//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass transforms simple global variables that never have their address // taken. If obviously true, it marks read/write globals as constant, deletes // variables only stored to, etc. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/GlobalOpt.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/Twine.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueHandle.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/Utils/CtorUtils.h" #include "llvm/Transforms/Utils/Evaluator.h" #include "llvm/Transforms/Utils/GlobalStatus.h" #include "llvm/Transforms/Utils/Local.h" #include #include #include #include using namespace llvm; #define DEBUG_TYPE "globalopt" STATISTIC(NumMarked , "Number of globals marked constant"); STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); STATISTIC(NumDeleted , "Number of globals deleted"); STATISTIC(NumGlobUses , "Number of global uses devirtualized"); STATISTIC(NumLocalized , "Number of globals localized"); STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); STATISTIC(NumNestRemoved , "Number of nest attributes removed"); STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); STATISTIC(NumInternalFunc, "Number of internal functions"); STATISTIC(NumColdCC, "Number of functions marked coldcc"); static cl::opt EnableColdCCStressTest("enable-coldcc-stress-test", cl::desc("Enable stress test of coldcc by adding " "calling conv to all internal functions."), cl::init(false), cl::Hidden); static cl::opt ColdCCRelFreq( "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::desc( "Maximum block frequency, expressed as a percentage of caller's " "entry frequency, for a call site to be considered cold for enabling" "coldcc")); /// Is this global variable possibly used by a leak checker as a root? If so, /// we might not really want to eliminate the stores to it. static bool isLeakCheckerRoot(GlobalVariable *GV) { // A global variable is a root if it is a pointer, or could plausibly contain // a pointer. There are two challenges; one is that we could have a struct // the has an inner member which is a pointer. We recurse through the type to // detect these (up to a point). The other is that we may actually be a union // of a pointer and another type, and so our LLVM type is an integer which // gets converted into a pointer, or our type is an [i8 x #] with a pointer // potentially contained here. if (GV->hasPrivateLinkage()) return false; SmallVector Types; Types.push_back(GV->getValueType()); unsigned Limit = 20; do { Type *Ty = Types.pop_back_val(); switch (Ty->getTypeID()) { default: break; case Type::PointerTyID: return true; case Type::FixedVectorTyID: case Type::ScalableVectorTyID: if (cast(Ty)->getElementType()->isPointerTy()) return true; break; case Type::ArrayTyID: Types.push_back(cast(Ty)->getElementType()); break; case Type::StructTyID: { StructType *STy = cast(Ty); if (STy->isOpaque()) return true; for (StructType::element_iterator I = STy->element_begin(), E = STy->element_end(); I != E; ++I) { Type *InnerTy = *I; if (isa(InnerTy)) return true; if (isa(InnerTy) || isa(InnerTy) || isa(InnerTy)) Types.push_back(InnerTy); } break; } } if (--Limit == 0) return true; } while (!Types.empty()); return false; } /// Given a value that is stored to a global but never read, determine whether /// it's safe to remove the store and the chain of computation that feeds the /// store. static bool IsSafeComputationToRemove( Value *V, function_ref GetTLI) { do { if (isa(V)) return true; if (!V->hasOneUse()) return false; if (isa(V) || isa(V) || isa(V) || isa(V)) return false; if (isAllocationFn(V, GetTLI)) return true; Instruction *I = cast(V); if (I->mayHaveSideEffects()) return false; if (GetElementPtrInst *GEP = dyn_cast(I)) { if (!GEP->hasAllConstantIndices()) return false; } else if (I->getNumOperands() != 1) { return false; } V = I->getOperand(0); } while (true); } /// This GV is a pointer root. Loop over all users of the global and clean up /// any that obviously don't assign the global a value that isn't dynamically /// allocated. static bool CleanupPointerRootUsers(GlobalVariable *GV, function_ref GetTLI) { // A brief explanation of leak checkers. The goal is to find bugs where // pointers are forgotten, causing an accumulating growth in memory // usage over time. The common strategy for leak checkers is to explicitly // allow the memory pointed to by globals at exit. This is popular because it // also solves another problem where the main thread of a C++ program may shut // down before other threads that are still expecting to use those globals. To // handle that case, we expect the program may create a singleton and never // destroy it. bool Changed = false; // If Dead[n].first is the only use of a malloc result, we can delete its // chain of computation and the store to the global in Dead[n].second. SmallVector, 32> Dead; // Constants can't be pointers to dynamically allocated memory. for (User *U : llvm::make_early_inc_range(GV->users())) { if (StoreInst *SI = dyn_cast(U)) { Value *V = SI->getValueOperand(); if (isa(V)) { Changed = true; SI->eraseFromParent(); } else if (Instruction *I = dyn_cast(V)) { if (I->hasOneUse()) Dead.push_back(std::make_pair(I, SI)); } } else if (MemSetInst *MSI = dyn_cast(U)) { if (isa(MSI->getValue())) { Changed = true; MSI->eraseFromParent(); } else if (Instruction *I = dyn_cast(MSI->getValue())) { if (I->hasOneUse()) Dead.push_back(std::make_pair(I, MSI)); } } else if (MemTransferInst *MTI = dyn_cast(U)) { GlobalVariable *MemSrc = dyn_cast(MTI->getSource()); if (MemSrc && MemSrc->isConstant()) { Changed = true; MTI->eraseFromParent(); } else if (Instruction *I = dyn_cast(MemSrc)) { if (I->hasOneUse()) Dead.push_back(std::make_pair(I, MTI)); } } else if (ConstantExpr *CE = dyn_cast(U)) { if (CE->use_empty()) { CE->destroyConstant(); Changed = true; } } else if (Constant *C = dyn_cast(U)) { if (isSafeToDestroyConstant(C)) { C->destroyConstant(); // This could have invalidated UI, start over from scratch. Dead.clear(); CleanupPointerRootUsers(GV, GetTLI); return true; } } } for (int i = 0, e = Dead.size(); i != e; ++i) { if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) { Dead[i].second->eraseFromParent(); Instruction *I = Dead[i].first; do { if (isAllocationFn(I, GetTLI)) break; Instruction *J = dyn_cast(I->getOperand(0)); if (!J) break; I->eraseFromParent(); I = J; } while (true); I->eraseFromParent(); Changed = true; } } return Changed; } /// We just marked GV constant. Loop over all users of the global, cleaning up /// the obvious ones. This is largely just a quick scan over the use list to /// clean up the easy and obvious cruft. This returns true if it made a change. static bool CleanupConstantGlobalUsers(GlobalVariable *GV, const DataLayout &DL) { Constant *Init = GV->getInitializer(); SmallVector WorkList(GV->users()); SmallPtrSet Visited; bool Changed = false; SmallVector MaybeDeadInsts; auto EraseFromParent = [&](Instruction *I) { for (Value *Op : I->operands()) if (auto *OpI = dyn_cast(Op)) MaybeDeadInsts.push_back(OpI); I->eraseFromParent(); Changed = true; }; while (!WorkList.empty()) { User *U = WorkList.pop_back_val(); if (!Visited.insert(U).second) continue; if (auto *BO = dyn_cast(U)) append_range(WorkList, BO->users()); if (auto *ASC = dyn_cast(U)) append_range(WorkList, ASC->users()); else if (auto *GEP = dyn_cast(U)) append_range(WorkList, GEP->users()); else if (auto *LI = dyn_cast(U)) { // A load from a uniform value is always the same, regardless of any // applied offset. Type *Ty = LI->getType(); if (Constant *Res = ConstantFoldLoadFromUniformValue(Init, Ty)) { LI->replaceAllUsesWith(Res); EraseFromParent(LI); continue; } Value *PtrOp = LI->getPointerOperand(); APInt Offset(DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); PtrOp = PtrOp->stripAndAccumulateConstantOffsets( DL, Offset, /* AllowNonInbounds */ true); if (PtrOp == GV) { if (auto *Value = ConstantFoldLoadFromConst(Init, Ty, Offset, DL)) { LI->replaceAllUsesWith(Value); EraseFromParent(LI); } } } else if (StoreInst *SI = dyn_cast(U)) { // Store must be unreachable or storing Init into the global. EraseFromParent(SI); } else if (MemIntrinsic *MI = dyn_cast(U)) { // memset/cpy/mv if (getUnderlyingObject(MI->getRawDest()) == GV) EraseFromParent(MI); } } Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(MaybeDeadInsts); GV->removeDeadConstantUsers(); return Changed; } /// Look at all uses of the global and determine which (offset, type) pairs it /// can be split into. static bool collectSRATypes(DenseMap &Types, GlobalValue *GV, const DataLayout &DL) { SmallVector Worklist; SmallPtrSet Visited; auto AppendUses = [&](Value *V) { for (Use &U : V->uses()) if (Visited.insert(&U).second) Worklist.push_back(&U); }; AppendUses(GV); while (!Worklist.empty()) { Use *U = Worklist.pop_back_val(); User *V = U->getUser(); auto *GEP = dyn_cast(V); if (isa(V) || isa(V) || (GEP && GEP->hasAllConstantIndices())) { AppendUses(V); continue; } if (Value *Ptr = getLoadStorePointerOperand(V)) { // This is storing the global address into somewhere, not storing into // the global. if (isa(V) && U->getOperandNo() == 0) return false; APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset, /* AllowNonInbounds */ true); if (Ptr != GV || Offset.getActiveBits() >= 64) return false; // TODO: We currently require that all accesses at a given offset must // use the same type. This could be relaxed. Type *Ty = getLoadStoreType(V); auto It = Types.try_emplace(Offset.getZExtValue(), Ty).first; if (Ty != It->second) return false; continue; } // Ignore dead constant users. if (auto *C = dyn_cast(V)) { if (!isSafeToDestroyConstant(C)) return false; continue; } // Unknown user. return false; } return true; } /// Copy over the debug info for a variable to its SRA replacements. static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV, uint64_t FragmentOffsetInBits, uint64_t FragmentSizeInBits, uint64_t VarSize) { SmallVector GVs; GV->getDebugInfo(GVs); for (auto *GVE : GVs) { DIVariable *Var = GVE->getVariable(); DIExpression *Expr = GVE->getExpression(); // If the FragmentSize is smaller than the variable, // emit a fragment expression. if (FragmentSizeInBits < VarSize) { if (auto E = DIExpression::createFragmentExpression( Expr, FragmentOffsetInBits, FragmentSizeInBits)) Expr = *E; else return; } auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr); NGV->addDebugInfo(NGVE); } } /// Perform scalar replacement of aggregates on the specified global variable. /// This opens the door for other optimizations by exposing the behavior of the /// program in a more fine-grained way. We have determined that this /// transformation is safe already. We return the first global variable we /// insert so that the caller can reprocess it. static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { assert(GV->hasLocalLinkage()); // Collect types to split into. DenseMap Types; if (!collectSRATypes(Types, GV, DL) || Types.empty()) return nullptr; // Make sure we don't SRA back to the same type. if (Types.size() == 1 && Types.begin()->second == GV->getValueType()) return nullptr; // Don't perform SRA if we would have to split into many globals. if (Types.size() > 16) return nullptr; // Sort by offset. SmallVector, 16> TypesVector; append_range(TypesVector, Types); sort(TypesVector, [](const auto &A, const auto &B) { return A.first < B.first; }); // Check that the types are non-overlapping. uint64_t Offset = 0; for (const auto &Pair : TypesVector) { // Overlaps with previous type. if (Pair.first < Offset) return nullptr; Offset = Pair.first + DL.getTypeAllocSize(Pair.second); } // Some accesses go beyond the end of the global, don't bother. if (Offset > DL.getTypeAllocSize(GV->getValueType())) return nullptr; // Collect initializers for new globals. Constant *OrigInit = GV->getInitializer(); DenseMap Initializers; for (const auto &Pair : Types) { Constant *NewInit = ConstantFoldLoadFromConst(OrigInit, Pair.second, APInt(64, Pair.first), DL); if (!NewInit) { LLVM_DEBUG(dbgs() << "Global SRA: Failed to evaluate initializer of " << *GV << " with type " << *Pair.second << " at offset " << Pair.first << "\n"); return nullptr; } Initializers.insert({Pair.first, NewInit}); } LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); // Get the alignment of the global, either explicit or target-specific. Align StartAlignment = DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType()); uint64_t VarSize = DL.getTypeSizeInBits(GV->getValueType()); // Create replacement globals. DenseMap NewGlobals; unsigned NameSuffix = 0; for (auto &Pair : TypesVector) { uint64_t Offset = Pair.first; Type *Ty = Pair.second; GlobalVariable *NGV = new GlobalVariable( *GV->getParent(), Ty, false, GlobalVariable::InternalLinkage, Initializers[Offset], GV->getName() + "." + Twine(NameSuffix++), GV, GV->getThreadLocalMode(), GV->getAddressSpace()); NGV->copyAttributesFrom(GV); NewGlobals.insert({Offset, NGV}); // Calculate the known alignment of the field. If the original aggregate // had 256 byte alignment for example, something might depend on that: // propagate info to each field. Align NewAlign = commonAlignment(StartAlignment, Offset); if (NewAlign > DL.getABITypeAlign(Ty)) NGV->setAlignment(NewAlign); // Copy over the debug info for the variable. transferSRADebugInfo(GV, NGV, Offset * 8, DL.getTypeAllocSizeInBits(Ty), VarSize); } // Replace uses of the original global with uses of the new global. SmallVector Worklist; SmallPtrSet Visited; SmallVector DeadInsts; auto AppendUsers = [&](Value *V) { for (User *U : V->users()) if (Visited.insert(U).second) Worklist.push_back(U); }; AppendUsers(GV); while (!Worklist.empty()) { Value *V = Worklist.pop_back_val(); if (isa(V) || isa(V) || isa(V)) { AppendUsers(V); if (isa(V)) DeadInsts.push_back(V); continue; } if (Value *Ptr = getLoadStorePointerOperand(V)) { APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset, /* AllowNonInbounds */ true); assert(Ptr == GV && "Load/store must be from/to global"); GlobalVariable *NGV = NewGlobals[Offset.getZExtValue()]; assert(NGV && "Must have replacement global for this offset"); // Update the pointer operand and recalculate alignment. Align PrefAlign = DL.getPrefTypeAlign(getLoadStoreType(V)); Align NewAlign = getOrEnforceKnownAlignment(NGV, PrefAlign, DL, cast(V)); if (auto *LI = dyn_cast(V)) { LI->setOperand(0, NGV); LI->setAlignment(NewAlign); } else { auto *SI = cast(V); SI->setOperand(1, NGV); SI->setAlignment(NewAlign); } continue; } assert(isa(V) && isSafeToDestroyConstant(cast(V)) && "Other users can only be dead constants"); } // Delete old instructions and global. RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); GV->removeDeadConstantUsers(); GV->eraseFromParent(); ++NumSRA; assert(NewGlobals.size() > 0); return NewGlobals.begin()->second; } /// Return true if all users of the specified value will trap if the value is /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid /// reprocessing them. static bool AllUsesOfValueWillTrapIfNull(const Value *V, SmallPtrSetImpl &PHIs) { for (const User *U : V->users()) { if (const Instruction *I = dyn_cast(U)) { // If null pointer is considered valid, then all uses are non-trapping. // Non address-space 0 globals have already been pruned by the caller. if (NullPointerIsDefined(I->getFunction())) return false; } if (isa(U)) { // Will trap. } else if (const StoreInst *SI = dyn_cast(U)) { if (SI->getOperand(0) == V) { //cerr << "NONTRAPPING USE: " << *U; return false; // Storing the value. } } else if (const CallInst *CI = dyn_cast(U)) { if (CI->getCalledOperand() != V) { //cerr << "NONTRAPPING USE: " << *U; return false; // Not calling the ptr } } else if (const InvokeInst *II = dyn_cast(U)) { if (II->getCalledOperand() != V) { //cerr << "NONTRAPPING USE: " << *U; return false; // Not calling the ptr } } else if (const BitCastInst *CI = dyn_cast(U)) { if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; } else if (const GetElementPtrInst *GEPI = dyn_cast(U)) { if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; } else if (const PHINode *PN = dyn_cast(U)) { // If we've already seen this phi node, ignore it, it has already been // checked. if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) return false; } else if (isa(U) && !ICmpInst::isSigned(cast(U)->getPredicate()) && isa(U->getOperand(0)) && isa(U->getOperand(1))) { assert(isa(cast(U->getOperand(0)) ->getPointerOperand() ->stripPointerCasts()) && "Should be GlobalVariable"); // This and only this kind of non-signed ICmpInst is to be replaced with // the comparing of the value of the created global init bool later in // optimizeGlobalAddressOfAllocation for the global variable. } else { //cerr << "NONTRAPPING USE: " << *U; return false; } } return true; } /// Return true if all uses of any loads from GV will trap if the loaded value /// is null. Note that this also permits comparisons of the loaded value /// against null, as a special case. static bool allUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { SmallVector Worklist; Worklist.push_back(GV); while (!Worklist.empty()) { const Value *P = Worklist.pop_back_val(); for (auto *U : P->users()) { if (auto *LI = dyn_cast(U)) { SmallPtrSet PHIs; if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) return false; } else if (auto *SI = dyn_cast(U)) { // Ignore stores to the global. if (SI->getPointerOperand() != P) return false; } else if (auto *CE = dyn_cast(U)) { if (CE->stripPointerCasts() != GV) return false; // Check further the ConstantExpr. Worklist.push_back(CE); } else { // We don't know or understand this user, bail out. return false; } } } return true; } /// Get all the loads/store uses for global variable \p GV. static void allUsesOfLoadAndStores(GlobalVariable *GV, SmallVector &Uses) { SmallVector Worklist; Worklist.push_back(GV); while (!Worklist.empty()) { auto *P = Worklist.pop_back_val(); for (auto *U : P->users()) { if (auto *CE = dyn_cast(U)) { Worklist.push_back(CE); continue; } assert((isa(U) || isa(U)) && "Expect only load or store instructions"); Uses.push_back(U); } } } static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { bool Changed = false; for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { Instruction *I = cast(*UI++); // Uses are non-trapping if null pointer is considered valid. // Non address-space 0 globals are already pruned by the caller. if (NullPointerIsDefined(I->getFunction())) return false; if (LoadInst *LI = dyn_cast(I)) { LI->setOperand(0, NewV); Changed = true; } else if (StoreInst *SI = dyn_cast(I)) { if (SI->getOperand(1) == V) { SI->setOperand(1, NewV); Changed = true; } } else if (isa(I) || isa(I)) { CallBase *CB = cast(I); if (CB->getCalledOperand() == V) { // Calling through the pointer! Turn into a direct call, but be careful // that the pointer is not also being passed as an argument. CB->setCalledOperand(NewV); Changed = true; bool PassedAsArg = false; for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) if (CB->getArgOperand(i) == V) { PassedAsArg = true; CB->setArgOperand(i, NewV); } if (PassedAsArg) { // Being passed as an argument also. Be careful to not invalidate UI! UI = V->user_begin(); } } } else if (CastInst *CI = dyn_cast(I)) { Changed |= OptimizeAwayTrappingUsesOfValue(CI, ConstantExpr::getCast(CI->getOpcode(), NewV, CI->getType())); if (CI->use_empty()) { Changed = true; CI->eraseFromParent(); } } else if (GetElementPtrInst *GEPI = dyn_cast(I)) { // Should handle GEP here. SmallVector Idxs; Idxs.reserve(GEPI->getNumOperands()-1); for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); i != e; ++i) if (Constant *C = dyn_cast(*i)) Idxs.push_back(C); else break; if (Idxs.size() == GEPI->getNumOperands()-1) Changed |= OptimizeAwayTrappingUsesOfValue( GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(), NewV, Idxs)); if (GEPI->use_empty()) { Changed = true; GEPI->eraseFromParent(); } } } return Changed; } /// The specified global has only one non-null value stored into it. If there /// are uses of the loaded value that would trap if the loaded value is /// dynamically null, then we know that they cannot be reachable with a null /// optimize away the load. static bool OptimizeAwayTrappingUsesOfLoads( GlobalVariable *GV, Constant *LV, const DataLayout &DL, function_ref GetTLI) { bool Changed = false; // Keep track of whether we are able to remove all the uses of the global // other than the store that defines it. bool AllNonStoreUsesGone = true; // Replace all uses of loads with uses of uses of the stored value. for (User *GlobalUser : llvm::make_early_inc_range(GV->users())) { if (LoadInst *LI = dyn_cast(GlobalUser)) { Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); // If we were able to delete all uses of the loads if (LI->use_empty()) { LI->eraseFromParent(); Changed = true; } else { AllNonStoreUsesGone = false; } } else if (isa(GlobalUser)) { // Ignore the store that stores "LV" to the global. assert(GlobalUser->getOperand(1) == GV && "Must be storing *to* the global"); } else { AllNonStoreUsesGone = false; // If we get here we could have other crazy uses that are transitively // loaded. assert((isa(GlobalUser) || isa(GlobalUser) || isa(GlobalUser) || isa(GlobalUser) || isa(GlobalUser) || isa(GlobalUser)) && "Only expect load and stores!"); } } if (Changed) { LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n"); ++NumGlobUses; } // If we nuked all of the loads, then none of the stores are needed either, // nor is the global. if (AllNonStoreUsesGone) { if (isLeakCheckerRoot(GV)) { Changed |= CleanupPointerRootUsers(GV, GetTLI); } else { Changed = true; CleanupConstantGlobalUsers(GV, DL); } if (GV->use_empty()) { LLVM_DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); Changed = true; GV->eraseFromParent(); ++NumDeleted; } } return Changed; } /// Walk the use list of V, constant folding all of the instructions that are /// foldable. static void ConstantPropUsersOf(Value *V, const DataLayout &DL, TargetLibraryInfo *TLI) { for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) if (Instruction *I = dyn_cast(*UI++)) if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { I->replaceAllUsesWith(NewC); // Advance UI to the next non-I use to avoid invalidating it! // Instructions could multiply use V. while (UI != E && *UI == I) ++UI; if (isInstructionTriviallyDead(I, TLI)) I->eraseFromParent(); } } /// This function takes the specified global variable, and transforms the /// program as if it always contained the result of the specified malloc. /// Because it is always the result of the specified malloc, there is no reason /// to actually DO the malloc. Instead, turn the malloc into a global, and any /// loads of GV as uses of the new global. static GlobalVariable * OptimizeGlobalAddressOfAllocation(GlobalVariable *GV, CallInst *CI, uint64_t AllocSize, Constant *InitVal, const DataLayout &DL, TargetLibraryInfo *TLI) { LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n'); // Create global of type [AllocSize x i8]. Type *GlobalType = ArrayType::get(Type::getInt8Ty(GV->getContext()), AllocSize); // Create the new global variable. The contents of the allocated memory is // undefined initially, so initialize with an undef value. GlobalVariable *NewGV = new GlobalVariable( *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, GV->getThreadLocalMode()); // Initialize the global at the point of the original call. Note that this // is a different point from the initialization referred to below for the // nullability handling. Sublety: We have not proven the original global was // only initialized once. As such, we can not fold this into the initializer // of the new global as may need to re-init the storage multiple times. if (!isa(InitVal)) { IRBuilder<> Builder(CI->getNextNode()); // TODO: Use alignment above if align!=1 Builder.CreateMemSet(NewGV, InitVal, AllocSize, None); } // Update users of the allocation to use the new global instead. BitCastInst *TheBC = nullptr; while (!CI->use_empty()) { Instruction *User = cast(CI->user_back()); if (BitCastInst *BCI = dyn_cast(User)) { if (BCI->getType() == NewGV->getType()) { BCI->replaceAllUsesWith(NewGV); BCI->eraseFromParent(); } else { BCI->setOperand(0, NewGV); } } else { if (!TheBC) TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); User->replaceUsesOfWith(CI, TheBC); } } SmallPtrSet RepValues; RepValues.insert(NewGV); // If there is a comparison against null, we will insert a global bool to // keep track of whether the global was initialized yet or not. GlobalVariable *InitBool = new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, GlobalValue::InternalLinkage, ConstantInt::getFalse(GV->getContext()), GV->getName()+".init", GV->getThreadLocalMode()); bool InitBoolUsed = false; // Loop over all instruction uses of GV, processing them in turn. SmallVector Guses; allUsesOfLoadAndStores(GV, Guses); for (auto *U : Guses) { if (StoreInst *SI = dyn_cast(U)) { // The global is initialized when the store to it occurs. If the stored // value is null value, the global bool is set to false, otherwise true. new StoreInst(ConstantInt::getBool( GV->getContext(), !isa(SI->getValueOperand())), InitBool, false, Align(1), SI->getOrdering(), SI->getSyncScopeID(), SI); SI->eraseFromParent(); continue; } LoadInst *LI = cast(U); while (!LI->use_empty()) { Use &LoadUse = *LI->use_begin(); ICmpInst *ICI = dyn_cast(LoadUse.getUser()); if (!ICI) { auto *CE = ConstantExpr::getBitCast(NewGV, LI->getType()); RepValues.insert(CE); LoadUse.set(CE); continue; } // Replace the cmp X, 0 with a use of the bool value. Value *LV = new LoadInst(InitBool->getValueType(), InitBool, InitBool->getName() + ".val", false, Align(1), LI->getOrdering(), LI->getSyncScopeID(), LI); InitBoolUsed = true; switch (ICI->getPredicate()) { default: llvm_unreachable("Unknown ICmp Predicate!"); case ICmpInst::ICMP_ULT: // X < null -> always false LV = ConstantInt::getFalse(GV->getContext()); break; case ICmpInst::ICMP_UGE: // X >= null -> always true LV = ConstantInt::getTrue(GV->getContext()); break; case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_EQ: LV = BinaryOperator::CreateNot(LV, "notinit", ICI); break; case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGT: break; // no change. } ICI->replaceAllUsesWith(LV); ICI->eraseFromParent(); } LI->eraseFromParent(); } // If the initialization boolean was used, insert it, otherwise delete it. if (!InitBoolUsed) { while (!InitBool->use_empty()) // Delete initializations cast(InitBool->user_back())->eraseFromParent(); delete InitBool; } else GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); // Now the GV is dead, nuke it and the allocation.. GV->eraseFromParent(); CI->eraseFromParent(); // To further other optimizations, loop over all users of NewGV and try to // constant prop them. This will promote GEP instructions with constant // indices into GEP constant-exprs, which will allow global-opt to hack on it. for (auto *CE : RepValues) ConstantPropUsersOf(CE, DL, TLI); return NewGV; } /// Scan the use-list of GV checking to make sure that there are no complex uses /// of GV. We permit simple things like dereferencing the pointer, but not /// storing through the address, unless it is to the specified global. static bool valueIsOnlyUsedLocallyOrStoredToOneGlobal(const CallInst *CI, const GlobalVariable *GV) { SmallPtrSet Visited; SmallVector