//===- Attributor.cpp - Module-wide attribute deduction -------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements an interprocedural pass that deduces and/or propagates // attributes. This is done in an abstract interpretation style fixpoint // iteration. See the Attributor.h file comment and the class descriptions in // that file for more information. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/Attributor.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/TinyPtrVector.h" #include "llvm/Analysis/InlineCost.h" #include "llvm/Analysis/LazyValueInfo.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/MemorySSAUpdater.h" #include "llvm/Analysis/MustExecute.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/NoFolder.h" #include "llvm/IR/ValueHandle.h" #include "llvm/IR/Verifier.h" #include "llvm/InitializePasses.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/DebugCounter.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/GraphWriter.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Local.h" #include #include using namespace llvm; #define DEBUG_TYPE "attributor" DEBUG_COUNTER(ManifestDBGCounter, "attributor-manifest", "Determine what attributes are manifested in the IR"); STATISTIC(NumFnDeleted, "Number of function deleted"); STATISTIC(NumFnWithExactDefinition, "Number of functions with exact definitions"); STATISTIC(NumFnWithoutExactDefinition, "Number of functions without exact definitions"); STATISTIC(NumFnShallowWrappersCreated, "Number of shallow wrappers created"); STATISTIC(NumAttributesTimedOut, "Number of abstract attributes timed out before fixpoint"); STATISTIC(NumAttributesValidFixpoint, "Number of abstract attributes in a valid fixpoint state"); STATISTIC(NumAttributesManifested, "Number of abstract attributes manifested in IR"); // TODO: Determine a good default value. // // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads // (when run with the first 5 abstract attributes). The results also indicate // that we never reach 32 iterations but always find a fixpoint sooner. // // This will become more evolved once we perform two interleaved fixpoint // iterations: bottom-up and top-down. static cl::opt SetFixpointIterations("attributor-max-iterations", cl::Hidden, cl::desc("Maximal number of fixpoint iterations."), cl::init(32)); static cl::opt MaxInitializationChainLengthX( "attributor-max-initialization-chain-length", cl::Hidden, cl::desc( "Maximal number of chained initializations (to avoid stack overflows)"), cl::location(MaxInitializationChainLength), cl::init(1024)); unsigned llvm::MaxInitializationChainLength; static cl::opt VerifyMaxFixpointIterations( "attributor-max-iterations-verify", cl::Hidden, cl::desc("Verify that max-iterations is a tight bound for a fixpoint"), cl::init(false)); static cl::opt AnnotateDeclarationCallSites( "attributor-annotate-decl-cs", cl::Hidden, cl::desc("Annotate call sites of function declarations."), cl::init(false)); static cl::opt EnableHeapToStack("enable-heap-to-stack-conversion", cl::init(true), cl::Hidden); static cl::opt AllowShallowWrappers("attributor-allow-shallow-wrappers", cl::Hidden, cl::desc("Allow the Attributor to create shallow " "wrappers for non-exact definitions."), cl::init(false)); static cl::opt AllowDeepWrapper("attributor-allow-deep-wrappers", cl::Hidden, cl::desc("Allow the Attributor to use IP information " "derived from non-exact functions via cloning"), cl::init(false)); // These options can only used for debug builds. #ifndef NDEBUG static cl::list SeedAllowList("attributor-seed-allow-list", cl::Hidden, cl::desc("Comma seperated list of attribute names that are " "allowed to be seeded."), cl::ZeroOrMore, cl::CommaSeparated); static cl::list FunctionSeedAllowList( "attributor-function-seed-allow-list", cl::Hidden, cl::desc("Comma seperated list of function names that are " "allowed to be seeded."), cl::ZeroOrMore, cl::CommaSeparated); #endif static cl::opt DumpDepGraph("attributor-dump-dep-graph", cl::Hidden, cl::desc("Dump the dependency graph to dot files."), cl::init(false)); static cl::opt DepGraphDotFileNamePrefix( "attributor-depgraph-dot-filename-prefix", cl::Hidden, cl::desc("The prefix used for the CallGraph dot file names.")); static cl::opt ViewDepGraph("attributor-view-dep-graph", cl::Hidden, cl::desc("View the dependency graph."), cl::init(false)); static cl::opt PrintDependencies("attributor-print-dep", cl::Hidden, cl::desc("Print attribute dependencies"), cl::init(false)); static cl::opt EnableCallSiteSpecific( "attributor-enable-call-site-specific-deduction", cl::Hidden, cl::desc("Allow the Attributor to do call site specific analysis"), cl::init(false)); static cl::opt PrintCallGraph("attributor-print-call-graph", cl::Hidden, cl::desc("Print Attributor's internal call graph"), cl::init(false)); static cl::opt SimplifyAllLoads("attributor-simplify-all-loads", cl::Hidden, cl::desc("Try to simplify all loads."), cl::init(true)); /// Logic operators for the change status enum class. /// ///{ ChangeStatus llvm::operator|(ChangeStatus L, ChangeStatus R) { return L == ChangeStatus::CHANGED ? L : R; } ChangeStatus &llvm::operator|=(ChangeStatus &L, ChangeStatus R) { L = L | R; return L; } ChangeStatus llvm::operator&(ChangeStatus L, ChangeStatus R) { return L == ChangeStatus::UNCHANGED ? L : R; } ChangeStatus &llvm::operator&=(ChangeStatus &L, ChangeStatus R) { L = L & R; return L; } ///} bool AA::isNoSyncInst(Attributor &A, const Instruction &I, const AbstractAttribute &QueryingAA) { // We are looking for volatile instructions or non-relaxed atomics. if (const auto *CB = dyn_cast(&I)) { if (CB->hasFnAttr(Attribute::NoSync)) return true; // Non-convergent and readnone imply nosync. if (!CB->isConvergent() && !CB->mayReadOrWriteMemory()) return true; if (AANoSync::isNoSyncIntrinsic(&I)) return true; const auto &NoSyncAA = A.getAAFor( QueryingAA, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL); return NoSyncAA.isAssumedNoSync(); } if (!I.mayReadOrWriteMemory()) return true; return !I.isVolatile() && !AANoSync::isNonRelaxedAtomic(&I); } bool AA::isDynamicallyUnique(Attributor &A, const AbstractAttribute &QueryingAA, const Value &V) { if (auto *C = dyn_cast(&V)) return !C->isThreadDependent(); // TODO: Inspect and cache more complex instructions. if (auto *CB = dyn_cast(&V)) return CB->getNumOperands() == 0 && !CB->mayHaveSideEffects() && !CB->mayReadFromMemory(); const Function *Scope = nullptr; if (auto *I = dyn_cast(&V)) Scope = I->getFunction(); if (auto *A = dyn_cast(&V)) Scope = A->getParent(); if (!Scope) return false; auto &NoRecurseAA = A.getAAFor( QueryingAA, IRPosition::function(*Scope), DepClassTy::OPTIONAL); return NoRecurseAA.isAssumedNoRecurse(); } Constant *AA::getInitialValueForObj(Value &Obj, Type &Ty, const TargetLibraryInfo *TLI) { if (isa(Obj)) return UndefValue::get(&Ty); if (isAllocationFn(&Obj, TLI)) return getInitialValueOfAllocation(&cast(Obj), TLI, &Ty); auto *GV = dyn_cast(&Obj); if (!GV || !GV->hasLocalLinkage()) return nullptr; if (!GV->hasInitializer()) return UndefValue::get(&Ty); return dyn_cast_or_null(getWithType(*GV->getInitializer(), Ty)); } bool AA::isValidInScope(const Value &V, const Function *Scope) { if (isa(V)) return true; if (auto *I = dyn_cast(&V)) return I->getFunction() == Scope; if (auto *A = dyn_cast(&V)) return A->getParent() == Scope; return false; } bool AA::isValidAtPosition(const Value &V, const Instruction &CtxI, InformationCache &InfoCache) { if (isa(V)) return true; const Function *Scope = CtxI.getFunction(); if (auto *A = dyn_cast(&V)) return A->getParent() == Scope; if (auto *I = dyn_cast(&V)) if (I->getFunction() == Scope) { const DominatorTree *DT = InfoCache.getAnalysisResultForFunction(*Scope); return DT && DT->dominates(I, &CtxI); } return false; } Value *AA::getWithType(Value &V, Type &Ty) { if (V.getType() == &Ty) return &V; if (isa(V)) return PoisonValue::get(&Ty); if (isa(V)) return UndefValue::get(&Ty); if (auto *C = dyn_cast(&V)) { if (C->isNullValue()) return Constant::getNullValue(&Ty); if (C->getType()->isPointerTy() && Ty.isPointerTy()) return ConstantExpr::getPointerCast(C, &Ty); if (C->getType()->getPrimitiveSizeInBits() >= Ty.getPrimitiveSizeInBits()) { if (C->getType()->isIntegerTy() && Ty.isIntegerTy()) return ConstantExpr::getTrunc(C, &Ty, /* OnlyIfReduced */ true); if (C->getType()->isFloatingPointTy() && Ty.isFloatingPointTy()) return ConstantExpr::getFPTrunc(C, &Ty, /* OnlyIfReduced */ true); } } return nullptr; } Optional AA::combineOptionalValuesInAAValueLatice(const Optional &A, const Optional &B, Type *Ty) { if (A == B) return A; if (!B.hasValue()) return A; if (*B == nullptr) return nullptr; if (!A.hasValue()) return Ty ? getWithType(**B, *Ty) : nullptr; if (*A == nullptr) return nullptr; if (!Ty) Ty = (*A)->getType(); if (isa_and_nonnull(*A)) return getWithType(**B, *Ty); if (isa(*B)) return A; if (*A && *B && *A == getWithType(**B, *Ty)) return A; return nullptr; } bool AA::getPotentialCopiesOfStoredValue( Attributor &A, StoreInst &SI, SmallSetVector &PotentialCopies, const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation) { Value &Ptr = *SI.getPointerOperand(); SmallVector Objects; if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, QueryingAA, &SI, UsedAssumedInformation)) { LLVM_DEBUG( dbgs() << "Underlying objects stored into could not be determined\n";); return false; } SmallVector PIs; SmallVector NewCopies; for (Value *Obj : Objects) { LLVM_DEBUG(dbgs() << "Visit underlying object " << *Obj << "\n"); if (isa(Obj)) continue; if (isa(Obj)) { // A null pointer access can be undefined but any offset from null may // be OK. We do not try to optimize the latter. if (!NullPointerIsDefined(SI.getFunction(), Ptr.getType()->getPointerAddressSpace()) && A.getAssumedSimplified(Ptr, QueryingAA, UsedAssumedInformation) == Obj) continue; LLVM_DEBUG( dbgs() << "Underlying object is a valid nullptr, giving up.