Prolog; LastEpi = Epilog; for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), E = Prolog->instr_rend(); I != E && numAdded > 0; ++I, --numAdded) updateInstruction(&*I, false, j, 0, VRMap); } if (NewKernel) { LoopInfo->setPreheader(PrologBBs[MaxIter]); LoopInfo->adjustTripCount(-(MaxIter + 1)); } } /// Return true if we can compute the amount the instruction changes /// during each iteration. Set Delta to the amount of the change. bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) { const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); const MachineOperand *BaseOp; int64_t Offset; bool OffsetIsScalable; if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) return false; // FIXME: This algorithm assumes instructions have fixed-size offsets. if (OffsetIsScalable) return false; if (!BaseOp->isReg()) return false; Register BaseReg = BaseOp->getReg(); MachineRegisterInfo &MRI = MF.getRegInfo(); // Check if there is a Phi. If so, get the definition in the loop. MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); if (BaseDef && BaseDef->isPHI()) { BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); BaseDef = MRI.getVRegDef(BaseReg); } if (!BaseDef) return false; int D = 0; if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) return false; Delta = D; return true; } /// Update the memory operand with a new offset when the pipeliner /// generates a new copy of the instruction that refers to a /// different memory location. void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, unsigned Num) { if (Num == 0) return; // If the instruction has memory operands, then adjust the offset // when the instruction appears in different stages. if (NewMI.memoperands_empty()) return; SmallVector NewMMOs; for (MachineMemOperand *MMO : NewMI.memoperands()) { // TODO: Figure out whether isAtomic is really necessary (see D57601). if (MMO->isVolatile() || MMO->isAtomic() || (MMO->isInvariant() && MMO->isDereferenceable()) || (!MMO->getValue())) { NewMMOs.push_back(MMO); continue; } unsigned Delta; if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { int64_t AdjOffset = Delta * Num; NewMMOs.push_back( MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); } else { NewMMOs.push_back( MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); } } NewMI.setMemRefs(MF, NewMMOs); } /// Clone the instruction for the new pipelined loop and update the /// memory operands, if needed. MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); // Check for tied operands in inline asm instructions. This should be handled // elsewhere, but I'm not sure of the best solution. if (OldMI->isInlineAsm()) for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { const auto &MO = OldMI->getOperand(i); if (MO.isReg() && MO.isUse()) break; unsigned UseIdx; if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) NewMI->tieOperands(i, UseIdx); } updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); return NewMI; } /// Clone the instruction for the new pipelined loop. If needed, this /// function updates the instruction using the values saved in the /// InstrChanges structure. MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr( MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); auto It = InstrChanges.find(OldMI); if (It != InstrChanges.end()) { std::pair RegAndOffset = It->second; unsigned BasePos, OffsetPos; if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) return nullptr; int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); if (Schedule.getStage(LoopDef) > (signed)InstStageNum) NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); NewMI->getOperand(OffsetPos).setImm(NewOffset); } updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); return NewMI; } /// Update the machine instruction with new virtual registers. This /// function may change the defintions and/or uses. void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI, bool LastDef, unsigned CurStageNum, unsigned InstrStageNum, ValueMapTy *VRMap) { for (MachineOperand &MO : NewMI->operands()) { if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) continue; Register reg = MO.getReg(); if (MO.isDef()) { // Create a new virtual register for the definition. const TargetRegisterClass *RC = MRI.getRegClass(reg); Register NewReg = MRI.createVirtualRegister(RC); MO.setReg(NewReg); VRMap[CurStageNum][reg] = NewReg; if (LastDef) replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); } else if (MO.isUse()) { MachineInstr *Def = MRI.getVRegDef(reg); // Compute the stage that contains the last definition for instruction. int DefStageNum = Schedule.getStage(Def); unsigned StageNum = CurStageNum; if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { // Compute the difference in stages between the defintion and the use. unsigned StageDiff = (InstrStageNum - DefStageNum); // Make an adjustment to get the last definition. StageNum -= StageDiff; } if (VRMap[StageNum].count(reg)) MO.setReg(VRMap[StageNum][reg]); } } } /// Return the instruction in the loop that defines the register. /// If the definition is a Phi, then follow the Phi operand to /// the instruction in the loop. MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) { SmallPtrSet