Worklist; Worklist.push_back(CI); while (!Worklist.empty()) { const Value *V = Worklist.pop_back_val(); if (!Visited.insert(V).second) continue; for (const Use &VUse : V->uses()) { const User *U = VUse.getUser(); if (isa(U) || isa(U)) continue; // Fine, ignore. if (auto *SI = dyn_cast(U)) { if (SI->getValueOperand() == V && SI->getPointerOperand()->stripPointerCasts() != GV) return false; // Storing the pointer not into GV... bad. continue; // Otherwise, storing through it, or storing into GV... fine. } if (auto *BCI = dyn_cast(U)) { Worklist.push_back(BCI); continue; } if (auto *GEPI = dyn_cast(U)) { Worklist.push_back(GEPI); continue; } return false; } } return true; } /// If we have a global that is only initialized with a fixed size allocation /// try to transform the program to use global memory instead of heap /// allocated memory. This eliminates dynamic allocation, avoids an indirection /// accessing the data, and exposes the resultant global to further GlobalOpt. static bool tryToOptimizeStoreOfAllocationToGlobal(GlobalVariable *GV, CallInst *CI, AtomicOrdering Ordering, const DataLayout &DL, TargetLibraryInfo *TLI) { if (!isAllocRemovable(CI, TLI)) // Must be able to remove the call when we get done.. return false; Type *Int8Ty = Type::getInt8Ty(CI->getFunction()->getContext()); Constant *InitVal = getInitialValueOfAllocation(CI, TLI, Int8Ty); if (!InitVal) // Must be able to emit a memset for initialization return false; uint64_t AllocSize; if (!getObjectSize(CI, AllocSize, DL, TLI, ObjectSizeOpts())) return false; // Restrict this transformation to only working on small allocations // (2048 bytes currently), as we don't want to introduce a 16M global or // something. if (AllocSize >= 2048) return false; // We can't optimize this global unless all uses of it are *known* to be // of the malloc value, not of the null initializer value (consider a use // that compares the global's value against zero to see if the malloc has // been reached). To do this, we check to see if all uses of the global // would trap if the global were null: this proves that they must all // happen after the malloc. if (!allUsesOfLoadedValueWillTrapIfNull(GV)) return false; // We can't optimize this if the malloc itself is used in a complex way, // for example, being stored into multiple globals. This allows the // malloc to be stored into the specified global, loaded, gep, icmp'd. // These are all things we could transform to using the global for. if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV)) return false; OptimizeGlobalAddressOfAllocation(GV, CI, AllocSize, InitVal, DL, TLI); return true; } // Try to optimize globals based on the knowledge that only one value (besides // its initializer) is ever stored to the global. static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, AtomicOrdering Ordering, const DataLayout &DL, function_ref GetTLI) { // Ignore no-op GEPs and bitcasts. StoredOnceVal = StoredOnceVal->stripPointerCasts(); // If we are dealing with a pointer global that is initialized to null and // only has one (non-null) value stored into it, then we can optimize any // users of the loaded value (often calls and loads) that would trap if the // value was null. if (GV->getInitializer()->getType()->isPointerTy() && GV->getInitializer()->isNullValue() && StoredOnceVal->getType()->isPointerTy() && !NullPointerIsDefined( nullptr /* F */, GV->getInitializer()->getType()->getPointerAddressSpace())) { if (Constant *SOVC = dyn_cast(StoredOnceVal)) { if (GV->getInitializer()->getType() != SOVC->getType()) SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); // Optimize away any trapping uses of the loaded value. if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI)) return true; } else if (isAllocationFn(StoredOnceVal, GetTLI)) { if (auto *CI = dyn_cast(StoredOnceVal)) { auto *TLI = &GetTLI(*CI->getFunction()); if (tryToOptimizeStoreOfAllocationToGlobal(GV, CI, Ordering, DL, TLI)) return true; } } } return false; } /// At this point, we have learned that the only two values ever stored into GV /// are its initializer and OtherVal. See if we can shrink the global into a /// boolean and select between the two values whenever it is used. This exposes /// the values to other scalar optimizations. static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { Type *GVElType = GV->getValueType(); // If GVElType is already i1, it is already shrunk. If the type of the GV is // an FP value, pointer or vector, don't do this optimization because a select // between them is very expensive and unlikely to lead to later // simplification. In these cases, we typically end up with "cond ? v1 : v2" // where v1 and v2 both require constant pool loads, a big loss. if (GVElType == Type::getInt1Ty(GV->getContext()) || GVElType->isFloatingPointTy() || GVElType->isPointerTy() || GVElType->isVectorTy()) return false; // Walk the use list of the global seeing if all the uses are load or store. // If there is anything else, bail out. for (User *U : GV->users()) { if (!isa(U) && !isa(U)) return false; if (getLoadStoreType(U) != GVElType) return false; } LLVM_DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); // Create the new global, initializing it to false. GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, GlobalValue::InternalLinkage, ConstantInt::getFalse(GV->getContext()), GV->getName()+".b", GV->getThreadLocalMode(), GV->getType()->getAddressSpace()); NewGV->copyAttributesFrom(GV); GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); Constant *InitVal = GV->getInitializer(); assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && "No reason to shrink to bool!"); SmallVector GVs; GV->getDebugInfo(GVs); // If initialized to zero and storing one into the global, we can use a cast // instead of a select to synthesize the desired value. bool IsOneZero = false; bool EmitOneOrZero = true; auto *CI = dyn_cast(OtherVal); if (CI && CI->getValue().getActiveBits() <= 64) { IsOneZero = InitVal->isNullValue() && CI->isOne(); auto *CIInit = dyn_cast(GV->getInitializer()); if (CIInit && CIInit->getValue().getActiveBits() <= 64) { uint64_t ValInit = CIInit->getZExtValue(); uint64_t ValOther = CI->getZExtValue(); uint64_t ValMinus = ValOther - ValInit; for(auto *GVe : GVs){ DIGlobalVariable *DGV = GVe->getVariable(); DIExpression *E = GVe->getExpression(); const DataLayout &DL = GV->getParent()->getDataLayout(); unsigned SizeInOctets = DL.getTypeAllocSizeInBits(NewGV->getValueType()) / 8; // It is expected that the address of global optimized variable is on // top of the stack. After optimization, value of that variable will // be ether 0 for initial value or 1 for other value. The following // expression should return constant integer value depending on the // value at global object address: // val * (ValOther - ValInit) + ValInit: // DW_OP_deref DW_OP_constu // DW_OP_mul DW_OP_constu DW_OP_plus DW_OP_stack_value SmallVector Ops = { dwarf::DW_OP_deref_size, SizeInOctets, dwarf::DW_OP_constu, ValMinus, dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit, dwarf::DW_OP_plus}; bool WithStackValue = true; E = DIExpression::prependOpcodes(E, Ops, WithStackValue); DIGlobalVariableExpression *DGVE = DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E); NewGV->addDebugInfo(DGVE); } EmitOneOrZero = false; } } if (EmitOneOrZero) { // FIXME: This will only emit address for debugger on which will // be written only 0 or 1. for(auto *GV : GVs) NewGV->addDebugInfo(GV); } while (!GV->use_empty()) { Instruction *UI = cast(GV->user_back()); if (StoreInst *SI = dyn_cast(UI)) { // Change the store into a boolean store. bool StoringOther = SI->getOperand(0) == OtherVal; // Only do this if we weren't storing a loaded value. Value *StoreVal; if (StoringOther || SI->getOperand(0) == InitVal) { StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), StoringOther); } else { // Otherwise, we are storing a previously loaded copy. To do this, // change the copy from copying the original value to just copying the // bool. Instruction *StoredVal = cast(SI->getOperand(0)); // If we've already replaced the input, StoredVal will be a cast or // select instruction. If not, it will be a load of the original // global. if (LoadInst *LI = dyn_cast(StoredVal)) { assert(LI->getOperand(0) == GV && "Not a copy!"); // Insert a new load, to preserve the saved value. StoreVal = new LoadInst(NewGV->getValueType(), NewGV, LI->getName() + ".b", false, Align(1), LI->getOrdering(), LI->getSyncScopeID(), LI); } else { assert((isa(StoredVal) || isa(StoredVal)) && "This is not a form that we understand!"); StoreVal = StoredVal->getOperand(0); assert(isa(StoreVal) && "Not a load of NewGV!"); } } StoreInst *NSI = new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(), SI->getSyncScopeID(), SI); NSI->setDebugLoc(SI->getDebugLoc()); } else { // Change the load into a load of bool then a select. LoadInst *LI = cast(UI); LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV, LI->getName() + ".b", false, Align(1), LI->getOrdering(), LI->getSyncScopeID(), LI); Instruction *NSI; if (IsOneZero) NSI = new ZExtInst(NLI, LI->getType(), "", LI); else NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); NSI->takeName(LI); // Since LI is split into two instructions, NLI and NSI both inherit the // same DebugLoc NLI->setDebugLoc(LI->getDebugLoc()); NSI->setDebugLoc(LI->getDebugLoc()); LI->replaceAllUsesWith(NSI); } UI->eraseFromParent(); } // Retain the name of the old global variable. People who are debugging their // programs may expect these variables to be named the same. NewGV->takeName(GV); GV->eraseFromParent(); return true; } static bool deleteIfDead( GlobalValue &GV, SmallPtrSetImpl &NotDiscardableComdats) { GV.removeDeadConstantUsers(); if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) return false; if (const Comdat *C = GV.getComdat()) if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) return false; bool Dead; if (auto *F = dyn_cast(&GV)) Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); else Dead = GV.use_empty(); if (!Dead) return false; LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); GV.eraseFromParent(); ++NumDeleted; return true; } static bool isPointerValueDeadOnEntryToFunction( const Function *F, GlobalValue *GV, function_ref LookupDomTree) { // Find all uses of GV. We expect them all to be in F, and if we can't // identify any of the uses we bail out. // // On each of these uses, identify if the memory that GV points to is // used/required/live at the start of the function. If it is not, for example // if the first thing the function does is store to the GV, the GV can // possibly be demoted. // // We don't do an exhaustive search for memory operations - simply look // through bitcasts as they're quite common and benign. const DataLayout &DL = GV->getParent()->getDataLayout(); SmallVector Loads; SmallVector Stores; for (auto *U : GV->users()) { if (Operator::getOpcode(U) == Instruction::BitCast) { for (auto *UU : U->users()) { if (auto *LI = dyn_cast(UU)) Loads.push_back(LI); else if (auto *SI = dyn_cast(UU)) Stores.push_back(SI); else return false; } continue; } Instruction *I = dyn_cast(U); if (!I) return false; assert(I->getParent()->getParent() == F); if (auto *LI = dyn_cast(I)) Loads.push_back(LI); else if (auto *SI = dyn_cast(I)) Stores.push_back(SI); else return false; } // We have identified all uses of GV into loads and stores. Now check if all // of them are known not to depend on the value of the global at the function // entry point. We do this by ensuring that every load is dominated by at // least one store. auto &DT = LookupDomTree(*const_cast(F)); // The below check is quadratic. Check we're not going to do too many tests. // FIXME: Even though this will always have worst-case quadratic time, we // could put effort into minimizing the average time by putting stores that // have been shown to dominate at least one load at the beginning of the // Stores array, making subsequent dominance checks more likely to succeed // early. // // The threshold here is fairly large because global->local demotion is a // very powerful optimization should it fire. const unsigned Threshold = 100; if (Loads.size() * Stores.size() > Threshold) return false; for (auto *L : Loads) { auto *LTy = L->getType(); if (none_of(Stores, [&](const StoreInst *S) { auto *STy = S->getValueOperand()->getType(); // The load is only dominated by the store if DomTree says so // and the number of bits loaded in L is less than or equal to // the number of bits stored in S. return DT.dominates(S, L) && DL.getTypeStoreSize(LTy).getFixedSize() <= DL.getTypeStoreSize(STy).getFixedSize(); })) return false; } // All loads have known dependences inside F, so the global can be localized. return true; } /// C may have non-instruction users. Can all of those users be turned into /// instructions? static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { // We don't do this exhaustively. The most common pattern that we really need // to care about is a constant GEP or constant bitcast - so just looking // through one single ConstantExpr. // // The set of constants that this function returns true for must be able to be // handled by makeAllConstantUsesInstructions. for (auto *U : C->users()) { if (isa(U)) continue; if (!isa(U)) // Non instruction, non-constantexpr user; cannot convert this. return false; for (auto *UU : U->users()) if (!isa(UU)) // A constantexpr used by another constant. We don't try and recurse any // further but just bail out at this point. return false; } return true; } /// C may have non-instruction users, and /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the /// non-instruction users to instructions. static void makeAllConstantUsesInstructions(Constant *C) { SmallVector Users; for (auto *U : C->users()) { if (isa(U)) Users.push_back(cast(U)); else // We should never get here; allNonInstructionUsersCanBeMadeInstructions // should not have returned true for C. assert( isa(U) && "Can't transform non-constantexpr non-instruction to instruction!"); } SmallVector UUsers; for (auto *U : Users) { UUsers.clear(); append_range(UUsers, U->users()); for (auto *UU : UUsers) { Instruction *UI = cast(UU); Instruction *NewU = U->getAsInstruction(UI); UI->replaceUsesOfWith(U, NewU); } // We've replaced all the uses, so destroy the constant. (destroyConstant // will update value handles and metadata.) U->destroyConstant(); } } /// Analyze the specified global variable and optimize /// it if possible. If we make a change, return true. static bool processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS, function_ref GetTTI, function_ref GetTLI, function_ref LookupDomTree) { auto &DL = GV->getParent()->getDataLayout(); // If this is a first class global and has only one accessing function and // this function is non-recursive, we replace the global with a local alloca // in this function. // // NOTE: It doesn't make sense to promote non-single-value types since we // are just replacing static memory to stack memory. // // If the global is in different address space, don't bring it to stack. if (!GS.HasMultipleAccessingFunctions && GS.AccessingFunction && GV->getValueType()->isSingleValueType() && GV->getType()->getAddressSpace() == 0 && !GV->isExternallyInitialized() && allNonInstructionUsersCanBeMadeInstructions(GV) && GS.AccessingFunction->doesNotRecurse() && isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, LookupDomTree)) { const DataLayout &DL = GV->getParent()->getDataLayout(); LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); Instruction &FirstI = const_cast(*GS.AccessingFunction ->getEntryBlock().begin()); Type *ElemTy = GV->getValueType(); // FIXME: Pass Global's alignment when globals have alignment AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr, GV->getName(), &FirstI); if (!isa(GV->getInitializer())) new StoreInst(GV->getInitializer(), Alloca, &FirstI); makeAllConstantUsesInstructions(GV); GV->replaceAllUsesWith(Alloca); GV->eraseFromParent(); ++NumLocalized; return true; } bool Changed = false; // If the global is never loaded (but may be stored to), it is dead. // Delete it now. if (!GS.IsLoaded) { LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); if (isLeakCheckerRoot(GV)) { // Delete any constant stores to the global. Changed = CleanupPointerRootUsers(GV, GetTLI); } else { // Delete any stores we can find to the global. We may not be able to // make it completely dead though. Changed = CleanupConstantGlobalUsers(GV, DL); } // If the global is dead now, delete it. if (GV->use_empty()) { GV->eraseFromParent(); ++NumDeleted; Changed = true; } return Changed; } if (GS.StoredType <= GlobalStatus::InitializerStored) { LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); // Don't actually mark a global constant if it's atomic because atomic loads // are implemented by a trivial cmpxchg in some edge-cases and that usually // requires write access to the variable even if it's not actually changed. if (GS.Ordering == AtomicOrdering::NotAtomic) { assert(!GV->isConstant() && "Expected a non-constant global"); GV->setConstant(true); Changed = true; } // Clean up any obviously simplifiable users now. Changed |= CleanupConstantGlobalUsers(GV, DL); // If the global is dead now, just nuke it. if (GV->use_empty()) { LLVM_DEBUG(dbgs() << " *** Marking constant allowed us to simplify " << "all users and delete global!