//===- CalcSpillWeights.cpp -----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/CalcSpillWeights.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/CodeGen/LiveInterval.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/StackMaps.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGen/VirtRegMap.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; #define DEBUG_TYPE "calcspillweights" void VirtRegAuxInfo::calculateSpillWeightsAndHints() { LLVM_DEBUG(dbgs() << "********** Compute Spill Weights **********\n" << "********** Function: " << MF.getName() << '\n'); MachineRegisterInfo &MRI = MF.getRegInfo(); for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { Register Reg = Register::index2VirtReg(I); if (MRI.reg_nodbg_empty(Reg)) continue; calculateSpillWeightAndHint(LIS.getInterval(Reg)); } } // Return the preferred allocation register for reg, given a COPY instruction. Register VirtRegAuxInfo::copyHint(const MachineInstr *MI, unsigned Reg, const TargetRegisterInfo &TRI, const MachineRegisterInfo &MRI) { unsigned Sub, HSub; Register HReg; if (MI->getOperand(0).getReg() == Reg) { Sub = MI->getOperand(0).getSubReg(); HReg = MI->getOperand(1).getReg(); HSub = MI->getOperand(1).getSubReg(); } else { Sub = MI->getOperand(1).getSubReg(); HReg = MI->getOperand(0).getReg(); HSub = MI->getOperand(0).getSubReg(); } if (!HReg) return 0; if (Register::isVirtualRegister(HReg)) return Sub == HSub ? HReg : Register(); const TargetRegisterClass *RC = MRI.getRegClass(Reg); MCRegister CopiedPReg = HSub ? TRI.getSubReg(HReg, HSub) : HReg.asMCReg(); if (RC->contains(CopiedPReg)) return CopiedPReg; // Check if reg:sub matches so that a super register could be hinted. if (Sub) return TRI.getMatchingSuperReg(CopiedPReg, Sub, RC); return 0; } // Check if all values in LI are rematerializable bool VirtRegAuxInfo::isRematerializable(const LiveInterval &LI, const LiveIntervals &LIS, const VirtRegMap &VRM, const TargetInstrInfo &TII) { Register Reg = LI.reg(); Register Original = VRM.getOriginal(Reg); for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end(); I != E; ++I) { const VNInfo *VNI = *I; if (VNI->isUnused()) continue; if (VNI->isPHIDef()) return false; MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); assert(MI && "Dead valno in interval"); // Trace copies introduced by live range splitting. The inline // spiller can rematerialize through these copies, so the spill // weight must reflect this. while (MI->isFullCopy()) { // The copy destination must match the interval register. if (MI->getOperand(0).getReg() != Reg) return false; // Get the source register. Reg = MI->getOperand(1).getReg(); // If the original (pre-splitting) registers match this // copy came from a split. if (!Register::isVirtualRegister(Reg) || VRM.getOriginal(Reg) != Original) return false; // Follow the copy live-in value. const LiveInterval &SrcLI = LIS.getInterval(Reg); LiveQueryResult SrcQ = SrcLI.Query(VNI->def); VNI = SrcQ.valueIn(); assert(VNI && "Copy from non-existing value"); if (VNI->isPHIDef()) return false; MI = LIS.getInstructionFromIndex(VNI->def); assert(MI && "Dead valno in interval"); } if (!TII.isTriviallyReMaterializable(*MI, LIS.getAliasAnalysis())) return false; } return true; } bool VirtRegAuxInfo::isLiveAtStatepointVarArg(LiveInterval &LI) { return any_of(VRM.getRegInfo().reg_operands(LI.reg()), [](MachineOperand &MO) { MachineInstr *MI = MO.getParent(); if (MI->getOpcode() != TargetOpcode::STATEPOINT) return false; return StatepointOpers(MI).getVarIdx() <= MI->getOperandNo(&MO); }); } void VirtRegAuxInfo::calculateSpillWeightAndHint(LiveInterval &LI) { float Weight = weightCalcHelper(LI); // Check if unspillable. if (Weight < 0) return; LI.setWeight(Weight); } float VirtRegAuxInfo::futureWeight(LiveInterval &LI, SlotIndex Start, SlotIndex End) { return weightCalcHelper(LI, &Start, &End); } float VirtRegAuxInfo::weightCalcHelper(LiveInterval &LI, SlotIndex *Start, SlotIndex *End) { MachineRegisterInfo &MRI = MF.getRegInfo(); const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); MachineBasicBlock *MBB = nullptr; MachineLoop *Loop = nullptr; bool IsExiting = false; float TotalWeight = 0; unsigned NumInstr = 0; // Number of instructions using LI SmallPtrSet Visited; std::pair TargetHint = MRI.getRegAllocationHint(LI.reg()); if (LI.isSpillable()) { Register Reg = LI.reg(); Register Original = VRM.getOriginal(Reg); const LiveInterval &OrigInt = LIS.getInterval(Original); // li comes from a split of OrigInt. If OrigInt was marked // as not spillable, make sure the new interval is marked // as not spillable as well. if (!OrigInt.isSpillable()) LI.markNotSpillable(); } // Don't recompute spill weight for an unspillable register. bool IsSpillable = LI.isSpillable(); bool