Visited; MachineInstr *Def = MRI.getVRegDef(Reg); while (Def->isPHI()) { if (!Visited.insert(Def).second) break; for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) if (Def->getOperand(i + 1).getMBB() == BB) { Def = MRI.getVRegDef(Def->getOperand(i).getReg()); break; } } return Def; } /// Return the new name for the value from the previous stage. unsigned ModuloScheduleExpander::getPrevMapVal( unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage, ValueMapTy *VRMap, MachineBasicBlock *BB) { unsigned PrevVal = 0; if (StageNum > PhiStage) { MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) // The name is defined in the previous stage. PrevVal = VRMap[StageNum - 1][LoopVal]; else if (VRMap[StageNum].count(LoopVal)) // The previous name is defined in the current stage when the instruction // order is swapped. PrevVal = VRMap[StageNum][LoopVal]; else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) // The loop value hasn't yet been scheduled. PrevVal = LoopVal; else if (StageNum == PhiStage + 1) // The loop value is another phi, which has not been scheduled. PrevVal = getInitPhiReg(*LoopInst, BB); else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) // The loop value is another phi, which has been scheduled. PrevVal = getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), LoopStage, VRMap, BB); } return PrevVal; } /// Rewrite the Phi values in the specified block to use the mappings /// from the initial operand. Once the Phi is scheduled, we switch /// to using the loop value instead of the Phi value, so those names /// do not need to be rewritten. void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, ValueMapTy *VRMap, InstrMapTy &InstrMap) { for (auto &PHI : BB->phis()) { unsigned InitVal = 0; unsigned LoopVal = 0; getPhiRegs(PHI, BB, InitVal, LoopVal); Register PhiDef = PHI.getOperand(0).getReg(); unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef)); unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal)); unsigned NumPhis = getStagesForPhi(PhiDef); if (NumPhis > StageNum) NumPhis = StageNum; for (unsigned np = 0; np <= NumPhis; ++np) { unsigned NewVal = getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); if (!NewVal) NewVal = InitVal; rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef, NewVal); } } } /// Rewrite a previously scheduled instruction to use the register value /// from the new instruction. Make sure the instruction occurs in the /// basic block, and we don't change the uses in the new instruction. void ModuloScheduleExpander::rewriteScheduledInstr( MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg, unsigned PrevReg) { bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1); int StagePhi = Schedule.getStage(Phi) + PhiNum; // Rewrite uses that have been scheduled already to use the new // Phi register. for (MachineOperand &UseOp : llvm::make_early_inc_range(MRI.use_operands(OldReg))) { MachineInstr *UseMI = UseOp.getParent(); if (UseMI->getParent() != BB) continue; if (UseMI->isPHI()) { if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) continue; if (getLoopPhiReg(*UseMI, BB) != OldReg) continue; } InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); MachineInstr *OrigMI = OrigInstr->second; int StageSched = Schedule.getStage(OrigMI); int CycleSched = Schedule.getCycle(OrigMI); unsigned ReplaceReg = 0; // This is the stage for the scheduled instruction. if (StagePhi == StageSched && Phi->isPHI()) { int CyclePhi = Schedule.getCycle(Phi); if (PrevReg && InProlog) ReplaceReg = PrevReg; else if (PrevReg && !isLoopCarried(*Phi) && (CyclePhi <= CycleSched || OrigMI->isPHI())) ReplaceReg = PrevReg; else ReplaceReg = NewReg; } // The scheduled instruction occurs before the scheduled Phi, and the // Phi is not loop carried. if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi)) ReplaceReg = NewReg; if (StagePhi > StageSched && Phi->isPHI()) ReplaceReg = NewReg; if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) ReplaceReg = NewReg; if (ReplaceReg) { MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); UseOp.setReg(ReplaceReg); } } } bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) { if (!Phi.isPHI()) return false; int DefCycle = Schedule.getCycle(&Phi); int DefStage = Schedule.getStage(&Phi); unsigned InitVal = 0; unsigned LoopVal = 0; getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); MachineInstr *Use = MRI.getVRegDef(LoopVal); if (!Use || Use->isPHI()) return true; int LoopCycle = Schedule.getCycle(Use); int LoopStage = Schedule.getStage(Use); return (LoopCycle > DefCycle) || (LoopStage <= DefStage); } //===----------------------------------------------------------------------===// // PeelingModuloScheduleExpander implementation //===----------------------------------------------------------------------===// // This is a reimplementation of ModuloScheduleExpander that works by creating // a fully correct steady-state kernel and peeling off the prolog and epilogs. //===----------------------------------------------------------------------===// namespace { // Remove any dead phis in MBB. Dead phis either have only one block as input // (in which case they are the identity) or have no