\n"); GV->eraseFromParent(); ++NumDeleted; return true; } // Fall through to the next check; see if we can optimize further. ++NumMarked; } if (!GV->getInitializer()->getType()->isSingleValueType()) { const DataLayout &DL = GV->getParent()->getDataLayout(); if (SRAGlobal(GV, DL)) return true; } Value *StoredOnceValue = GS.getStoredOnceValue(); if (GS.StoredType == GlobalStatus::StoredOnce && StoredOnceValue) { // Avoid speculating constant expressions that might trap (div/rem). auto *SOVConstant = dyn_cast(StoredOnceValue); if (SOVConstant && SOVConstant->canTrap()) return Changed; Function &StoreFn = const_cast(*GS.StoredOnceStore->getFunction()); bool CanHaveNonUndefGlobalInitializer = GetTTI(StoreFn).canHaveNonUndefGlobalInitializerInAddressSpace( GV->getType()->getAddressSpace()); // If the initial value for the global was an undef value, and if only // one other value was stored into it, we can just change the // initializer to be the stored value, then delete all stores to the // global. This allows us to mark it constant. // This is restricted to address spaces that allow globals to have // initializers. NVPTX, for example, does not support initializers for // shared memory (AS 3). if (SOVConstant && isa(GV->getInitializer()) && DL.getTypeAllocSize(SOVConstant->getType()) == DL.getTypeAllocSize(GV->getValueType()) && CanHaveNonUndefGlobalInitializer) { if (SOVConstant->getType() == GV->getValueType()) { // Change the initializer in place. GV->setInitializer(SOVConstant); } else { // Create a new global with adjusted type. auto *NGV = new GlobalVariable( *GV->getParent(), SOVConstant->getType(), GV->isConstant(), GV->getLinkage(), SOVConstant, "", GV, GV->getThreadLocalMode(), GV->getAddressSpace()); NGV->takeName(GV); NGV->copyAttributesFrom(GV); GV->replaceAllUsesWith(ConstantExpr::getBitCast(NGV, GV->getType())); GV->eraseFromParent(); GV = NGV; } // Clean up any obviously simplifiable users now. CleanupConstantGlobalUsers(GV, DL); if (GV->use_empty()) { LLVM_DEBUG(dbgs() << " *** Substituting initializer allowed us to " << "simplify all users and delete global!\n"); GV->eraseFromParent(); ++NumDeleted; } ++NumSubstitute; return true; } // Try to optimize globals based on the knowledge that only one value // (besides its initializer) is ever stored to the global. if (optimizeOnceStoredGlobal(GV, StoredOnceValue, GS.Ordering, DL, GetTLI)) return true; // Otherwise, if the global was not a boolean, we can shrink it to be a // boolean. Skip this optimization for AS that doesn't allow an initializer. if (SOVConstant && GS.Ordering == AtomicOrdering::NotAtomic && (!isa(GV->getInitializer()) || CanHaveNonUndefGlobalInitializer)) { if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { ++NumShrunkToBool; return true; } } } return Changed; } /// Analyze the specified global variable and optimize it if possible. If we /// make a change, return true. static bool processGlobal(GlobalValue &GV, function_ref GetTTI, function_ref GetTLI, function_ref LookupDomTree) { if (GV.getName().startswith("llvm.")) return false; GlobalStatus GS; if (GlobalStatus::analyzeGlobal(&GV, GS)) return false; bool Changed = false; if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global : GlobalValue::UnnamedAddr::Local; if (NewUnnamedAddr != GV.getUnnamedAddr()) { GV.setUnnamedAddr(NewUnnamedAddr); NumUnnamed++; Changed = true; } } // Do more involved optimizations if the global is internal. if (!GV.hasLocalLinkage()) return Changed; auto *GVar = dyn_cast(&GV); if (!GVar) return Changed; if (GVar->isConstant() || !GVar->hasInitializer()) return Changed; return processInternalGlobal(GVar, GS, GetTTI, GetTLI, LookupDomTree) || Changed; } /// Walk all of the direct calls of the specified function, changing them to /// FastCC. static void ChangeCalleesToFastCall(Function *F) { for (User *U : F->users()) { if (isa(U)) continue; cast(U)->setCallingConv(CallingConv::Fast); } } static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs, Attribute::AttrKind A) { unsigned AttrIndex; if (Attrs.hasAttrSomewhere(A, &AttrIndex)) return Attrs.removeAttributeAtIndex(C, AttrIndex, A); return Attrs; } static void RemoveAttribute(Function *F, Attribute::AttrKind A) { F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A)); for (User *U : F->users()) { if (isa(U)) continue; CallBase *CB = cast(U); CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A)); } } /// Return true if this is a calling convention that we'd like to change. The /// idea here is that we don't want to mess with the convention if the user /// explicitly requested something with performance implications like coldcc, /// GHC, or anyregcc. static bool hasChangeableCC(Function *F) { CallingConv::ID CC = F->getCallingConv(); // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall) return false; // FIXME: Change CC for the whole chain of musttail calls when possible. // // Can't change CC of the function that either has musttail calls, or is a // musttail callee itself for (User *U : F->users()) { if (isa(U)) continue; CallInst* CI = dyn_cast(U); if (!CI) continue; if (CI->isMustTailCall()) return false; } for (BasicBlock &BB : *F) if (BB.getTerminatingMustTailCall()) return false; return true; } /// Return true if the block containing the call site has a BlockFrequency of /// less than ColdCCRelFreq% of the entry block. static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) { const BranchProbability ColdProb(ColdCCRelFreq, 100); auto *CallSiteBB = CB.getParent(); auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB); auto CallerEntryFreq = CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock())); return CallSiteFreq < CallerEntryFreq * ColdProb; } // This function checks if the input function F is cold at all call sites. It // also looks each call site's containing function, returning false if the // caller function contains other non cold calls. The input vector AllCallsCold // contains a list of functions that only have call sites in cold blocks. static bool isValidCandidateForColdCC(Function &F, function_ref GetBFI, const std::vector &AllCallsCold) { if (F.user_empty()) return false; for (User *U : F.users()) { if (isa(U)) continue; CallBase &CB = cast(*U); Function *CallerFunc = CB.getParent()->getParent(); BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc); if (!isColdCallSite(CB, CallerBFI)) return false; if (!llvm::is_contained(AllCallsCold, CallerFunc)) return false; } return true; } static void changeCallSitesToColdCC(Function *F) { for (User *U : F->users()) { if (isa(U)) continue; cast(U)->setCallingConv(CallingConv::Cold); } } // This function iterates over all the call instructions in the input Function // and checks that all call sites are in cold blocks and are allowed to use the // coldcc calling convention. static bool hasOnlyColdCalls(Function &F, function_ref GetBFI) { for (BasicBlock &BB : F) { for (Instruction &I : BB) { if (CallInst *CI = dyn_cast(&I)) { // Skip over isline asm instructions since they aren't function calls. if (CI->isInlineAsm()) continue; Function *CalledFn = CI->getCalledFunction(); if (!CalledFn) return false; if (!CalledFn->hasLocalLinkage()) return false; // Skip over instrinsics since they won't remain as function calls. if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic) continue; // Check if it's valid to use coldcc calling convention. if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() || CalledFn->hasAddressTaken()) return false; BlockFrequencyInfo &CallerBFI = GetBFI(F); if (!isColdCallSite(*CI, CallerBFI)) return false; } } } return true; } static bool hasMustTailCallers(Function *F) { for (User *U : F->users()) { CallBase *CB = dyn_cast(U); if (!CB) { assert(isa(U) && "Expected either CallBase or BlockAddress"); continue; } if (CB->isMustTailCall()) return true; } return false; } static bool hasInvokeCallers(Function *F) { for (User *U : F->users()) if (isa(U)) return true; return false; } static void RemovePreallocated(Function *F) { RemoveAttribute(F, Attribute::Preallocated); auto *M = F->getParent(); IRBuilder<> Builder(M->getContext()); // Cannot modify users() while iterating over it, so make a copy. SmallVector PreallocatedCalls(F->users()); for (User *U : PreallocatedCalls) { CallBase *CB = dyn_cast(U); if (!CB) continue; assert( !CB->isMustTailCall() && "Shouldn't call RemotePreallocated() on a musttail preallocated call"); // Create copy of call without "preallocated" operand bundle. SmallVector OpBundles; CB->getOperandBundlesAsDefs(OpBundles); CallBase *PreallocatedSetup = nullptr; for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) { if (It->getTag() == "preallocated") { PreallocatedSetup = cast(*It->input_begin()); OpBundles.erase(It); break; } } assert(PreallocatedSetup && "Did not find preallocated bundle"); uint64_t ArgCount = cast(PreallocatedSetup->getArgOperand(0))->getZExtValue(); assert((isa(CB) || isa(CB)) && "Unknown indirect call type"); CallBase *NewCB = CallBase::Create(CB, OpBundles, CB); CB->replaceAllUsesWith(NewCB); NewCB->takeName(CB); CB->eraseFromParent(); Builder.SetInsertPoint(PreallocatedSetup); auto *StackSave = Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave)); Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction()); Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore), StackSave); // Replace @llvm.call.preallocated.arg() with alloca. // Cannot modify users() while iterating over it, so make a copy. // @llvm.call.preallocated.arg() can be called with the same index multiple // times. So for each @llvm.call.preallocated.arg(), we see if we have // already created a Value* for the index, and if not, create an alloca and // bitcast right after the @llvm.call.preallocated.setup() so that it // dominates all uses. SmallVector ArgAllocas(ArgCount); SmallVector PreallocatedArgs(PreallocatedSetup->users()); for (auto *User : PreallocatedArgs) { auto *UseCall = cast(User); assert(UseCall->getCalledFunction()->getIntrinsicID() == Intrinsic::call_preallocated_arg && "preallocated token use was not a llvm.call.preallocated.arg"); uint64_t AllocArgIndex = cast(UseCall->getArgOperand(1))->getZExtValue(); Value *AllocaReplacement = ArgAllocas[AllocArgIndex]; if (!AllocaReplacement) { auto AddressSpace = UseCall->getType()->getPointerAddressSpace(); auto *ArgType = UseCall->getFnAttr(Attribute::Preallocated).getValueAsType(); auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction(); Builder.SetInsertPoint(InsertBefore); auto *Alloca = Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg"); auto *BitCast = Builder.CreateBitCast( Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName()); ArgAllocas[AllocArgIndex] = BitCast; AllocaReplacement = BitCast; } UseCall->replaceAllUsesWith(AllocaReplacement); UseCall->eraseFromParent(); } // Remove @llvm.call.preallocated.setup(). cast(PreallocatedSetup)->eraseFromParent(); } } static bool OptimizeFunctions(Module &M, function_ref GetTLI, function_ref GetTTI, function_ref GetBFI, function_ref LookupDomTree, SmallPtrSetImpl &NotDiscardableComdats) { bool Changed = false; std::vector AllCallsCold; for (Function &F : llvm::make_early_inc_range(M)) if (hasOnlyColdCalls(F, GetBFI)) AllCallsCold.push_back(&F); // Optimize functions. for (Function &F : llvm::make_early_inc_range(M)) { // Don't perform global opt pass on naked functions; we don't want fast // calling conventions for naked functions. if (F.hasFnAttribute(Attribute::Naked)) continue; // Functions without names cannot be referenced outside this module. if (!F.hasName() && !F.isDeclaration() && !F.hasLocalLinkage()) F.setLinkage(GlobalValue::InternalLinkage); if (deleteIfDead(F, NotDiscardableComdats)) { Changed = true; continue; } // LLVM's definition of dominance allows instructions that are cyclic // in unreachable blocks, e.g.: // %pat = select i1 %condition, @global, i16* %pat // because any instruction dominates an instruction in a block that's // not reachable from entry. // So, remove unreachable blocks from the function, because a) there's // no point in analyzing them and b) GlobalOpt should otherwise grow // some more complicated logic to break these cycles. // Removing unreachable blocks might invalidate the dominator so we // recalculate it. if (!F.isDeclaration()) { if (removeUnreachableBlocks(F)) { auto &DT = LookupDomTree(F); DT.recalculate(F); Changed = true; } } Changed |= processGlobal(F, GetTTI, GetTLI, LookupDomTree); if (!F.hasLocalLinkage()) continue; // If we have an inalloca parameter that we can safely remove the // inalloca attribute from, do so. This unlocks optimizations that // wouldn't be safe in the presence of inalloca. // FIXME: We should also hoist alloca affected by this to the entry // block if possible. if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) && !F.hasAddressTaken() && !hasMustTailCallers(&F)) { RemoveAttribute(&F, Attribute::InAlloca); Changed = true; } // FIXME: handle invokes // FIXME: handle musttail if (F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) { if (!F.hasAddressTaken() && !hasMustTailCallers(&F) && !hasInvokeCallers(&F)) { RemovePreallocated(&F); Changed = true; } continue; } if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) { NumInternalFunc++; TargetTransformInfo &TTI = GetTTI(F); // Change the calling convention to coldcc if either stress testing is // enabled or the target would like to use coldcc on functions which are // cold at all call sites and the callers contain no other non coldcc // calls. if (EnableColdCCStressTest || (TTI.useColdCCForColdCall(F) && isValidCandidateForColdCC(F, GetBFI, AllCallsCold))) { F.setCallingConv(CallingConv::Cold); changeCallSitesToColdCC(&F); Changed = true; NumColdCC++; } } if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) { // If this function has a calling convention worth changing, is not a // varargs function, and is only called directly, promote it to use the // Fast calling convention. F.setCallingConv(CallingConv::Fast); ChangeCalleesToFastCall(&F); ++NumFastCallFns; Changed = true; } if (F.getAttributes().hasAttrSomewhere(Attribute::Nest) && !F.hasAddressTaken()) { // The function is not used by a trampoline intrinsic, so it is safe // to remove the 'nest' attribute. RemoveAttribute(&F, Attribute::Nest); ++NumNestRemoved; Changed = true; } } return Changed; } static bool OptimizeGlobalVars(Module &M, function_ref GetTTI, function_ref GetTLI, function_ref LookupDomTree, SmallPtrSetImpl &NotDiscardableComdats) { bool Changed = false; for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) { // Global variables without names cannot be referenced outside this module. if (!GV.hasName() && !GV.isDeclaration() && !GV.hasLocalLinkage()) GV.setLinkage(GlobalValue::InternalLinkage); // Simplify the initializer. if (GV.hasInitializer()) if (auto *C = dyn_cast(GV.getInitializer())) { auto &DL = M.getDataLayout(); // TLI is not used in the case of a Constant, so use default nullptr // for that optional parameter, since we don't have a Function to // provide GetTLI anyway. Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr); if (New != C) GV.setInitializer(New); } if (deleteIfDead(GV, NotDiscardableComdats)) { Changed = true; continue; } Changed |= processGlobal(GV, GetTTI, GetTLI, LookupDomTree); } return Changed; } /// Evaluate static constructors in the function, if we can. Return true if we /// can, false otherwise. static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, TargetLibraryInfo *TLI) { // Call the function. Evaluator Eval(DL, TLI); Constant *RetValDummy; bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, SmallVector()); if (EvalSuccess) { ++NumCtorsEvaluated; // We succeeded at evaluation: commit the result. auto NewInitializers = Eval.getMutatedInitializers(); LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" << F->getName() << "' to " << NewInitializers.size() << " stores.\n"); for (const auto &Pair : NewInitializers) Pair.first->setInitializer(Pair.second); for (GlobalVariable *GV : Eval.getInvariants()) GV->setConstant(true); } return EvalSuccess; } static int compareNames(Constant *const *A, Constant *const *B) { Value *AStripped = (*A)->stripPointerCasts(); Value *BStripped = (*B)->stripPointerCasts(); return AStripped->getName().compare(BStripped->getName()); } static void setUsedInitializer(GlobalVariable &V, const SmallPtrSetImpl &Init) { if (Init.empty()) { V.eraseFromParent(); return; } // Type of pointer to the array of pointers. PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); SmallVector UsedArray; for (GlobalValue *GV : Init) { Constant *Cast = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); UsedArray.push_back(Cast); } // Sort to get deterministic order. array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); Module *M = V.getParent(); V.removeFromParent(); GlobalVariable *NV = new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage, ConstantArray::get(ATy, UsedArray), ""); NV->takeName(&V); NV->setSection("llvm.metadata"); delete &V; } namespace { /// An easy to access representation of llvm.used and llvm.compiler.used. class LLVMUsed { SmallPtrSet Used; SmallPtrSet CompilerUsed; GlobalVariable *UsedV; GlobalVariable *CompilerUsedV; public: LLVMUsed(Module &M) { SmallVector Vec; UsedV = collectUsedGlobalVariables(M, Vec, false); Used = {Vec.begin(), Vec.end()}; Vec.clear(); CompilerUsedV = collectUsedGlobalVariables(M, Vec, true); CompilerUsed = {Vec.begin(), Vec.end()}; } using iterator = SmallPtrSet::iterator; using used_iterator_range = iterator_range; iterator usedBegin() { return Used.begin(); } iterator usedEnd() { return Used.end(); } used_iterator_range used() { return used_iterator_range(usedBegin(), usedEnd()); } iterator compilerUsedBegin() { return CompilerUsed.begin(); } iterator compilerUsedEnd() { return CompilerUsed.end(); } used_iterator_range compilerUsed() { return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); } bool usedCount(GlobalValue *GV) const { return Used.count(GV); } bool compilerUsedCount(GlobalValue *GV) const { return CompilerUsed.count(GV); } bool usedErase(GlobalValue *GV) { return Used.erase(GV); } bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } bool compilerUsedInsert(GlobalValue *GV) { return CompilerUsed.insert(GV).second; } void syncVariablesAndSets() { if (UsedV) setUsedInitializer(*UsedV, Used); if (CompilerUsedV) setUsedInitializer(*CompilerUsedV, CompilerUsed); } }; } // end anonymous namespace static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { if (GA.use_empty()) // No use at all. return false; assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && "We should have removed the duplicated " "element from llvm.compiler.used"); if (!GA.hasOneUse()) // Strictly more than one use. So at least one is not in llvm.used and // llvm.compiler.used. return true; // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); } static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, const LLVMUsed &U) { unsigned N = 2; assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && "We should have removed the duplicated " "element from llvm.compiler.used"); if (U.usedCount(&V) || U.compilerUsedCount(&V)) ++N; return V.hasNUsesOrMore(N); } static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { if (!GA.hasLocalLinkage()) return true; return U.usedCount(&GA) || U.compilerUsedCount(&GA); } static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, bool &RenameTarget) { RenameTarget = false; bool Ret = false; if (hasUseOtherThanLLVMUsed(GA, U)) Ret = true; // If the alias is externally visible, we may still be able to simplify it. if (!mayHaveOtherReferences(GA, U)) return Ret; // If the aliasee has internal linkage, give it the name and linkage // of the alias, and delete the alias. This turns: // define internal ... @f(...) // @a = alias ... @f // into: // define ... @a(...) Constant *Aliasee = GA.getAliasee(); GlobalValue *Target = cast(Aliasee->stripPointerCasts()); if (!Target->hasLocalLinkage()) return Ret; // Do not perform the transform if multiple aliases potentially target the // aliasee. This check also ensures that it is safe to replace the section // and other attributes of the aliasee with those of the alias. if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) return Ret; RenameTarget = true; return true; } static bool OptimizeGlobalAliases(Module &M, SmallPtrSetImpl &NotDiscardableComdats) { bool Changed = false; LLVMUsed Used(M); for (GlobalValue *GV : Used.used()) Used.compilerUsedErase(GV); // Return whether GV is explicitly or implicitly dso_local and not replaceable // by another definition in the current linkage unit. auto IsModuleLocal = [](GlobalValue &GV) { return !GlobalValue::isInterposableLinkage(GV.getLinkage()) && (GV.isDSOLocal() || GV.isImplicitDSOLocal()); }; for (GlobalAlias &J : llvm::make_early_inc_range(M.aliases())) { // Aliases without names cannot be referenced outside this module. if (!J.hasName() && !J.isDeclaration() && !J.hasLocalLinkage()) J.setLinkage(GlobalValue::InternalLinkage); if (deleteIfDead(J, NotDiscardableComdats)) { Changed = true; continue; } // If the alias can change at link time, nothing can be done - bail out. if (!IsModuleLocal(J)) continue; Constant *Aliasee = J.getAliasee(); GlobalValue *Target = dyn_cast(Aliasee->stripPointerCasts()); // We can't trivially replace the alias with the aliasee if the aliasee is // non-trivial in some way. We also can't replace the alias with the aliasee // if the aliasee may be preemptible at runtime. On ELF, a non-preemptible // alias can be used to access the definition as if preemption did not // happen. // TODO: Try to handle non-zero GEPs of local aliasees. if (!Target || !IsModuleLocal(*Target)) continue; Target->removeDeadConstantUsers(); // Make all users of the alias use the aliasee instead. bool RenameTarget; if (!hasUsesToReplace(J, Used, RenameTarget)) continue; J.replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J.getType())); ++NumAliasesResolved; Changed = true; if (RenameTarget) { // Give the aliasee the name, linkage and other attributes of the alias. Target->takeName(&J); Target->setLinkage(J.getLinkage()); Target->setDSOLocal(J.isDSOLocal()); Target->setVisibility(J.getVisibility()); Target->setDLLStorageClass(J.getDLLStorageClass()); if (Used.usedErase(&J)) Used.usedInsert(Target); if (Used.compilerUsedErase(&J)) Used.compilerUsedInsert(Target); } else if (mayHaveOtherReferences(J, Used)) continue; // Delete the alias. M.getAliasList().erase(&J); ++NumAliasesRemoved; Changed = true; } Used.syncVariablesAndSets(); return Changed; } static Function * FindCXAAtExit(Module &M, function_ref GetTLI) { // Hack to get a default TLI before we have actual Function. auto FuncIter = M.begin(); if (FuncIter == M.end()) return nullptr; auto *TLI = &GetTLI(*FuncIter); LibFunc F = LibFunc_cxa_atexit; if (!TLI->has(F)) return nullptr; Function *Fn = M.getFunction(TLI->getName(F)); if (!Fn) return nullptr; // Now get the actual TLI for Fn. TLI = &GetTLI(*Fn); // Make sure that the function has the correct prototype. if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit) return nullptr; return Fn; } /// Returns whether the given function is an empty C++ destructor and can /// therefore be eliminated. /// Note that we assume that other optimization passes have already simplified /// the code so we simply check for 'ret'. static bool cxxDtorIsEmpty(const Function &Fn) { // FIXME: We could eliminate C++ destructors if they're readonly/readnone and // nounwind, but that doesn't seem worth doing. if (Fn.isDeclaration()) return false; for (auto &I : Fn.getEntryBlock()) { if (I.isDebugOrPseudoInst()) continue; if (isa(I)) return true; break; } return false; } static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { /// Itanium C++ ABI p3.3.5: /// /// After constructing a global (or local static) object, that will require /// destruction on exit, a termination function is registered as follows: /// /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); /// /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the /// call f(p) when DSO d is unloaded, before all such termination calls /// registered before this one. It returns zero if registration is /// successful, nonzero on failure. // This pass will look for calls to __cxa_atexit where the function is trivial // and remove them. bool Changed = false; for (User *U : llvm::make_early_inc_range(CXAAtExitFn->users())) { // We're only interested in calls. Theoretically, we could handle invoke // instructions as well, but neither llvm-gcc nor clang generate invokes // to __cxa_atexit. CallInst *CI = dyn_cast(U); if (!CI) continue; Function *DtorFn = dyn_cast(CI->getArgOperand(0)->stripPointerCasts()); if (!DtorFn || !cxxDtorIsEmpty(*DtorFn)) continue; // Just remove the call. CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); CI->eraseFromParent(); ++NumCXXDtorsRemoved; Changed |= true; } return Changed; } static bool optimizeGlobalsInModule( Module &M, const DataLayout &DL, function_ref GetTLI, function_ref GetTTI, function_ref GetBFI, function_ref LookupDomTree) { SmallPtrSet NotDiscardableComdats; bool Changed = false; bool LocalChange = true; while (LocalChange) { LocalChange = false; NotDiscardableComdats.clear(); for (const GlobalVariable &GV : M.globals()) if (const Comdat *C = GV.getComdat()) if (!GV.isDiscardableIfUnused() || !GV.use_empty()) NotDiscardableComdats.insert(C); for (Function &F : M) if (const Comdat *C = F.getComdat()) if (!F.isDefTriviallyDead()) NotDiscardableComdats.insert(C); for (GlobalAlias &GA : M.aliases()) if (const Comdat *C = GA.getComdat()) if (!GA.isDiscardableIfUnused() || !GA.use_empty()) NotDiscardableComdats.insert(C); // Delete functions that are trivially dead, ccc -> fastcc LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree, NotDiscardableComdats); // Optimize global_ctors list. LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { return EvaluateStaticConstructor(F, DL, &GetTLI(*F)); }); // Optimize non-address-taken globals. LocalChange |= OptimizeGlobalVars(M, GetTTI, GetTLI, LookupDomTree, NotDiscardableComdats); // Resolve aliases, when possible. LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); // Try to remove trivial global destructors if they are not removed // already. Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI); if (CXAAtExitFn) LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); Changed |= LocalChange; } // TODO: Move all global ctors functions to the end of the module for code // layout. return Changed; } PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { auto &DL = M.getDataLayout(); auto &FAM = AM.getResult(M).getManager(); auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ return FAM.getResult(F); }; auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { return FAM.getResult(F); }; auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { return FAM.getResult(F); }; auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { return FAM.getResult(F); }; if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree)) return PreservedAnalyses::all(); return PreservedAnalyses::none(); } namespace { struct GlobalOptLegacyPass : public ModulePass { static char ID; // Pass identification, replacement for typeid GlobalOptLegacyPass() : ModulePass(ID) { initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnModule(Module &M) override { if (skipModule(M)) return false; auto &DL = M.getDataLayout(); auto LookupDomTree = [this](Function &F) -> DominatorTree & { return this->getAnalysis(F).getDomTree(); }; auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { return this->getAnalysis().getTLI(F); }; auto GetTTI = [this](Function &F) -> TargetTransformInfo & { return this->getAnalysis().getTTI(F); }; auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & { return this->getAnalysis(F).getBFI(); }; return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); } }; } // end anonymous namespace char GlobalOptLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", "Global Variable Optimizer", false, false) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", "Global Variable Optimizer", false, false) ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOptLegacyPass(); }