\n";); return false; } if (!isa(Obj) && !isa(Obj) && !isNoAliasCall(Obj)) { LLVM_DEBUG(dbgs() << "Underlying object is not supported yet: " << *Obj << "\n";); return false; } if (auto *GV = dyn_cast(Obj)) if (!GV->hasLocalLinkage()) { LLVM_DEBUG(dbgs() << "Underlying object is global with external " "linkage, not supported yet: " << *Obj << "\n";); return false; } auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) { if (!Acc.isRead()) return true; auto *LI = dyn_cast(Acc.getRemoteInst()); if (!LI) { LLVM_DEBUG(dbgs() << "Underlying object read through a non-load " "instruction not supported yet: " << *Acc.getRemoteInst() << "\n";); return false; } NewCopies.push_back(LI); return true; }; auto &PI = A.getAAFor(QueryingAA, IRPosition::value(*Obj), DepClassTy::NONE); if (!PI.forallInterferingAccesses(SI, CheckAccess)) { LLVM_DEBUG( dbgs() << "Failed to verify all interfering accesses for underlying object: " << *Obj << "\n"); return false; } PIs.push_back(&PI); } for (auto *PI : PIs) { if (!PI->getState().isAtFixpoint()) UsedAssumedInformation = true; A.recordDependence(*PI, QueryingAA, DepClassTy::OPTIONAL); } PotentialCopies.insert(NewCopies.begin(), NewCopies.end()); return true; } static bool isAssumedReadOnlyOrReadNone(Attributor &A, const IRPosition &IRP, const AbstractAttribute &QueryingAA, bool RequireReadNone, bool &IsKnown) { IRPosition::Kind Kind = IRP.getPositionKind(); if (Kind == IRPosition::IRP_FUNCTION || Kind == IRPosition::IRP_CALL_SITE) { const auto &MemLocAA = A.getAAFor(QueryingAA, IRP, DepClassTy::NONE); if (MemLocAA.isAssumedReadNone()) { IsKnown = MemLocAA.isKnownReadNone(); if (!IsKnown) A.recordDependence(MemLocAA, QueryingAA, DepClassTy::OPTIONAL); return true; } } const auto &MemBehaviorAA = A.getAAFor(QueryingAA, IRP, DepClassTy::NONE); if (MemBehaviorAA.isAssumedReadNone() || (!RequireReadNone && MemBehaviorAA.isAssumedReadOnly())) { IsKnown = RequireReadNone ? MemBehaviorAA.isKnownReadNone() : MemBehaviorAA.isKnownReadOnly(); if (!IsKnown) A.recordDependence(MemBehaviorAA, QueryingAA, DepClassTy::OPTIONAL); return true; } return false; } bool AA::isAssumedReadOnly(Attributor &A, const IRPosition &IRP, const AbstractAttribute &QueryingAA, bool &IsKnown) { return isAssumedReadOnlyOrReadNone(A, IRP, QueryingAA, /* RequireReadNone */ false, IsKnown); } bool AA::isAssumedReadNone(Attributor &A, const IRPosition &IRP, const AbstractAttribute &QueryingAA, bool &IsKnown) { return isAssumedReadOnlyOrReadNone(A, IRP, QueryingAA, /* RequireReadNone */ true, IsKnown); } static bool isPotentiallyReachable(Attributor &A, const Instruction &FromI, const Instruction *ToI, const Function &ToFn, const AbstractAttribute &QueryingAA, std::function GoBackwardsCB) { LLVM_DEBUG(dbgs() << "[AA] isPotentiallyReachable @" << ToFn.getName() << " from " << FromI << " [GBCB: " << bool(GoBackwardsCB) << "]\n"); SmallPtrSet Visited; SmallVector Worklist; Worklist.push_back(&FromI); while (!Worklist.empty()) { const Instruction *CurFromI = Worklist.pop_back_val(); if (!Visited.insert(CurFromI).second) continue; const Function *FromFn = CurFromI->getFunction(); if (FromFn == &ToFn) { if (!ToI) return true; LLVM_DEBUG(dbgs() << "[AA] check " << *ToI << " from " << *CurFromI << " intraprocedurally\n"); const auto &ReachabilityAA = A.getAAFor( QueryingAA, IRPosition::function(ToFn), DepClassTy::OPTIONAL); bool Result = ReachabilityAA.isAssumedReachable(A, *CurFromI, *ToI); LLVM_DEBUG(dbgs() << "[AA] " << *CurFromI << " " << (Result ? "can potentially " : "cannot ") << "reach " << *ToI << " [Intra]\n"); if (Result) return true; continue; } // TODO: If we can go arbitrarily backwards we will eventually reach an // entry point that can reach ToI. Only once this takes a set of blocks // through which we cannot go, or once we track internal functions not // accessible from the outside, it makes sense to perform backwards analysis // in the absence of a GoBackwardsCB. if (!GoBackwardsCB) { LLVM_DEBUG(dbgs() << "[AA] check @" << ToFn.getName() << " from " << *CurFromI << " is not checked backwards, abort\n"); return true; } // Check if the current instruction is already known to reach the ToFn. const auto &FnReachabilityAA = A.getAAFor( QueryingAA, IRPosition::function(*FromFn), DepClassTy::OPTIONAL); bool Result = FnReachabilityAA.instructionCanReach( A, *CurFromI, ToFn, /* UseBackwards */ false); LLVM_DEBUG(dbgs() << "[AA] " << *CurFromI << " in @" << FromFn->getName() << " " << (Result ? "can potentially " : "cannot ") << "reach @" << ToFn.getName() << " [FromFn]\n"); if (Result) return true; // If we do not go backwards from the FromFn we are done here and so far we // could not find a way to reach ToFn/ToI. if (!GoBackwardsCB(*FromFn)) continue; LLVM_DEBUG(dbgs() << "Stepping backwards to the call sites of @" << FromFn->getName() << "\n"); auto CheckCallSite = [&](AbstractCallSite ACS) { CallBase *CB = ACS.getInstruction(); if (!CB) return false; if (isa(CB)) return false; Instruction *Inst = CB->getNextNonDebugInstruction(); Worklist.push_back(Inst); return true; }; bool UsedAssumedInformation = false; Result = !A.checkForAllCallSites(CheckCallSite, *FromFn, /* RequireAllCallSites */ true, &QueryingAA, UsedAssumedInformation); if (Result) { LLVM_DEBUG(dbgs() << "[AA] stepping back to call sites from " << *CurFromI << " in @" << FromFn->getName() << " failed, give up\n"); return true; } LLVM_DEBUG(dbgs() << "[AA] stepped back to call sites from " << *CurFromI << " in @" << FromFn->getName() << " worklist size is: " << Worklist.size() << "\n"); } return false; } bool AA::isPotentiallyReachable( Attributor &A, const Instruction &FromI, const Instruction &ToI, const AbstractAttribute &QueryingAA, std::function GoBackwardsCB) { LLVM_DEBUG(dbgs() << "[AA] isPotentiallyReachable " << ToI << " from " << FromI << " [GBCB: " << bool(GoBackwardsCB) << "]\n"); const Function *ToFn = ToI.getFunction(); return ::isPotentiallyReachable(A, FromI, &ToI, *ToFn, QueryingAA, GoBackwardsCB); } bool AA::isPotentiallyReachable( Attributor &A, const Instruction &FromI, const Function &ToFn, const AbstractAttribute &QueryingAA, std::function GoBackwardsCB) { return ::isPotentiallyReachable(A, FromI, /* ToI */ nullptr, ToFn, QueryingAA, GoBackwardsCB); } /// Return true if \p New is equal or worse than \p Old. static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) { if (!Old.isIntAttribute()) return true; return Old.getValueAsInt() >= New.getValueAsInt(); } /// Return true if the information provided by \p Attr was added to the /// attribute list \p Attrs. This is only the case if it was not already present /// in \p Attrs at the position describe by \p PK and \p AttrIdx. static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr, AttributeList &Attrs, int AttrIdx, bool ForceReplace = false) { if (Attr.isEnumAttribute()) { Attribute::AttrKind Kind = Attr.getKindAsEnum(); if (Attrs.hasAttributeAtIndex(AttrIdx, Kind)) if (!ForceReplace && isEqualOrWorse(Attr, Attrs.getAttributeAtIndex(AttrIdx, Kind))) return false; Attrs = Attrs.addAttributeAtIndex(Ctx, AttrIdx, Attr); return true; } if (Attr.isStringAttribute()) { StringRef Kind = Attr.getKindAsString(); if (Attrs.hasAttributeAtIndex(AttrIdx, Kind)) if (!ForceReplace && isEqualOrWorse(Attr, Attrs.getAttributeAtIndex(AttrIdx, Kind))) return false; Attrs = Attrs.addAttributeAtIndex(Ctx, AttrIdx, Attr); return true; } if (Attr.isIntAttribute()) { Attribute::AttrKind Kind = Attr.getKindAsEnum(); if (Attrs.hasAttributeAtIndex(AttrIdx, Kind)) if (!ForceReplace && isEqualOrWorse(Attr, Attrs.getAttributeAtIndex(AttrIdx, Kind))) return false; Attrs = Attrs.removeAttributeAtIndex(Ctx, AttrIdx, Kind); Attrs = Attrs.addAttributeAtIndex(Ctx, AttrIdx, Attr); return