IsLocalSplitArtifact = Start && End; // Do not update future local split artifacts. bool ShouldUpdateLI = !IsLocalSplitArtifact; if (IsLocalSplitArtifact) { MachineBasicBlock *LocalMBB = LIS.getMBBFromIndex(*End); assert(LocalMBB == LIS.getMBBFromIndex(*Start) && "start and end are expected to be in the same basic block"); // Local split artifact will have 2 additional copy instructions and they // will be in the same BB. // localLI = COPY other // ... // other = COPY localLI TotalWeight += LiveIntervals::getSpillWeight(true, false, &MBFI, LocalMBB); TotalWeight += LiveIntervals::getSpillWeight(false, true, &MBFI, LocalMBB); NumInstr += 2; } // CopyHint is a sortable hint derived from a COPY instruction. struct CopyHint { const Register Reg; const float Weight; CopyHint(Register R, float W) : Reg(R), Weight(W) {} bool operator<(const CopyHint &Rhs) const { // Always prefer any physreg hint. if (Reg.isPhysical() != Rhs.Reg.isPhysical()) return Reg.isPhysical(); if (Weight != Rhs.Weight) return (Weight > Rhs.Weight); return Reg.id() < Rhs.Reg.id(); // Tie-breaker. } }; std::set CopyHints; DenseMap Hint; for (MachineRegisterInfo::reg_instr_nodbg_iterator I = MRI.reg_instr_nodbg_begin(LI.reg()), E = MRI.reg_instr_nodbg_end(); I != E;) { MachineInstr *MI = &*(I++); // For local split artifacts, we are interested only in instructions between // the expected start and end of the range. SlotIndex SI = LIS.getInstructionIndex(*MI); if (IsLocalSplitArtifact && ((SI < *Start) || (SI > *End))) continue; NumInstr++; if (MI->isIdentityCopy() || MI->isImplicitDef()) continue; if (!Visited.insert(MI).second) continue; // For terminators that produce values, ask the backend if the register is // not spillable. if (TII.isUnspillableTerminator(MI) && MI->definesRegister(LI.reg())) { LI.markNotSpillable(); return -1.0f; } float Weight = 1.0f; if (IsSpillable) { // Get loop info for mi. if (MI->getParent() != MBB) { MBB = MI->getParent(); Loop = Loops.getLoopFor(MBB); IsExiting = Loop ? Loop->isLoopExiting(MBB) : false; } // Calculate instr weight. bool Reads, Writes; std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg()); Weight = LiveIntervals::getSpillWeight(Writes, Reads, &MBFI, *MI); // Give extra weight to what looks like a loop induction variable update. if (Writes && IsExiting && LIS.isLiveOutOfMBB(LI, MBB)) Weight *= 3; TotalWeight += Weight; } // Get allocation hints from copies. if (!MI->isCopy()) continue; Register HintReg = copyHint(MI, LI.reg(), TRI, MRI); if (!HintReg) continue; // Force hweight onto the stack so that x86 doesn't add hidden precision, // making the comparison incorrectly pass (i.e., 1 > 1 == true??). // // FIXME: we probably shouldn't use floats at all. volatile float HWeight = Hint[HintReg] += Weight; if (HintReg.isVirtual() || MRI.isAllocatable(HintReg)) CopyHints.insert(CopyHint(HintReg, HWeight)); } // Pass all the sorted copy hints to mri. if (ShouldUpdateLI && CopyHints.size()) { // Remove a generic hint if previously added by target. if (TargetHint.first == 0 && TargetHint.second) MRI.clearSimpleHint(LI.reg()); std::set HintedRegs; for (auto &Hint : CopyHints) { if (!HintedRegs.insert(Hint.Reg).second || (TargetHint.first != 0 && Hint.Reg == TargetHint.second)) // Don't add the same reg twice or the target-type hint again. continue; MRI.addRegAllocationHint(LI.reg(), Hint.Reg); } // Weakly boost the spill weight of hinted registers. TotalWeight *= 1.01F; } // If the live interval was already unspillable, leave it that way. if (!IsSpillable) return -1.0; // Mark li as unspillable if all live ranges are tiny and the interval // is not live at any reg mask. If the interval is live at a reg mask // spilling may be required. If li is live as use in statepoint instruction // spilling may be required due to if we mark interval with use in statepoint // as not spillable we are risky to end up with no register to allocate. // At the same time STATEPOINT instruction is perfectly fine to have this // operand on stack, so spilling such interval and folding its load from stack // into instruction itself makes perfect sense. if (ShouldUpdateLI && LI.isZeroLength(LIS.getSlotIndexes()) && !LI.isLiveAtIndexes(LIS.getRegMaskSlots()) && !isLiveAtStatepointVarArg(LI)) { LI.markNotSpillable(); return -1.0; } // If all of the definitions of the interval are re-materializable, // it is a preferred candidate for spilling. // FIXME: this gets much more complicated once we support non-trivial // re-materialization. if (isRematerializable(LI, LIS, VRM, *MF.getSubtarget().getInstrInfo())) TotalWeight *= 0.5F; if (IsLocalSplitArtifact) return normalize(TotalWeight, Start->distance(*End), NumInstr); return normalize(TotalWeight, LI.getSize(), NumInstr); }