uses. void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI, LiveIntervals *LIS, bool KeepSingleSrcPhi = false) { bool Changed = true; while (Changed) { Changed = false; for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) { assert(MI.isPHI()); if (MRI.use_empty(MI.getOperand(0).getReg())) { if (LIS) LIS->RemoveMachineInstrFromMaps(MI); MI.eraseFromParent(); Changed = true; } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) { MRI.constrainRegClass(MI.getOperand(1).getReg(), MRI.getRegClass(MI.getOperand(0).getReg())); MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); if (LIS) LIS->RemoveMachineInstrFromMaps(MI); MI.eraseFromParent(); Changed = true; } } } } /// Rewrites the kernel block in-place to adhere to the given schedule. /// KernelRewriter holds all of the state required to perform the rewriting. class KernelRewriter { ModuloSchedule &S; MachineBasicBlock *BB; MachineBasicBlock *PreheaderBB, *ExitBB; MachineRegisterInfo &MRI; const TargetInstrInfo *TII; LiveIntervals *LIS; // Map from register class to canonical undef register for that class. DenseMap Undefs; // Map from to phi register for all created phis. Note that // this map is only used when InitReg is non-undef. DenseMap, Register> Phis; // Map from LoopReg to phi register where the InitReg is undef. DenseMap UndefPhis; // Reg is used by MI. Return the new register MI should use to adhere to the // schedule. Insert phis as necessary. Register remapUse(Register Reg, MachineInstr &MI); // Insert a phi that carries LoopReg from the loop body and InitReg otherwise. // If InitReg is not given it is chosen arbitrarily. It will either be undef // or will be chosen so as to share another phi. Register phi(Register LoopReg, Optional InitReg = {}, const TargetRegisterClass *RC = nullptr); // Create an undef register of the given register class. Register undef(const TargetRegisterClass *RC); public: KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB, LiveIntervals *LIS = nullptr); void rewrite(); }; } // namespace KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB, LiveIntervals *LIS) : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()), ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()), TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) { PreheaderBB = *BB->pred_begin(); if (PreheaderBB == BB) PreheaderBB = *std::next(BB->pred_begin()); } void KernelRewriter::rewrite() { // Rearrange the loop to be in schedule order. Note that the schedule may // contain instructions that are not owned by the loop block (InstrChanges and // friends), so we gracefully handle unowned instructions and delete any // instructions that weren't in the schedule. auto InsertPt = BB->getFirstTerminator(); MachineInstr *FirstMI = nullptr; for (MachineInstr *MI : S.getInstructions()) { if (MI->isPHI()) continue; if (MI->getParent()) MI->removeFromParent(); BB->insert(InsertPt, MI); if (!FirstMI) FirstMI = MI; } assert(FirstMI && "Failed to find first MI in schedule"); // At this point all of the scheduled instructions are between FirstMI // and the end of the block. Kill from the first non-phi to FirstMI. for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) { if (LIS) LIS->RemoveMachineInstrFromMaps(*I); (I++)->eraseFromParent(); } // Now remap every instruction in the loop. for (MachineInstr &MI : *BB) { if (MI.isPHI() || MI.isTerminator()) continue; for (MachineOperand &MO : MI.uses()) { if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit()) continue; Register Reg = remapUse(MO.getReg(), MI); MO.setReg(Reg); } } EliminateDeadPhis(BB, MRI, LIS); // Ensure a phi exists for all instructions that are either referenced by // an illegal phi or by an instruction outside the loop. This allows us to // treat remaps of these values the same as "normal" values that come from // loop-carried phis. for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) { if (MI->isPHI()) { Register R = MI->getOperand(0).getReg(); phi(R); continue; } for (MachineOperand &Def : MI->defs()) { for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) { if (MI.getParent() != BB) { phi(Def.getReg()); break; } } } } } Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) { MachineInstr *Producer = MRI.getUniqueVRegDef(Reg); if (!Producer) return Reg; int ConsumerStage = S.getStage(&MI); if (!Producer->isPHI()) { // Non-phi producers are simple to remap. Insert as many phis as the // difference between the consumer and producer stages. if (Producer->getParent() != BB) // Producer was not inside the loop. Use the register as-is. return Reg; int ProducerStage = S.getStage(Producer); assert(ConsumerStage != -1 && "In-loop consumer should always be scheduled!"); assert(ConsumerStage >= ProducerStage); unsigned StageDiff = ConsumerStage - ProducerStage; for (unsigned I = 0; I < StageDiff; ++I) Reg = phi(Reg); return Reg; } // First, dive through the phi chain to find the defaults for the generated // phis. SmallVector, 4> Defaults; Register LoopReg = Reg; auto LoopProducer = Producer; while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) { LoopReg = getLoopPhiReg(*LoopProducer, BB); Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB)); LoopProducer = MRI.getUniqueVRegDef(LoopReg); assert(LoopProducer); } int LoopProducerStage = S.getStage(LoopProducer); Optional IllegalPhiDefault; if (LoopProducerStage == -1) { // Do nothing. } else if (LoopProducerStage > ConsumerStage) { // This schedule is only representable if ProducerStage == ConsumerStage+1. // In addition, Consumer's cycle must be scheduled after Producer in the // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP // functions. #ifndef NDEBUG // Silence unused variables in non-asserts mode. int LoopProducerCycle = S.getCycle(LoopProducer); int ConsumerCycle = S.getCycle(&MI); #endif assert(LoopProducerCycle <= ConsumerCycle); assert(LoopProducerStage == ConsumerStage + 1); // Peel off the first phi from Defaults and insert a phi between producer // and consumer. This phi will not be at the front of the block so we // consider it illegal. It will only exist during the rewrite process; it // needs to exist while we peel off prologs because these could take the // default value. After that we can replace all uses with the loop producer // value. IllegalPhiDefault = Defaults.front(); Defaults.erase(Defaults.begin()); } else { assert(ConsumerStage >= LoopProducerStage); int StageDiff = ConsumerStage - LoopProducerStage; if (StageDiff > 0) { LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size() << " to " << (Defaults.size() + StageDiff) << "\n"); // If we need more phis than we have defaults for, pad out with undefs for // the earliest phis, which are at the end of the defaults chain (the // chain is in reverse order). Defaults.resize(Defaults.size() + StageDiff, Defaults.empty() ? Optional() : Defaults.back()); } } // Now we know the number of stages to jump back, insert the phi chain. auto DefaultI = Defaults.rbegin(); while (DefaultI != Defaults.rend()) LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg)); if (IllegalPhiDefault.hasValue()) { // The consumer optionally consumes LoopProducer in the same iteration // (because the producer is scheduled at an earlier cycle than the consumer) // or the initial value. To facilitate this we create an illegal block here // by embedding a phi in the middle of the block. We will fix this up // immediately prior to pruning. auto RC = MRI.getRegClass(Reg); Register R = MRI.createVirtualRegister(RC); MachineInstr *IllegalPhi = BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R) .addReg(IllegalPhiDefault.getValue()) .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect. .addReg(LoopReg) .addMBB(BB); // Block choice is arbitrary and has no effect. // Illegal phi should belong to the producer stage so that it can be // filtered correctly during peeling. S.setStage(IllegalPhi, LoopProducerStage); return R; } return LoopReg; } Register KernelRewriter::phi(Register LoopReg, Optional InitReg, const TargetRegisterClass *RC) { // If the init register is not undef, try and find an existing phi. if (InitReg.hasValue()) { auto I = Phis.find({LoopReg, InitReg.getValue()}); if (I != Phis.end()) return I->second; } else { for (auto &KV : Phis) { if (KV.first.first == LoopReg) return KV.second; } } // InitReg is either undef or no existing phi takes InitReg as input. Try and // find a phi that takes undef as input. auto I = UndefPhis.find(LoopReg); if (I != UndefPhis.end()) { Register R = I->second; if (!InitReg.hasValue()) // Found a phi taking undef as input, and this input is undef so return // without any more changes. return R; // Found a phi taking undef as input, so rewrite it to take InitReg. MachineInstr *MI = MRI.getVRegDef(R); MI->getOperand(1).setReg(InitReg.getValue()); Phis.insert({{LoopReg, InitReg.getValue()}, R}); MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue())); UndefPhis.erase(I); return R; } // Failed to find any existing phi to reuse, so create a new one. if (!RC) RC = MRI.getRegClass(LoopReg); Register R = MRI.createVirtualRegister(RC); if (InitReg.hasValue()) MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R) .addReg(InitReg.hasValue() ? *InitReg : undef(RC)) .addMBB(PreheaderBB) .addReg(LoopReg) .addMBB(BB); if (!InitReg.hasValue()) UndefPhis[LoopReg] = R; else Phis[{LoopReg, *InitReg}] = R; return R; } Register KernelRewriter::undef(const TargetRegisterClass *RC) { Register &R = Undefs[RC]; if (R == 0) { // Create an IMPLICIT_DEF that defines this register if we need it. // All uses of this should be removed by the time we have finished unrolling // prologs and epilogs. R = MRI.createVirtualRegister(RC); auto *InsertBB = &PreheaderBB->getParent()->front(); BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(), TII->get(TargetOpcode::IMPLICIT_DEF), R); } return R; } namespace { /// Describes an operand in the kernel of a pipelined loop. Characteristics of /// the operand are discovered, such as how many in-loop PHIs it has to jump /// through and defaults for these phis. class KernelOperandInfo { MachineBasicBlock *BB; MachineRegisterInfo &MRI; SmallVector PhiDefaults; MachineOperand *Source; MachineOperand *Target; public: KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI, const SmallPtrSetImpl &IllegalPhis) : MRI(MRI) { Source = MO; BB = MO->getParent()->getParent(); while (isRegInLoop(MO)) { MachineInstr *MI = MRI.getVRegDef(MO->getReg()); if (MI->isFullCopy()) { MO = &MI->getOperand(1); continue; } if (!MI->isPHI()) break; // If this is an illegal phi, don't count it in distance. if (IllegalPhis.count(MI)) { MO = &MI->getOperand(3); continue; } Register Default = getInitPhiReg(*MI, BB); MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1) : &MI->getOperand(3); PhiDefaults.push_back(Default); } Target = MO; } bool operator==(const KernelOperandInfo &Other) const { return PhiDefaults.size() == Other.PhiDefaults.size(); } void print(raw_ostream &OS) const { OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in " << *Source->getParent(); } private: bool isRegInLoop(MachineOperand *MO) { return MO->isReg() && MO->getReg().isVirtual() && MRI.getVRegDef(MO->getReg())->getParent() == BB; } }; } // namespace MachineBasicBlock * PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) { MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII); if (LPD == LPD_Front) PeeledFront.push_back(NewBB); else PeeledBack.push_front(NewBB); for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator(); ++I, ++NI) { CanonicalMIs[&*I] = &*I; CanonicalMIs[&*NI] = &*I; BlockMIs[{NewBB, &*I}] = &*NI; BlockMIs[{BB, &*I}] = &*I; } return NewBB; } void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB, int MinStage) { for (auto I = MB->getFirstInstrTerminator()->getReverseIterator(); I != std::next(MB->getFirstNonPHI()->getReverseIterator());) { MachineInstr *MI = &*I++; int Stage = getStage(MI); if (Stage == -1 || Stage >= MinStage) continue; for (MachineOperand &DefMO : MI->defs()) { SmallVector, 4> Subs; for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { // Only PHIs can use values from this block by construction. // Match with the equivalent PHI in B. assert(UseMI.isPHI()); Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), MI->getParent()); Subs.emplace_back(&UseMI, Reg); } for (auto &Sub : Subs) Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, *MRI.getTargetRegisterInfo()); } if (LIS) LIS->RemoveMachineInstrFromMaps(*MI); MI->eraseFromParent(); } } void PeelingModuloScheduleExpander::moveStageBetweenBlocks( MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) { auto InsertPt = DestBB->getFirstNonPHI(); DenseMap Remaps; for (MachineInstr &MI : llvm::make_early_inc_range( llvm::make_range(SourceBB->getFirstNonPHI(), SourceBB->end()))) { if (MI.isPHI()) { // This is an illegal PHI. If we move any instructions using an illegal // PHI, we need to create a legal Phi. if (getStage(&MI) != Stage) { // The legal Phi is not necessary if the illegal phi's stage // is being moved. Register PhiR = MI.getOperand(0).getReg(); auto RC = MRI.getRegClass(PhiR); Register NR = MRI.createVirtualRegister(RC); MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), NR) .addReg(PhiR) .addMBB(SourceBB); BlockMIs[{DestBB, CanonicalMIs[&MI]}] = NI; CanonicalMIs[NI] = CanonicalMIs[&MI]; Remaps[PhiR] = NR; } } if (getStage(&MI) != Stage) continue; MI.removeFromParent(); DestBB->insert(InsertPt, &MI); auto *KernelMI = CanonicalMIs[&MI]; BlockMIs[{DestBB, KernelMI}] = &MI; BlockMIs.erase({SourceBB, KernelMI}); } SmallVector PhiToDelete; for (MachineInstr &MI : DestBB->phis()) { assert(MI.getNumOperands() == 3); MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg()); // If the instruction referenced by the phi is moved inside the block // we don't need the phi anymore. if (getStage(Def) == Stage) { Register PhiReg = MI.getOperand(0).getReg(); assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1); MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); MI.getOperand(0).setReg(PhiReg); PhiToDelete.push_back(&MI); } } for (auto *P : PhiToDelete) P->eraseFromParent(); InsertPt = DestBB->getFirstNonPHI(); // Helper to clone Phi instructions into the destination block. We clone Phi // greedily to avoid combinatorial explosion of Phi instructions. auto clonePhi = [&](MachineInstr *Phi) { MachineInstr *NewMI = MF.CloneMachineInstr(Phi); DestBB->insert(InsertPt, NewMI); Register OrigR = Phi->getOperand(0).getReg(); Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR)); NewMI->getOperand(0).setReg(R); NewMI->getOperand(1).setReg(OrigR); NewMI->getOperand(2).setMBB(*DestBB->pred_begin()); Remaps[OrigR] = R; CanonicalMIs[NewMI] = CanonicalMIs[Phi]; BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI; PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi]; return R; }; for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) { for (MachineOperand &MO : I->uses()) { if (!MO.isReg()) continue; if (Remaps.count(MO.getReg())) MO.setReg(Remaps[MO.getReg()]); else { // If we are using a phi from the source block we need to add a new phi // pointing to the old one. MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg()); if (Use && Use->isPHI() && Use->getParent() == SourceBB) { Register R = clonePhi(Use); MO.setReg(R); } } } } } Register PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi, MachineInstr *Phi) { unsigned distance = PhiNodeLoopIteration[Phi]; MachineInstr *CanonicalUse = CanonicalPhi; Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg(); for (unsigned I = 0; I < distance; ++I) { assert(CanonicalUse->isPHI()); assert(CanonicalUse->getNumOperands() == 