true; } llvm_unreachable("Expected enum or string attribute!"); } Argument *IRPosition::getAssociatedArgument() const { if (getPositionKind() == IRP_ARGUMENT) return cast(&getAnchorValue()); // Not an Argument and no argument number means this is not a call site // argument, thus we cannot find a callback argument to return. int ArgNo = getCallSiteArgNo(); if (ArgNo < 0) return nullptr; // Use abstract call sites to make the connection between the call site // values and the ones in callbacks. If a callback was found that makes use // of the underlying call site operand, we want the corresponding callback // callee argument and not the direct callee argument. Optional CBCandidateArg; SmallVector CallbackUses; const auto &CB = cast(getAnchorValue()); AbstractCallSite::getCallbackUses(CB, CallbackUses); for (const Use *U : CallbackUses) { AbstractCallSite ACS(U); assert(ACS && ACS.isCallbackCall()); if (!ACS.getCalledFunction()) continue; for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) { // Test if the underlying call site operand is argument number u of the // callback callee. if (ACS.getCallArgOperandNo(u) != ArgNo) continue; assert(ACS.getCalledFunction()->arg_size() > u && "ACS mapped into var-args arguments!"); if (CBCandidateArg.hasValue()) { CBCandidateArg = nullptr; break; } CBCandidateArg = ACS.getCalledFunction()->getArg(u); } } // If we found a unique callback candidate argument, return it. if (CBCandidateArg.hasValue() && CBCandidateArg.getValue()) return CBCandidateArg.getValue(); // If no callbacks were found, or none used the underlying call site operand // exclusively, use the direct callee argument if available. const Function *Callee = CB.getCalledFunction(); if (Callee && Callee->arg_size() > unsigned(ArgNo)) return Callee->getArg(ArgNo); return nullptr; } ChangeStatus AbstractAttribute::update(Attributor &A) { ChangeStatus HasChanged = ChangeStatus::UNCHANGED; if (getState().isAtFixpoint()) return HasChanged; LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n"); HasChanged = updateImpl(A); LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this << "\n"); return HasChanged; } ChangeStatus IRAttributeManifest::manifestAttrs(Attributor &A, const IRPosition &IRP, const ArrayRef &DeducedAttrs, bool ForceReplace) { Function *ScopeFn = IRP.getAnchorScope(); IRPosition::Kind PK = IRP.getPositionKind(); // In the following some generic code that will manifest attributes in // DeducedAttrs if they improve the current IR. Due to the different // annotation positions we use the underlying AttributeList interface. AttributeList Attrs; switch (PK) { case IRPosition::IRP_INVALID: case IRPosition::IRP_FLOAT: return ChangeStatus::UNCHANGED; case IRPosition::IRP_ARGUMENT: case IRPosition::IRP_FUNCTION: case IRPosition::IRP_RETURNED: Attrs = ScopeFn->getAttributes(); break; case IRPosition::IRP_CALL_SITE: case IRPosition::IRP_CALL_SITE_RETURNED: case IRPosition::IRP_CALL_SITE_ARGUMENT: Attrs = cast(IRP.getAnchorValue()).getAttributes(); break; } ChangeStatus HasChanged = ChangeStatus::UNCHANGED; LLVMContext &Ctx = IRP.getAnchorValue().getContext(); for (const Attribute &Attr : DeducedAttrs) { if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx(), ForceReplace)) continue; HasChanged = ChangeStatus::CHANGED; } if (HasChanged == ChangeStatus::UNCHANGED) return HasChanged; switch (PK) { case IRPosition::IRP_ARGUMENT: case IRPosition::IRP_FUNCTION: case IRPosition::IRP_RETURNED: ScopeFn->setAttributes(Attrs); break; case IRPosition::IRP_CALL_SITE: case IRPosition::IRP_CALL_SITE_RETURNED: case IRPosition::IRP_CALL_SITE_ARGUMENT: cast(IRP.getAnchorValue()).setAttributes(Attrs); break; case IRPosition::IRP_INVALID: case IRPosition::IRP_FLOAT: break; } return HasChanged; } const IRPosition IRPosition::EmptyKey(DenseMapInfo::getEmptyKey()); const IRPosition IRPosition::TombstoneKey(DenseMapInfo::getTombstoneKey()); SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) { IRPositions.emplace_back(IRP); // Helper to determine if operand bundles on a call site are benin or // potentially problematic. We handle only llvm.assume for now. auto CanIgnoreOperandBundles = [](const CallBase &CB) { return (isa(CB) && cast(CB).getIntrinsicID() == Intrinsic ::assume); }; const auto *CB = dyn_cast(&IRP.getAnchorValue()); switch (IRP.getPositionKind()) { case IRPosition::IRP_INVALID: case IRPosition::IRP_FLOAT: case IRPosition::IRP_FUNCTION: return; case IRPosition::IRP_ARGUMENT: case IRPosition::IRP_RETURNED: IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope())); return; case IRPosition::IRP_CALL_SITE: assert(CB && "Expected call site!"); // TODO: We need to look at the operand bundles similar to the redirection // in CallBase. if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) if (const Function *Callee = CB->getCalledFunction()) IRPositions.emplace_back(IRPosition::function(*Callee)); return; case IRPosition::IRP_CALL_SITE_RETURNED: assert(CB && "Expected call site!"); // TODO: We need to look at the operand bundles similar to the redirection // in CallBase. if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) { if (const Function *Callee = CB->getCalledFunction()) { IRPositions.emplace_back(IRPosition::returned(*Callee)); IRPositions.emplace_back(IRPosition::function(*Callee)); for (const Argument &Arg : Callee->args()) if (Arg.hasReturnedAttr()) { IRPositions.emplace_back( IRPosition::callsite_argument(*CB, Arg.getArgNo())); IRPositions.emplace_back( IRPosition::value(*CB->getArgOperand(Arg.getArgNo()))); IRPositions.emplace_back(IRPosition::argument(Arg)); } } } IRPositions.emplace_back(IRPosition::callsite_function(*CB)); return; case IRPosition::IRP_CALL_SITE_ARGUMENT: { assert(CB && "Expected call site!"); // TODO: We need to look at the operand bundles similar to the redirection // in CallBase. if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) { const Function *Callee = CB->getCalledFunction(); if (Callee) { if (Argument *Arg = IRP.getAssociatedArgument()) IRPositions.emplace_back(IRPosition::argument(*Arg)); IRPositions.emplace_back(IRPosition::function(*Callee)); } } IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue())); return; } } } bool IRPosition::hasAttr(ArrayRef AKs, bool IgnoreSubsumingPositions, Attributor *A) const { SmallVector Attrs; for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) { for (Attribute::AttrKind AK : AKs) if (EquivIRP.getAttrsFromIRAttr(AK, Attrs)) return true; // The first position returned by the SubsumingPositionIterator is // always the position itself. If we ignore subsuming positions we // are done after the first iteration. if (IgnoreSubsumingPositions) break; } if (A) for (Attribute::AttrKind AK : AKs) if (getAttrsFromAssumes(AK, Attrs, *A)) return true; return false; } void IRPosition::getAttrs(ArrayRef AKs, SmallVectorImpl &Attrs, bool IgnoreSubsumingPositions, Attributor *A) const { for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) { for (Attribute::AttrKind AK : AKs) EquivIRP.getAttrsFromIRAttr(AK, Attrs); // The first position returned by the SubsumingPositionIterator is // always the position itself. If we ignore subsuming positions we // are done after the first iteration. if (IgnoreSubsumingPositions) break; } if (A) for (Attribute::AttrKind AK : AKs) getAttrsFromAssumes(AK, Attrs, *A); } bool IRPosition::getAttrsFromIRAttr(Attribute::AttrKind AK, SmallVectorImpl &Attrs) const { if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT) return false; AttributeList AttrList; if (const auto *CB = dyn_cast(&getAnchorValue())) AttrList = CB->getAttributes(); else AttrList = getAssociatedFunction()->getAttributes(); bool HasAttr = AttrList.hasAttributeAtIndex(getAttrIdx(), AK); if (HasAttr) Attrs.push_back(AttrList.getAttributeAtIndex(getAttrIdx(), AK)); return HasAttr; } bool IRPosition::getAttrsFromAssumes(Attribute::AttrKind AK, SmallVectorImpl &Attrs, Attributor &A) const { assert(getPositionKind() != IRP_INVALID && "Did expect a valid position!"); Value &AssociatedValue = getAssociatedValue(); const Assume2KnowledgeMap &A2K = A.getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK}); // Check if we found any potential assume use, if not we don't need to create // explorer iterators. if (A2K.empty()) return false; LLVMContext &Ctx = AssociatedValue.getContext(); unsigned AttrsSize = Attrs.size(); MustBeExecutedContextExplorer &Explorer = A.getInfoCache().getMustBeExecutedContextExplorer(); auto EIt = Explorer.begin(getCtxI()), EEnd = Explorer.end(getCtxI()); for (auto &It : A2K) if (Explorer.findInContextOf(It.first, EIt, EEnd)) Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max)); return AttrsSize != Attrs.size(); } void IRPosition::verify() { #ifdef EXPENSIVE_CHECKS switch (getPositionKind()) { case IRP_INVALID: assert((CBContext == nullptr) && "Invalid position