5); unsigned LoopRegIdx = 3, InitRegIdx = 1; if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent()) std::swap(LoopRegIdx, InitRegIdx); CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg(); CanonicalUse = MRI.getVRegDef(CanonicalUseReg); } return CanonicalUseReg; } void PeelingModuloScheduleExpander::peelPrologAndEpilogs() { BitVector LS(Schedule.getNumStages(), true); BitVector AS(Schedule.getNumStages(), true); LiveStages[BB] = LS; AvailableStages[BB] = AS; // Peel out the prologs. LS.reset(); for (int I = 0; I < Schedule.getNumStages() - 1; ++I) { LS[I] = true; Prologs.push_back(peelKernel(LPD_Front)); LiveStages[Prologs.back()] = LS; AvailableStages[Prologs.back()] = LS; } // Create a block that will end up as the new loop exiting block (dominated by // all prologs and epilogs). It will only contain PHIs, in the same order as // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property // that the exiting block is a (sub) clone of BB. This in turn gives us the // property that any value deffed in BB but used outside of BB is used by a // PHI in the exiting block. MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock(); EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true); // Push out the epilogs, again in reverse order. // We can't assume anything about the minumum loop trip count at this point, // so emit a fairly complex epilog. // We first peel number of stages minus one epilogue. Then we remove dead // stages and reorder instructions based on their stage. If we have 3 stages // we generate first: // E0[3, 2, 1] // E1[3', 2'] // E2[3''] // And then we move instructions based on their stages to have: // E0[3] // E1[2, 3'] // E2[1, 2', 3''] // The transformation is legal because we only move instructions past // instructions of a previous loop iteration. for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) { Epilogs.push_back(peelKernel(LPD_Back)); MachineBasicBlock *B = Epilogs.back(); filterInstructions(B, Schedule.getNumStages() - I); // Keep track at which iteration each phi belongs to. We need it to know // what version of the variable to use during prologue/epilogue stitching. EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true); for (MachineInstr &Phi : B->phis()) PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I; } for (size_t I = 0; I < Epilogs.size(); I++) { LS.reset(); for (size_t J = I; J < Epilogs.size(); J++) { int Iteration = J; unsigned Stage = Schedule.getNumStages() - 1 + I - J; // Move stage one block at a time so that Phi nodes are updated correctly. for (size_t K = Iteration; K > I; K--) moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage); LS[Stage] = true; } LiveStages[Epilogs[I]] = LS; AvailableStages[Epilogs[I]] = AS; } // Now we've defined all the prolog and epilog blocks as a fallthrough // sequence, add the edges that will be followed if the loop trip count is // lower than the number of stages (connecting prologs directly with epilogs). auto PI = Prologs.begin(); auto EI = Epilogs.begin(); assert(Prologs.size() == Epilogs.size()); for (; PI != Prologs.end(); ++PI, ++EI) { MachineBasicBlock *Pred = *(*EI)->pred_begin(); (*PI)->addSuccessor(*EI); for (MachineInstr &MI : (*EI)->phis()) { Register Reg = MI.getOperand(1).getReg(); MachineInstr *Use = MRI.getUniqueVRegDef(Reg); if (Use && Use->getParent() == Pred) { MachineInstr *CanonicalUse = CanonicalMIs[Use]; if (CanonicalUse->isPHI()) { // If the use comes from a phi we need to skip as many phi as the // distance between the epilogue and the kernel. Trace through the phi // chain to find the right value. Reg = getPhiCanonicalReg(CanonicalUse, Use); } Reg = getEquivalentRegisterIn(Reg, *PI); } MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false)); MI.addOperand(MachineOperand::CreateMBB(*PI)); } } // Create a list of all blocks in order. SmallVector Blocks; llvm::copy(PeeledFront, std::back_inserter(Blocks)); Blocks.push_back(BB); llvm::copy(PeeledBack, std::back_inserter(Blocks)); // Iterate in reverse order over all instructions, remapping as we go. for (MachineBasicBlock *B : reverse(Blocks)) { for (auto I = B->getFirstInstrTerminator()->getReverseIterator(); I != std::next(B->getFirstNonPHI()->getReverseIterator());) { MachineInstr *MI = &*I++; rewriteUsesOf(MI); } } for (auto *MI : IllegalPhisToDelete) { if (LIS) LIS->RemoveMachineInstrFromMaps(*MI); MI->eraseFromParent(); } IllegalPhisToDelete.clear(); // Now all remapping has been done, we're free to optimize the generated code. for (MachineBasicBlock *B : reverse(Blocks)) EliminateDeadPhis(B, MRI, LIS); EliminateDeadPhis(ExitingBB, MRI, LIS); } MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() { MachineFunction &MF = *BB->getParent(); MachineBasicBlock *Exit = *BB->succ_begin(); if (Exit == BB) Exit = *std::next(BB->succ_begin()); MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); MF.insert(std::next(BB->getIterator()), NewBB); // Clone all phis in BB into NewBB and rewrite. for (MachineInstr &MI : BB->phis()) { auto RC = MRI.getRegClass(MI.getOperand(0).getReg()); Register OldR = MI.getOperand(3).getReg(); Register R = MRI.createVirtualRegister(RC); SmallVector