must not have CallBaseContext!"); assert(!Enc.getOpaqueValue() && "Expected a nullptr for an invalid position!"); return; case IRP_FLOAT: assert((!isa(&getAssociatedValue())) && "Expected specialized kind for argument values!"); return; case IRP_RETURNED: assert(isa(getAsValuePtr()) && "Expected function for a 'returned' position!"); assert(getAsValuePtr() == &getAssociatedValue() && "Associated value mismatch!"); return; case IRP_CALL_SITE_RETURNED: assert((CBContext == nullptr) && "'call site returned' position must not have CallBaseContext!"); assert((isa(getAsValuePtr())) && "Expected call base for 'call site returned' position!"); assert(getAsValuePtr() == &getAssociatedValue() && "Associated value mismatch!"); return; case IRP_CALL_SITE: assert((CBContext == nullptr) && "'call site function' position must not have CallBaseContext!"); assert((isa(getAsValuePtr())) && "Expected call base for 'call site function' position!"); assert(getAsValuePtr() == &getAssociatedValue() && "Associated value mismatch!"); return; case IRP_FUNCTION: assert(isa(getAsValuePtr()) && "Expected function for a 'function' position!"); assert(getAsValuePtr() == &getAssociatedValue() && "Associated value mismatch!"); return; case IRP_ARGUMENT: assert(isa(getAsValuePtr()) && "Expected argument for a 'argument' position!"); assert(getAsValuePtr() == &getAssociatedValue() && "Associated value mismatch!"); return; case IRP_CALL_SITE_ARGUMENT: { assert((CBContext == nullptr) && "'call site argument' position must not have CallBaseContext!"); Use *U = getAsUsePtr(); (void)U; // Silence unused variable warning. assert(U && "Expected use for a 'call site argument' position!"); assert(isa(U->getUser()) && "Expected call base user for a 'call site argument' position!"); assert(cast(U->getUser())->isArgOperand(U) && "Expected call base argument operand for a 'call site argument' " "position"); assert(cast(U->getUser())->getArgOperandNo(U) == unsigned(getCallSiteArgNo()) && "Argument number mismatch!"); assert(U->get() == &getAssociatedValue() && "Associated value mismatch!"); return; } } #endif } Optional Attributor::getAssumedConstant(const IRPosition &IRP, const AbstractAttribute &AA, bool &UsedAssumedInformation) { // First check all callbacks provided by outside AAs. If any of them returns // a non-null value that is different from the associated value, or None, we // assume it's simpliied. for (auto &CB : SimplificationCallbacks.lookup(IRP)) { Optional SimplifiedV = CB(IRP, &AA, UsedAssumedInformation); if (!SimplifiedV.hasValue()) return llvm::None; if (isa_and_nonnull(*SimplifiedV)) return cast(*SimplifiedV); return nullptr; } const auto &ValueSimplifyAA = getAAFor(AA, IRP, DepClassTy::NONE); Optional SimplifiedV = ValueSimplifyAA.getAssumedSimplifiedValue(*this); bool IsKnown = ValueSimplifyAA.isAtFixpoint(); UsedAssumedInformation |= !IsKnown; if (!SimplifiedV.hasValue()) { recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL); return llvm::None; } if (isa_and_nonnull(SimplifiedV.getValue())) { recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL); return UndefValue::get(IRP.getAssociatedType()); } Constant *CI = dyn_cast_or_null(SimplifiedV.getValue()); if (CI) CI = dyn_cast_or_null( AA::getWithType(*CI, *IRP.getAssociatedType())); if (CI) recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL); return CI; } Optional Attributor::getAssumedSimplified(const IRPosition &IRP, const AbstractAttribute *AA, bool &UsedAssumedInformation) { // First check all callbacks provided by outside AAs. If any of them returns // a non-null value that is different from the associated value, or None, we // assume it's simpliied. for (auto &CB : SimplificationCallbacks.lookup(IRP)) return CB(IRP, AA, UsedAssumedInformation); // If no high-level/outside simplification occured, use AAValueSimplify. const auto &ValueSimplifyAA = getOrCreateAAFor(IRP, AA, DepClassTy::NONE); Optional SimplifiedV = ValueSimplifyAA.getAssumedSimplifiedValue(*this); bool IsKnown = ValueSimplifyAA.isAtFixpoint(); UsedAssumedInformation |= !IsKnown; if (!SimplifiedV.hasValue()) { if (AA) recordDependence(ValueSimplifyAA, *AA, DepClassTy::OPTIONAL); return llvm::None; } if (*SimplifiedV == nullptr) return const_cast(&IRP.getAssociatedValue()); if (Value *SimpleV = AA::getWithType(**SimplifiedV, *IRP.getAssociatedType())) { if (AA) recordDependence(ValueSimplifyAA, *AA, DepClassTy::OPTIONAL); return SimpleV; } return const_cast(&IRP.getAssociatedValue()); } Optional Attributor::translateArgumentToCallSiteContent( Optional V, CallBase &CB, const AbstractAttribute &AA, bool &UsedAssumedInformation) { if (!V.hasValue()) return V; if (*V == nullptr || isa(*V)) return V; if (auto *Arg = dyn_cast(*V)) if (CB.getCalledFunction() == Arg->getParent()) if (!Arg->hasPointeeInMemoryValueAttr()) return getAssumedSimplified( IRPosition::callsite_argument(CB, Arg->getArgNo()), AA, UsedAssumedInformation); return nullptr; } Attributor::~Attributor() { // The abstract attributes are allocated via the BumpPtrAllocator Allocator, // thus we cannot delete them. We can, and want to, destruct them though. for (auto &DepAA : DG.SyntheticRoot.Deps) { AbstractAttribute *AA = cast(DepAA.getPointer()); AA->~AbstractAttribute(); } } bool Attributor::isAssumedDead(const AbstractAttribute &AA, const AAIsDead *FnLivenessAA, bool &UsedAssumedInformation, bool CheckBBLivenessOnly, DepClassTy DepClass) { const IRPosition &IRP = AA.getIRPosition(); if (!Functions.count(IRP.getAnchorScope())) return false; return isAssumedDead(IRP, &AA, FnLivenessAA, UsedAssumedInformation, CheckBBLivenessOnly, DepClass); } bool Attributor::isAssumedDead(const Use &U, const AbstractAttribute *QueryingAA, const AAIsDead *FnLivenessAA, bool &UsedAssumedInformation, bool CheckBBLivenessOnly, DepClassTy DepClass) { Instruction *UserI = dyn_cast(U.getUser()); if (!UserI) return isAssumedDead(IRPosition::value(*U.get()), QueryingAA, FnLivenessAA, UsedAssumedInformation, CheckBBLivenessOnly, DepClass); if (auto *CB = dyn_cast(UserI)) { // For call site argument uses we can check if the argument is // unused/dead. if (CB->isArgOperand(&U)) { const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U)); return isAssumedDead(CSArgPos, QueryingAA, FnLivenessAA, UsedAssumedInformation, CheckBBLivenessOnly, DepClass); } } else if (ReturnInst *RI = dyn_cast(UserI)) { const IRPosition &RetPos = IRPosition::returned(*RI->getFunction()); return isAssumedDead(RetPos, QueryingAA, FnLivenessAA, UsedAssumedInformation, CheckBBLivenessOnly, DepClass); } else if (PHINode *PHI = dyn_cast(UserI)) { BasicBlock *IncomingBB = PHI->getIncomingBlock(U); return isAssumedDead(*IncomingBB->getTerminator(), QueryingAA, FnLivenessAA, UsedAssumedInformation, CheckBBLivenessOnly, DepClass); } return isAssumedDead(IRPosition::inst(*UserI), QueryingAA, FnLivenessAA, UsedAssumedInformation, CheckBBLivenessOnly, DepClass); } bool Attributor::isAssumedDead(const Instruction &I, const AbstractAttribute *QueryingAA, const AAIsDead *FnLivenessAA, bool &UsedAssumedInformation, bool CheckBBLivenessOnly, DepClassTy DepClass) { const IRPosition::CallBaseContext *CBCtx = QueryingAA ? QueryingAA->getCallBaseContext() : nullptr; if (ManifestAddedBlocks.contains(I.getParent())) return false; if (!FnLivenessAA) FnLivenessAA = lookupAAFor(IRPosition::function(*I.getFunction(), CBCtx), QueryingAA, DepClassTy::NONE); // If we have a context instruction and a liveness AA we use it. if (FnLivenessAA && FnLivenessAA->getIRPosition().getAnchorScope() == I.getFunction() && (CheckBBLivenessOnly ? FnLivenessAA->isAssumedDead(I.getParent()) : FnLivenessAA->isAssumedDead(&I))) { if (QueryingAA) recordDependence(*FnLivenessAA, *QueryingAA, DepClass); if (!FnLivenessAA->isKnownDead(&I)) UsedAssumedInformation = true; return true; } if (CheckBBLivenessOnly) return false; const IRPosition IRP = IRPosition::inst(I, CBCtx); const AAIsDead &IsDeadAA = getOrCreateAAFor(IRP, QueryingAA, DepClassTy::NONE); // Don't check liveness for AAIsDead. if (QueryingAA == &IsDeadAA) return false; if (IsDeadAA.isAssumedDead()) { if (QueryingAA) recordDependence(IsDeadAA, *QueryingAA, DepClass); if (!IsDeadAA.isKnownDead()) UsedAssumedInformation = true; return true; } return false; } bool Attributor::isAssumedDead(const IRPosition &IRP, const AbstractAttribute *QueryingAA, const AAIsDead *FnLivenessAA, bool &UsedAssumedInformation, bool CheckBBLivenessOnly, DepClassTy DepClass) { Instruction *CtxI = IRP.getCtxI(); if (CtxI && isAssumedDead(*CtxI, QueryingAA, FnLivenessAA, UsedAssumedInformation, /* CheckBBLivenessOnly */ true, CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL)) return true; if (CheckBBLivenessOnly) return false; // If we haven't succeeded we query the specific liveness info for the IRP. const AAIsDead *IsDeadAA; if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE) IsDeadAA = &getOrCreateAAFor( IRPosition::callsite_returned(cast(IRP.getAssociatedValue())), QueryingAA, DepClassTy::NONE); else IsDeadAA = &getOrCreateAAFor(IRP, QueryingAA, DepClassTy::NONE); // Don't check liveness for AAIsDead. if (QueryingAA == IsDeadAA) return false; if (IsDeadAA->isAssumedDead()) { if (QueryingAA) recordDependence(*IsDeadAA, *QueryingAA, DepClass); if (!IsDeadAA->isKnownDead()) UsedAssumedInformation = true; return true; } return false; } bool Attributor::isAssumedDead(const BasicBlock &BB, const AbstractAttribute *QueryingAA, const AAIsDead *FnLivenessAA, DepClassTy DepClass) { if (!FnLivenessAA) FnLivenessAA = lookupAAFor(IRPosition::function(*BB.getParent()), QueryingAA, DepClassTy::NONE); if (FnLivenessAA->isAssumedDead(&BB)) { if (QueryingAA) recordDependence(*FnLivenessAA, *QueryingAA, DepClass); return true; } return false; } bool Attributor::checkForAllUses( function_ref Pred, const AbstractAttribute &QueryingAA, const Value &V, bool CheckBBLivenessOnly, DepClassTy LivenessDepClass, function_ref EquivalentUseCB) { // Check the trivial case first as it catches void values. if (V.use_empty()) return true; const IRPosition &IRP = QueryingAA.getIRPosition(); SmallVector Worklist; SmallPtrSet Visited; for (const Use &U : V.uses()) Worklist.push_back(&U); LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size() << " initial uses to check\n"); const Function *ScopeFn = IRP.getAnchorScope(); const auto *LivenessAA = ScopeFn ? &getAAFor(QueryingAA, IRPosition::function(*ScopeFn), DepClassTy::NONE) : nullptr; while (!Worklist.empty()) { const Use *U = Worklist.pop_back_val(); if (isa(U->getUser()) && !Visited.insert(U).second) continue; LLVM_DEBUG({ if (auto *Fn = dyn_cast(U->getUser())) dbgs() << "[Attributor] Check use: " << **U << " in " << Fn->getName() << "\n"; else dbgs() << "[Attributor] Check use: " << **U << " in " << *U->getUser() << "\n"; }); bool UsedAssumedInformation = false; if (isAssumedDead(*U, &QueryingAA, LivenessAA, UsedAssumedInformation, CheckBBLivenessOnly, LivenessDepClass)) { LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n"); continue; } if (U->getUser()->isDroppable()) { LLVM_DEBUG(dbgs() << "[Attributor] Droppable user, skip!\n"); continue; } if (auto *SI = dyn_cast(U->getUser())) { if (&SI->getOperandUse(0) == U) { if (!Visited.insert(U).second) continue; SmallSetVector PotentialCopies; if (AA::getPotentialCopiesOfStoredValue(*this, *SI, PotentialCopies, QueryingAA, UsedAssumedInformation)) { LLVM_DEBUG(dbgs() << "[Attributor] Value is stored, continue with " << PotentialCopies.size() << " potential copies instead!\n"); for (Value *PotentialCopy : PotentialCopies) for (const Use &CopyUse : PotentialCopy->uses()) { if (EquivalentUseCB && !EquivalentUseCB(*U, CopyUse)) { LLVM_DEBUG(dbgs() << "[Attributor] Potential copy was " "rejected by the equivalence call back: " << *CopyUse << "!\n"); return false; } Worklist.push_back(&CopyUse); } continue; } } } bool Follow = false; if (!Pred(*U, Follow)) return false; if (!Follow) continue; for (const Use &UU : U->getUser()->uses()) Worklist.push_back(&UU); } return true; } bool Attributor::checkForAllCallSites(function_ref Pred, const AbstractAttribute &QueryingAA, bool RequireAllCallSites, bool &UsedAssumedInformation) { // We can try to determine information from // the call sites. However, this is only possible all call sites are known, // hence the function has internal linkage. const IRPosition &IRP = QueryingAA.getIRPosition(); const Function *AssociatedFunction = IRP.getAssociatedFunction(); if (!AssociatedFunction) { LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP << "\n"); return false; } return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites, &QueryingAA, UsedAssumedInformation); } bool Attributor::checkForAllCallSites(function_ref Pred, const Function &Fn, bool RequireAllCallSites, const AbstractAttribute *QueryingAA, bool &UsedAssumedInformation) { if (RequireAllCallSites && !Fn.hasLocalLinkage()) { LLVM_DEBUG( dbgs() << "[Attributor] Function " << Fn.getName() << " has no internal linkage, hence not all call sites are known\n"); return false; } SmallVector Uses(make_pointer_range(Fn.uses())); for (unsigned u = 0; u < Uses.size(); ++u) { const Use &U = *Uses[u]; LLVM_DEBUG({ if (auto *Fn = dyn_cast(U)) dbgs() << "[Attributor] Check use: " << Fn->getName() << " in " << *U.getUser() << "\n"; else dbgs() << "[Attributor] Check use: " << *U << " in " << *U.getUser() << "\n"; }); if (isAssumedDead(U, QueryingAA, nullptr, UsedAssumedInformation, /* CheckBBLivenessOnly */ true)) { LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n"); continue; } if (ConstantExpr *CE = dyn_cast(U.getUser())) { if (CE->isCast() && CE->getType()->isPointerTy() && CE->getType()->getPointerElementType()->isFunctionTy()) { LLVM_DEBUG( dbgs() << "[Attributor] Use, is constant cast expression, add " << CE->getNumUses() << " uses of that expression instead!\n"); for (const Use &CEU : CE->uses()) Uses.push_back(&CEU); continue; } } AbstractCallSite ACS(&U); if (!ACS) { LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName() << " has non call site use " << *U.get() << " in " << *U.getUser() << "\n"); // BlockAddress users are allowed. if (isa(U.getUser())) continue; return false; } const Use *EffectiveUse = ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U; if (!ACS.isCallee(EffectiveUse)) { if (!RequireAllCallSites) { LLVM_DEBUG(dbgs() << "[Attributor] User " << *EffectiveUse->getUser() << " is not a call of " << Fn.getName() << ", skip use\n"); continue; } LLVM_DEBUG(dbgs() << "[Attributor] User " << *EffectiveUse->getUser() << " is an invalid use of " << Fn.getName() << "\n"); return false; } // Make sure the arguments that can be matched between the call site and the // callee argee on their type. It is unlikely they do not and it doesn't // make sense for all attributes to know/care about this. assert(&Fn == ACS.getCalledFunction() && "Expected known callee"); unsigned MinArgsParams = std::min(size_t(ACS.getNumArgOperands()), Fn.arg_size()); for (unsigned u = 0; u < MinArgsParams; ++u) { Value *CSArgOp = ACS.getCallArgOperand(u); if (CSArgOp && Fn.getArg(u)->getType() != CSArgOp->getType()) { LLVM_DEBUG( dbgs() << "[Attributor] Call site / callee argument type mismatch [" << u << "@" << Fn.getName() << ": " << *Fn.getArg(u)->getType() << " vs. " << *ACS.getCallArgOperand(u)->getType() << "\n"); return false; } } if (Pred(ACS)) continue; LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for " << *ACS.getInstruction() << "\n"); return false; } return true; } bool Attributor::shouldPropagateCallBaseContext(const IRPosition &IRP) { // TODO: Maintain a cache of Values that are // on the pathway from a Argument to a Instruction that would effect the // liveness/return state etc. return EnableCallSiteSpecific; } bool Attributor::checkForAllReturnedValuesAndReturnInsts( function_ref &)> Pred, const AbstractAttribute &QueryingAA) { const IRPosition &IRP = QueryingAA.getIRPosition(); // Since we need to provide return instructions we have to have an exact // definition. const Function *AssociatedFunction = IRP.getAssociatedFunction(); if (!AssociatedFunction) return false; // If this is a call site query we use the call site specific return values // and liveness information. // TODO: use the function scope once we have call site AAReturnedValues. const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction); const auto &AARetVal = getAAFor(QueryingAA, QueryIRP, DepClassTy::REQUIRED); if (!AARetVal.getState().isValidState()) return false; return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred); } bool Attributor::checkForAllReturnedValues( function_ref Pred, const AbstractAttribute &QueryingAA) { const IRPosition &IRP = QueryingAA.getIRPosition(); const Function *AssociatedFunction = IRP.getAssociatedFunction(); if (!AssociatedFunction) return false; // TODO: use the function scope once we have call site AAReturnedValues. const IRPosition &QueryIRP = IRPosition::function( *AssociatedFunction, QueryingAA.getCallBaseContext()); const auto &AARetVal = getAAFor(QueryingAA, QueryIRP, DepClassTy::REQUIRED); if (!AARetVal.getState().isValidState()) return false; return AARetVal.checkForAllReturnedValuesAndReturnInsts( [&](Value &RV, const SmallSetVector &) { return Pred(RV); }); } static bool checkForAllInstructionsImpl( Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap, function_ref Pred, const AbstractAttribute *QueryingAA, const AAIsDead *LivenessAA, const ArrayRef &Opcodes, bool &UsedAssumedInformation, bool CheckBBLivenessOnly = false, bool CheckPotentiallyDead = false) { for (unsigned Opcode : Opcodes) { // Check if we have instructions with this opcode at all first. auto *Insts = OpcodeInstMap.lookup(Opcode); if (!Insts) continue; for (Instruction *I : *Insts) { // Skip dead instructions. if (A && !CheckPotentiallyDead && A->isAssumedDead(IRPosition::inst(*I), QueryingAA, LivenessAA, UsedAssumedInformation, CheckBBLivenessOnly)) { LLVM_DEBUG(dbgs() << "[Attributor] Instruction " << *I << " is potentially dead, skip!