Uses; for (MachineInstr &Use : MRI.use_instructions(OldR)) if (Use.getParent() != BB) Uses.push_back(&Use); for (MachineInstr *Use : Uses) Use->substituteRegister(OldR, R, /*SubIdx=*/0, *MRI.getTargetRegisterInfo()); MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R) .addReg(OldR) .addMBB(BB); BlockMIs[{NewBB, &MI}] = NI; CanonicalMIs[NI] = &MI; } BB->replaceSuccessor(Exit, NewBB); Exit->replacePhiUsesWith(BB, NewBB); NewBB->addSuccessor(Exit); MachineBasicBlock *TBB = nullptr, *FBB = nullptr; SmallVector Cond; bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond); (void)CanAnalyzeBr; assert(CanAnalyzeBr && "Must be able to analyze the loop branch!"); TII->removeBranch(*BB); TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB, Cond, DebugLoc()); TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc()); return NewBB; } Register PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg, MachineBasicBlock *BB) { MachineInstr *MI = MRI.getUniqueVRegDef(Reg); unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg); return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg(); } void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) { if (MI->isPHI()) { // This is an illegal PHI. The loop-carried (desired) value is operand 3, // and it is produced by this block. Register PhiR = MI->getOperand(0).getReg(); Register R = MI->getOperand(3).getReg(); int RMIStage = getStage(MRI.getUniqueVRegDef(R)); if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage)) R = MI->getOperand(1).getReg(); MRI.setRegClass(R, MRI.getRegClass(PhiR)); MRI.replaceRegWith(PhiR, R); // Postpone deleting the Phi as it may be referenced by BlockMIs and used // later to figure out how to remap registers. MI->getOperand(0).setReg(PhiR); IllegalPhisToDelete.push_back(MI); return; } int Stage = getStage(MI); if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 || LiveStages[MI->getParent()].test(Stage)) // Instruction is live, no rewriting to do. return; for (MachineOperand &DefMO : MI->defs()) { SmallVector, 4> Subs; for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { // Only PHIs can use values from this block by construction. // Match with the equivalent PHI in B. assert(UseMI.isPHI()); Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), MI->getParent()); Subs.emplace_back(&UseMI, Reg); } for (auto &Sub : Subs) Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, *MRI.getTargetRegisterInfo()); } if (LIS) LIS->RemoveMachineInstrFromMaps(*MI); MI->eraseFromParent(); } void PeelingModuloScheduleExpander::fixupBranches() { // Work outwards from the kernel. bool KernelDisposed = false; int TC = Schedule.getNumStages() - 1; for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend(); ++PI, ++EI, --TC) { MachineBasicBlock *Prolog = *PI; MachineBasicBlock *Fallthrough = *Prolog->succ_begin(); MachineBasicBlock *Epilog = *EI; SmallVector Cond; TII->removeBranch(*Prolog); Optional StaticallyGreater = LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond); if (!StaticallyGreater.hasValue()) { LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n"); // Dynamically branch based on Cond. TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc()); } else if (*StaticallyGreater == false) { LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n"); // Prolog never falls through; branch to epilog and orphan interior // blocks. Leave it to unreachable-block-elim to clean up. Prolog->removeSuccessor(Fallthrough); for (MachineInstr &P : Fallthrough->phis()) { P.RemoveOperand(2); P.RemoveOperand(1); } TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc()); KernelDisposed = true; } else { LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n"); // Prolog always falls through; remove incoming values in epilog. Prolog->removeSuccessor(Epilog); for (MachineInstr &P : Epilog->phis()) { P.RemoveOperand(4); P.RemoveOperand(3); } } } if (!KernelDisposed) { LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1)); LoopInfo->setPreheader(Prologs.back()); } else { LoopInfo->disposed(); } } void PeelingModuloScheduleExpander::rewriteKernel() { KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); KR.rewrite(); } void PeelingModuloScheduleExpander::expand() { BB = Schedule.getLoop()->getTopBlock(); Preheader = Schedule.getLoop()->getLoopPreheader(); LLVM_DEBUG(Schedule.dump()); LoopInfo = TII->analyzeLoopForPipelining(BB); assert(LoopInfo); rewriteKernel(); peelPrologAndEpilogs(); fixupBranches(); } void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() { BB = Schedule.getLoop()->getTopBlock(); Preheader = Schedule.getLoop()->getLoopPreheader(); // Dump the schedule before we invalidate and remap all its instructions. // Stash it in a string so we can print it if we found an error. std::string ScheduleDump; raw_string_ostream OS(ScheduleDump); Schedule.print(OS); OS.flush(); // First, run the normal ModuleScheduleExpander. We don't support any // InstrChanges. assert(LIS && "Requires LiveIntervals!"); ModuloScheduleExpander MSE(MF, Schedule, *LIS, ModuloScheduleExpander::InstrChangesTy()); MSE.expand(); MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel(); if (!ExpandedKernel) { // The expander optimized away