\n";); continue; } if (!Pred(*I)) return false; } } return true; } bool Attributor::checkForAllInstructions(function_ref Pred, const AbstractAttribute &QueryingAA, const ArrayRef &Opcodes, bool &UsedAssumedInformation, bool CheckBBLivenessOnly, bool CheckPotentiallyDead) { const IRPosition &IRP = QueryingAA.getIRPosition(); // Since we need to provide instructions we have to have an exact definition. const Function *AssociatedFunction = IRP.getAssociatedFunction(); if (!AssociatedFunction) return false; if (AssociatedFunction->isDeclaration()) return false; // TODO: use the function scope once we have call site AAReturnedValues. const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction); const auto *LivenessAA = (CheckBBLivenessOnly || CheckPotentiallyDead) ? nullptr : &(getAAFor(QueryingAA, QueryIRP, DepClassTy::NONE)); auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*AssociatedFunction); if (!checkForAllInstructionsImpl(this, OpcodeInstMap, Pred, &QueryingAA, LivenessAA, Opcodes, UsedAssumedInformation, CheckBBLivenessOnly, CheckPotentiallyDead)) return false; return true; } bool Attributor::checkForAllReadWriteInstructions( function_ref Pred, AbstractAttribute &QueryingAA, bool &UsedAssumedInformation) { const Function *AssociatedFunction = QueryingAA.getIRPosition().getAssociatedFunction(); if (!AssociatedFunction) return false; // TODO: use the function scope once we have call site AAReturnedValues. const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction); const auto &LivenessAA = getAAFor(QueryingAA, QueryIRP, DepClassTy::NONE); for (Instruction *I : InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) { // Skip dead instructions. if (isAssumedDead(IRPosition::inst(*I), &QueryingAA, &LivenessAA, UsedAssumedInformation)) continue; if (!Pred(*I)) return false; } return true; } void Attributor::runTillFixpoint() { TimeTraceScope TimeScope("Attributor::runTillFixpoint"); LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized " << DG.SyntheticRoot.Deps.size() << " abstract attributes.\n"); // Now that all abstract attributes are collected and initialized we start // the abstract analysis. unsigned IterationCounter = 1; unsigned MaxFixedPointIterations; if (MaxFixpointIterations) MaxFixedPointIterations = MaxFixpointIterations.getValue(); else MaxFixedPointIterations = SetFixpointIterations; SmallVector ChangedAAs; SetVector Worklist, InvalidAAs; Worklist.insert(DG.SyntheticRoot.begin(), DG.SyntheticRoot.end()); do { // Remember the size to determine new attributes. size_t NumAAs = DG.SyntheticRoot.Deps.size(); LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter << ", Worklist size: " << Worklist.size() << "\n"); // For invalid AAs we can fix dependent AAs that have a required dependence, // thereby folding long dependence chains in a single step without the need // to run updates. for (unsigned u = 0; u < InvalidAAs.size(); ++u) { AbstractAttribute *InvalidAA = InvalidAAs[u]; // Check the dependences to fast track invalidation. LLVM_DEBUG(dbgs() << "[Attributor] InvalidAA: " << *InvalidAA << " has " << InvalidAA->Deps.size() << " required & optional dependences\n"); while (!InvalidAA->Deps.empty()) { const auto &Dep = InvalidAA->Deps.back(); InvalidAA->Deps.pop_back(); AbstractAttribute *DepAA = cast(Dep.getPointer()); if (Dep.getInt() == unsigned(DepClassTy::OPTIONAL)) { LLVM_DEBUG(dbgs() << " - recompute: " << *DepAA); Worklist.insert(DepAA); continue; } LLVM_DEBUG(dbgs() << " - invalidate: " << *DepAA); DepAA->getState().indicatePessimisticFixpoint(); assert(DepAA->getState().isAtFixpoint() && "Expected fixpoint state!"); if (!DepAA->getState().isValidState()) InvalidAAs.insert(DepAA); else ChangedAAs.push_back(DepAA); } } // Add all abstract attributes that are potentially dependent on one that // changed to the work list. for (AbstractAttribute *ChangedAA : ChangedAAs) while (!ChangedAA->Deps.empty()) { Worklist.insert( cast(ChangedAA->Deps.back().getPointer())); ChangedAA->Deps.pop_back(); } LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter << ", Worklist+Dependent size: " << Worklist.size() << "\n"); // Reset the changed and invalid set. ChangedAAs.clear(); InvalidAAs.clear(); // Update all abstract attribute in the work list and record the ones that // changed. for (AbstractAttribute *AA : Worklist) { const auto &AAState = AA->getState(); if (!AAState.isAtFixpoint()) if (updateAA(*AA) == ChangeStatus::CHANGED) ChangedAAs.push_back(AA); // Use the InvalidAAs vector to propagate invalid states fast transitively // without requiring updates. if (!AAState.isValidState()) InvalidAAs.insert(AA); } // Add attributes to the changed set if they have been created in the last // iteration. ChangedAAs.append(DG.SyntheticRoot.begin() + NumAAs, DG.SyntheticRoot.end()); // Reset the work list and repopulate with the changed abstract attributes. // Note that dependent ones are added above. Worklist.clear(); Worklist.insert(ChangedAAs.begin(), ChangedAAs.end()); Worklist.insert(QueryAAsAwaitingUpdate.begin(), QueryAAsAwaitingUpdate.end()); QueryAAsAwaitingUpdate.clear(); } while (!Worklist.empty() && (IterationCounter++ < MaxFixedPointIterations || VerifyMaxFixpointIterations)); if (IterationCounter > MaxFixedPointIterations && !Worklist.empty()) { auto Remark = [&](OptimizationRemarkMissed ORM) { return ORM << "Attributor did not reach a fixpoint after " << ore::NV("Iterations", MaxFixedPointIterations) << " iterations."; }; Function *F = Worklist.front()->getIRPosition().getAssociatedFunction(); emitRemark(F, "FixedPoint", Remark); } LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: " << IterationCounter << "/" << MaxFixpointIterations << " iterations\n"); // Reset abstract arguments not settled in a sound fixpoint by now. This // happens when we stopped the fixpoint iteration early. Note that only the // ones marked as "changed" *and* the ones transitively depending on them // need to be reverted to a pessimistic state. Others might not be in a // fixpoint state but we can use the optimistic results for them anyway. SmallPtrSet Visited; for (unsigned u = 0; u < ChangedAAs.size(); u++) { AbstractAttribute *ChangedAA = ChangedAAs[u]; if (!Visited.insert(ChangedAA).second) continue; AbstractState &State = ChangedAA->getState(); if (!State.isAtFixpoint()) { State.indicatePessimisticFixpoint(); NumAttributesTimedOut++; } while (!ChangedAA->Deps.empty()) { ChangedAAs.push_back( cast(ChangedAA->Deps.back().getPointer())); ChangedAA->Deps.pop_back(); } } LLVM_DEBUG({ if (!Visited.empty()) dbgs() << "\n[Attributor] Finalized " << Visited.size() << " abstract attributes.\n"; }); if (VerifyMaxFixpointIterations && IterationCounter != MaxFixedPointIterations) { errs() << "\n[Attributor] Fixpoint iteration done after: " << IterationCounter << "/" << MaxFixedPointIterations << " iterations\n"; llvm_unreachable("The fixpoint was not reached with exactly the number of " "specified iterations!"); } } void Attributor::registerForUpdate(AbstractAttribute &AA) { assert(AA.isQueryAA() && "Non-query AAs should not be required to register for updates!"); QueryAAsAwaitingUpdate.insert(&AA); } ChangeStatus Attributor::manifestAttributes() { TimeTraceScope TimeScope("Attributor::manifestAttributes"); size_t NumFinalAAs = DG.SyntheticRoot.Deps.size(); unsigned NumManifested = 0; unsigned NumAtFixpoint = 0; ChangeStatus ManifestChange = ChangeStatus::UNCHANGED; for (auto &DepAA : DG.SyntheticRoot.Deps) { AbstractAttribute *AA = cast(DepAA.getPointer()); AbstractState &State = AA->getState(); // If there is not already a fixpoint reached, we can now take the // optimistic state. This is correct because we enforced a pessimistic one // on abstract attributes that were transitively dependent on a changed one // already above. if (!State.isAtFixpoint()) State.indicateOptimisticFixpoint(); // We must not manifest Attributes that use Callbase info. if (AA->hasCallBaseContext()) continue; // If the state is invalid, we do not try to manifest it. if (!State.isValidState()) continue; // Skip dead code. bool UsedAssumedInformation = false; if (isAssumedDead(*AA, nullptr, UsedAssumedInformation, /* CheckBBLivenessOnly */ true)) continue; // Check if the manifest debug counter that allows skipping manifestation of // AAs if (!DebugCounter::shouldExecute(ManifestDBGCounter)) continue; // Manifest the state and record if we changed the IR. ChangeStatus LocalChange = AA->manifest(*this); if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled()) AA->trackStatistics(); LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AA << "\n"); ManifestChange = ManifestChange | LocalChange; NumAtFixpoint++; NumManifested += (LocalChange == ChangeStatus::CHANGED); } (void)NumManifested; (void)NumAtFixpoint; LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested << " arguments while " << NumAtFixpoint << " were in a valid fixpoint state\n"); NumAttributesManifested += NumManifested; NumAttributesValidFixpoint += NumAtFixpoint; (void)NumFinalAAs; if (NumFinalAAs != DG.SyntheticRoot.Deps.size()) { for (unsigned u = NumFinalAAs; u < DG.SyntheticRoot.Deps.size(); ++u) errs() << "Unexpected abstract attribute: " << cast(DG.SyntheticRoot.Deps[u].getPointer()) << " :: " << cast(DG.SyntheticRoot.Deps[u].getPointer()) ->getIRPosition() .getAssociatedValue() << "\n"; llvm_unreachable("Expected the final number of abstract attributes to " "remain unchanged!"); } return ManifestChange; } void Attributor::identifyDeadInternalFunctions() { // Early exit if we don't intend to delete functions. if (!DeleteFns) return; // Identify dead internal functions and delete them. This happens outside // the other fixpoint analysis as we might treat potentially dead functions // as live to lower the number of iterations. If they happen to be dead, the // below fixpoint loop will identify and eliminate them. SmallVector InternalFns; for (Function *F : Functions) if (F->hasLocalLinkage()) InternalFns.push_back(F); SmallPtrSet LiveInternalFns; bool FoundLiveInternal = true; while (FoundLiveInternal) { FoundLiveInternal = false; for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) { Function *F = InternalFns[u]; if (!F) continue; bool UsedAssumedInformation = false; if (checkForAllCallSites( [&](AbstractCallSite ACS) { Function *Callee = ACS.getInstruction()->getFunction(); return ToBeDeletedFunctions.count(Callee) || (Functions.count(Callee) && Callee->hasLocalLinkage() && !LiveInternalFns.count(Callee)); }, *F, true, nullptr, UsedAssumedInformation)) { continue; } LiveInternalFns.insert(F); InternalFns[u] = nullptr; FoundLiveInternal = true; } } for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) if (Function *F = InternalFns[u]) ToBeDeletedFunctions.insert(F); } ChangeStatus Attributor::cleanupIR() { TimeTraceScope TimeScope("Attributor::cleanupIR"); // Delete stuff at the end to avoid invalid references and a nice order. LLVM_DEBUG(dbgs() << "\n[Attributor] Delete/replace at least " << ToBeDeletedFunctions.size() << " functions and " << ToBeDeletedBlocks.size() << " blocks and " << ToBeDeletedInsts.size() << " instructions and " << ToBeChangedValues.size() << " values and " << ToBeChangedUses.size() << " uses. " << "Preserve manifest added " << ManifestAddedBlocks.size() << " blocks\n"); SmallVector DeadInsts; SmallVector TerminatorsToFold; auto ReplaceUse = [&](Use *U, Value *NewV) { Value *OldV = U->get(); // If we plan to replace NewV we need to update it at this point. do { const auto &Entry = ToBeChangedValues.lookup(NewV); if (!Entry.first) break; NewV = Entry.first; } while (true); // Do not replace uses in returns if the value is a must-tail call we will // not delete. if (auto *RI = dyn_cast(U->getUser())) { if (auto *CI = dyn_cast(OldV->stripPointerCasts())) if (CI->isMustTailCall() && (!ToBeDeletedInsts.count(CI) || !isRunOn(*CI->getCaller()))) return; // If we rewrite a return and the new value is not an argument, strip the // `returned` attribute as it is wrong now. if (!isa(NewV)) for (auto &Arg : RI->getFunction()->args()) Arg.removeAttr(Attribute::Returned); } // Do not perform call graph altering changes outside the SCC. if (auto *CB = dyn_cast(U->getUser())) if (CB->isCallee(U) && !isRunOn(*CB->getCaller())) return; LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser() << " instead of " << *OldV << "\n"); U->set(NewV); if (Instruction *I = dyn_cast(OldV)) { CGModifiedFunctions.insert(I->getFunction()); if (!isa(I) && !ToBeDeletedInsts.count(I) && isInstructionTriviallyDead(I)) DeadInsts.push_back(I); } if (isa(NewV) && isa(U->getUser())) { auto *CB = cast(U->getUser()); if (CB->isArgOperand(U)) { unsigned Idx = CB->getArgOperandNo(U); CB->removeParamAttr(Idx, Attribute::NoUndef); Function *Fn = CB->getCalledFunction(); if (Fn && Fn->arg_size() > Idx) Fn->removeParamAttr(Idx, Attribute::NoUndef); } } if (isa(NewV) && isa(U->getUser())) { Instruction *UserI = cast(U->getUser()); if (isa(NewV)) { ToBeChangedToUnreachableInsts.insert(UserI); } else { TerminatorsToFold.push_back(UserI); } } }; for (auto &It : ToBeChangedUses) { Use *U = It.first; Value *NewV = It.second; ReplaceUse(U, NewV); } SmallVector Uses; for (auto &It : ToBeChangedValues) { Value *OldV = It.first; auto &Entry = It.second; Value *NewV = Entry.first; Uses.clear(); for (auto &U : OldV->uses()) if (Entry.second || !U.getUser()->isDroppable()) Uses.push_back(&U); for (Use *U : Uses) ReplaceUse(U, NewV); } for (auto &V : InvokeWithDeadSuccessor) if (InvokeInst *II = dyn_cast_or_null(V)) { assert(isRunOn(*II->getFunction()) && "Cannot replace an invoke outside the current SCC!"); bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind); bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn); bool Invoke2CallAllowed = !AAIsDead::mayCatchAsynchronousExceptions(*II->getFunction()); assert((UnwindBBIsDead || NormalBBIsDead) && "Invoke does not have dead successors!"); BasicBlock *BB = II->getParent(); BasicBlock *NormalDestBB = II->getNormalDest(); if (UnwindBBIsDead) { Instruction *NormalNextIP = &NormalDestBB->front(); if (Invoke2CallAllowed) { changeToCall(II); NormalNextIP = BB->getTerminator(); } if (NormalBBIsDead) ToBeChangedToUnreachableInsts.insert(NormalNextIP); } else { assert(NormalBBIsDead && "Broken invariant!"); if (!NormalDestBB->getUniquePredecessor()) NormalDestBB = SplitBlockPredecessors(NormalDestBB, {BB}, ".dead"); ToBeChangedToUnreachableInsts.insert(&NormalDestBB->front()); } } for (Instruction *I : TerminatorsToFold) { if (!isRunOn(*I->getFunction())) continue; CGModifiedFunctions.insert(I->getFunction()); ConstantFoldTerminator(I->getParent()); } for (auto &V : ToBeChangedToUnreachableInsts) if (Instruction *I = dyn_cast_or_null(V)) { if (!isRunOn(*I->getFunction())) continue; CGModifiedFunctions.insert(I->getFunction()); changeToUnreachable(I); } for (auto &V : ToBeDeletedInsts) { if (Instruction *I = dyn_cast_or_null(V)) { if (auto *CB = dyn_cast(I)) { if (!isRunOn(*I->getFunction())) continue; if (!isa(CB)) CGUpdater.removeCallSite(*CB); } I->dropDroppableUses(); CGModifiedFunctions.insert(I->getFunction()); if (!I->getType()->isVoidTy()) I->replaceAllUsesWith(UndefValue::get(I->getType())); if (!isa(I) && isInstructionTriviallyDead(I)) DeadInsts.push_back(I); else I->eraseFromParent(); } } llvm::erase_if(DeadInsts, [&](WeakTrackingVH I) { return !I || !isRunOn(*cast(I)->getFunction()); }); LLVM_DEBUG({ dbgs() << "[Attributor] DeadInsts size: " << DeadInsts.size() << "\n"; for (auto &I : DeadInsts) if (I) dbgs() << " - " << *I << "\n"; }); RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) { SmallVector ToBeDeletedBBs; ToBeDeletedBBs.reserve(NumDeadBlocks); for (BasicBlock *BB : ToBeDeletedBlocks) { assert(isRunOn(*BB->getParent()) && "Cannot delete a block outside the current SCC!"); CGModifiedFunctions.insert(BB->getParent()); // Do not delete BBs added during manifests of AAs. if (ManifestAddedBlocks.contains(BB)) continue; ToBeDeletedBBs.push_back(BB); } // Actually we do not delete the blocks but squash them into a single // unreachable but untangling branches that jump here is something we need // to do in a more generic way. detachDeadBlocks(ToBeDeletedBBs, nullptr); } identifyDeadInternalFunctions(); // Rewrite the functions as requested during manifest. ChangeStatus ManifestChange = rewriteFunctionSignatures(CGModifiedFunctions); for (Function *Fn : CGModifiedFunctions) if (!ToBeDeletedFunctions.count(Fn) && Functions.count(Fn)) CGUpdater.reanalyzeFunction(*Fn); for (Function *Fn : ToBeDeletedFunctions) { if (!Functions.count(Fn)) continue; CGUpdater.removeFunction(*Fn); } if (!ToBeChangedUses.empty()) ManifestChange = ChangeStatus::CHANGED; if (!ToBeChangedToUnreachableInsts.empty()) ManifestChange = ChangeStatus::CHANGED; if (!ToBeDeletedFunctions.empty()) ManifestChange = ChangeStatus::CHANGED; if (!ToBeDeletedBlocks.empty()) ManifestChange = ChangeStatus::CHANGED; if (!ToBeDeletedInsts.empty()) ManifestChange = ChangeStatus::CHANGED; if (!InvokeWithDeadSuccessor.empty()) ManifestChange = ChangeStatus::CHANGED; if (!DeadInsts.empty()) ManifestChange = ChangeStatus::CHANGED; NumFnDeleted += ToBeDeletedFunctions.size(); LLVM_DEBUG(dbgs() << "[Attributor] Deleted " << ToBeDeletedFunctions.size() << " functions after manifest.