the kernel. We can't do any useful checking. MSE.cleanup(); return; } // Before running the KernelRewriter, re-add BB into the CFG. Preheader->addSuccessor(BB); // Now run the new expansion algorithm. KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); KR.rewrite(); peelPrologAndEpilogs(); // Collect all illegal phis that the new algorithm created. We'll give these // to KernelOperandInfo. SmallPtrSet IllegalPhis; for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) { if (NI->isPHI()) IllegalPhis.insert(&*NI); } // Co-iterate across both kernels. We expect them to be identical apart from // phis and full COPYs (we look through both). SmallVector, 8> KOIs; auto OI = ExpandedKernel->begin(); auto NI = BB->begin(); for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) { while (OI->isPHI() || OI->isFullCopy()) ++OI; while (NI->isPHI() || NI->isFullCopy()) ++NI; assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!"); // Analyze every operand separately. for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin(); OOpI != OI->operands_end(); ++OOpI, ++NOpI) KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis), KernelOperandInfo(&*NOpI, MRI, IllegalPhis)); } bool Failed = false; for (auto &OldAndNew : KOIs) { if (OldAndNew.first == OldAndNew.second) continue; Failed = true; errs() << "Modulo kernel validation error: [\n"; errs() << " [golden] "; OldAndNew.first.print(errs()); errs() << " "; OldAndNew.second.print(errs()); errs() << "]\n"; } if (Failed) { errs() << "Golden reference kernel:\n"; ExpandedKernel->print(errs()); errs() << "New kernel:\n"; BB->print(errs()); errs() << ScheduleDump; report_fatal_error( "Modulo kernel validation (-pipeliner-experimental-cg) failed"); } // Cleanup by removing BB from the CFG again as the original // ModuloScheduleExpander intended. Preheader->removeSuccessor(BB); MSE.cleanup(); } //===----------------------------------------------------------------------===// // ModuloScheduleTestPass implementation //===----------------------------------------------------------------------===// // This pass constructs a ModuloSchedule from its module and runs // ModuloScheduleExpander. // // The module is expected to contain a single-block analyzable loop. // The total order of instructions is taken from the loop as-is. // Instructions are expected to be annotated with a PostInstrSymbol. // This PostInstrSymbol must have the following format: // "Stage=%d Cycle=%d". //===----------------------------------------------------------------------===// namespace { class ModuloScheduleTest : public MachineFunctionPass { public: static char ID; ModuloScheduleTest() : MachineFunctionPass(ID) { initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; void runOnLoop(MachineFunction &MF, MachineLoop &L); void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } }; } // namespace char ModuloScheduleTest::ID = 0; INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test", "Modulo Schedule test pass", false, false) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_DEPENDENCY(LiveIntervals) INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test", "Modulo Schedule test pass", false, false) bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) { MachineLoopInfo &MLI = getAnalysis(); for (auto *L : MLI) { if (L->getTopBlock() != L->getBottomBlock()) continue; runOnLoop(MF, *L); return false; } return false; } static void parseSymbolString(StringRef S, int &Cycle, int &Stage) { std::pair StageAndCycle = getToken(S, "_"); std::pair StageTokenAndValue = getToken(StageAndCycle.first, "-"); std::pair CycleTokenAndValue = getToken(StageAndCycle.second, "-"); if (StageTokenAndValue.first != "Stage" || CycleTokenAndValue.first != "_Cycle") { llvm_unreachable( "Bad post-instr symbol syntax: see comment in ModuloScheduleTest"); return; } StageTokenAndValue.second.drop_front().getAsInteger(10, Stage); CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle); dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n"; } void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) { LiveIntervals &LIS = getAnalysis(); MachineBasicBlock *BB = L.getTopBlock(); dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n"; DenseMap Cycle, Stage; std::vector Instrs; for (MachineInstr &MI : *BB) { if (MI.isTerminator()) continue; Instrs.push_back(&MI); if (MCSymbol *Sym = MI.getPostInstrSymbol()) { dbgs() << "Parsing post-instr symbol for " << MI; parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]); } } ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle), std::move(Stage)); ModuloScheduleExpander MSE( MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy()); MSE.expand(); MSE.cleanup(); } //===----------------------------------------------------------------------===// // ModuloScheduleTestAnnotater implementation //===----------------------------------------------------------------------===// void ModuloScheduleTestAnnotater::annotate() { for (MachineInstr *MI : S.getInstructions()) { SmallVector SV; raw_svector_ostream OS(SV); OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI); MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str()); MI->setPostInstrSymbol(MF, Sym); } }