\n"); #ifdef EXPENSIVE_CHECKS for (Function *F : Functions) { if (ToBeDeletedFunctions.count(F)) continue; assert(!verifyFunction(*F, &errs()) && "Module verification failed!"); } #endif return ManifestChange; } ChangeStatus Attributor::run() { TimeTraceScope TimeScope("Attributor::run"); AttributorCallGraph ACallGraph(*this); if (PrintCallGraph) ACallGraph.populateAll(); Phase = AttributorPhase::UPDATE; runTillFixpoint(); // dump graphs on demand if (DumpDepGraph) DG.dumpGraph(); if (ViewDepGraph) DG.viewGraph(); if (PrintDependencies) DG.print(); Phase = AttributorPhase::MANIFEST; ChangeStatus ManifestChange = manifestAttributes(); Phase = AttributorPhase::CLEANUP; ChangeStatus CleanupChange = cleanupIR(); if (PrintCallGraph) ACallGraph.print(); return ManifestChange | CleanupChange; } ChangeStatus Attributor::updateAA(AbstractAttribute &AA) { TimeTraceScope TimeScope( AA.getName() + std::to_string(AA.getIRPosition().getPositionKind()) + "::updateAA"); assert(Phase == AttributorPhase::UPDATE && "We can update AA only in the update stage!"); // Use a new dependence vector for this update. DependenceVector DV; DependenceStack.push_back(&DV); auto &AAState = AA.getState(); ChangeStatus CS = ChangeStatus::UNCHANGED; bool UsedAssumedInformation = false; if (!isAssumedDead(AA, nullptr, UsedAssumedInformation, /* CheckBBLivenessOnly */ true)) CS = AA.update(*this); if (!AA.isQueryAA() && DV.empty()) { // If the attribute did not query any non-fix information, the state // will not change and we can indicate that right away. AAState.indicateOptimisticFixpoint(); } if (!AAState.isAtFixpoint()) rememberDependences(); // Verify the stack was used properly, that is we pop the dependence vector we // put there earlier. DependenceVector *PoppedDV = DependenceStack.pop_back_val(); (void)PoppedDV; assert(PoppedDV == &DV && "Inconsistent usage of the dependence stack!"); return CS; } void Attributor::createShallowWrapper(Function &F) { assert(!F.isDeclaration() && "Cannot create a wrapper around a declaration!"); Module &M = *F.getParent(); LLVMContext &Ctx = M.getContext(); FunctionType *FnTy = F.getFunctionType(); Function *Wrapper = Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(), F.getName()); F.setName(""); // set the inside function anonymous M.getFunctionList().insert(F.getIterator(), Wrapper); F.setLinkage(GlobalValue::InternalLinkage); F.replaceAllUsesWith(Wrapper); assert(F.use_empty() && "Uses remained after wrapper was created!"); // Move the COMDAT section to the wrapper. // TODO: Check if we need to keep it for F as well. Wrapper->setComdat(F.getComdat()); F.setComdat(nullptr); // Copy all metadata and attributes but keep them on F as well. SmallVector, 1> MDs; F.getAllMetadata(MDs); for (auto MDIt : MDs) Wrapper->addMetadata(MDIt.first, *MDIt.second); Wrapper->setAttributes(F.getAttributes()); // Create the call in the wrapper. BasicBlock *EntryBB = BasicBlock::Create(Ctx, "entry", Wrapper); SmallVector Args; Argument *FArgIt = F.arg_begin(); for (Argument &Arg : Wrapper->args()) { Args.push_back(&Arg); Arg.setName((FArgIt++)->getName()); } CallInst *CI = CallInst::Create(&F, Args, "", EntryBB); CI->setTailCall(true); CI->addFnAttr(Attribute::NoInline); ReturnInst::Create(Ctx, CI->getType()->isVoidTy() ? nullptr : CI, EntryBB); NumFnShallowWrappersCreated++; } bool Attributor::isInternalizable(Function &F) { if (F.isDeclaration() || F.hasLocalLinkage() || GlobalValue::isInterposableLinkage(F.getLinkage())) return false; return true; } Function *Attributor::internalizeFunction(Function &F, bool Force) { if (!AllowDeepWrapper && !Force) return nullptr; if (!isInternalizable(F)) return nullptr; SmallPtrSet FnSet = {&F}; DenseMap InternalizedFns; internalizeFunctions(FnSet, InternalizedFns); return InternalizedFns[&F]; } bool Attributor::internalizeFunctions(SmallPtrSetImpl &FnSet, DenseMap &FnMap) { for (Function *F : FnSet) if (!Attributor::isInternalizable(*F)) return false; FnMap.clear(); // Generate the internalized version of each function. for (Function *F : FnSet) { Module &M = *F->getParent(); FunctionType *FnTy = F->getFunctionType(); // Create a copy of the current function Function *Copied = Function::Create(FnTy, F->getLinkage(), F->getAddressSpace(), F->getName() + ".internalized"); ValueToValueMapTy VMap; auto *NewFArgIt = Copied->arg_begin(); for (auto &Arg : F->args()) { auto ArgName = Arg.getName(); NewFArgIt->setName(ArgName); VMap[&Arg] = &(*NewFArgIt++); } SmallVector Returns; // Copy the body of the original function to the new one CloneFunctionInto(Copied, F, VMap, CloneFunctionChangeType::LocalChangesOnly, Returns); // Set the linakage and visibility late as CloneFunctionInto has some // implicit requirements. Copied->setVisibility(GlobalValue::DefaultVisibility); Copied->setLinkage(GlobalValue::PrivateLinkage); // Copy metadata SmallVector, 1> MDs; F->getAllMetadata(MDs); for (auto MDIt : MDs) if (!Copied->hasMetadata()) Copied->addMetadata(MDIt.first, *MDIt.second); M.getFunctionList().insert(F->getIterator(), Copied); Copied->setDSOLocal(true); FnMap[F] = Copied; } // Replace all uses of the old function with the new internalized function // unless the caller is a function that was just internalized. for (Function *F : FnSet) { auto &InternalizedFn = FnMap[F]; auto IsNotInternalized = [&](Use &U) -> bool { if (auto *CB = dyn_cast(U.getUser())) return !FnMap.lookup(CB->getCaller()); return false; }; F->replaceUsesWithIf(InternalizedFn, IsNotInternalized); } return true; } bool Attributor::isValidFunctionSignatureRewrite( Argument &Arg, ArrayRef ReplacementTypes) { if (!RewriteSignatures) return false; Function *Fn = Arg.getParent(); auto CallSiteCanBeChanged = [Fn](AbstractCallSite ACS) { // Forbid the call site to cast the function return type. If we need to // rewrite these functions we need to re-create a cast for the new call site // (if the old had uses). if (!ACS.getCalledFunction() || ACS.getInstruction()->getType() != ACS.getCalledFunction()->getReturnType()) return false; if (ACS.getCalledOperand()->getType() != Fn->getType()) return false; // Forbid must-tail calls for now. return !ACS.isCallbackCall() && !ACS.getInstruction()->isMustTailCall(); }; // Avoid var-arg functions for now. if (Fn->isVarArg()) { LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n"); return false; } // Avoid functions with complicated argument passing semantics. AttributeList FnAttributeList = Fn->getAttributes(); if (FnAttributeList.hasAttrSomewhere(Attribute::Nest) || FnAttributeList.hasAttrSomewhere(Attribute::StructRet) || FnAttributeList.hasAttrSomewhere(Attribute::InAlloca) || FnAttributeList.hasAttrSomewhere(Attribute::Preallocated)) { LLVM_DEBUG( dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n"); return false; } // Avoid callbacks for now. bool UsedAssumedInformation = false; if (!checkForAllCallSites(CallSiteCanBeChanged, *Fn, true, nullptr, UsedAssumedInformation)) { LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n"); return false; } auto InstPred = [](Instruction &I) { if (auto *CI = dyn_cast(&I)) return !CI->isMustTailCall(); return true; }; // Forbid must-tail calls for now. // TODO: auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn); if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap, InstPred, nullptr, nullptr, {Instruction::Call}, UsedAssumedInformation)) { LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n"); return false; } return true; } bool Attributor::registerFunctionSignatureRewrite( Argument &Arg, ArrayRef ReplacementTypes, ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB, ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) { LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in " << Arg.getParent()->getName() << " with " << ReplacementTypes.size() << " replacements\n"); assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) && "Cannot register an invalid rewrite"); Function *Fn = Arg.getParent(); SmallVectorImpl> &ARIs = ArgumentReplacementMap[Fn]; if (ARIs.empty()) ARIs.resize(Fn->arg_size()); // If we have a replacement already with less than or equal new arguments, // ignore this request. std::unique_ptr &ARI = ARIs[Arg.getArgNo()]; if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) { LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n"); return false; } // If we have a replacement already but we like the new one better, delete // the old. ARI.reset(); LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in " << Arg.getParent()->getName() << " with " << ReplacementTypes.size() << " replacements\n"); // Remember the replacement. ARI.reset(new ArgumentReplacementInfo(*this, Arg, ReplacementTypes, std::move(CalleeRepairCB), std::move(ACSRepairCB))); return true; } bool Attributor::shouldSeedAttribute(AbstractAttribute &AA) { bool Result = true; #ifndef NDEBUG if (SeedAllowList.size() != 0) Result = llvm::is_contained(SeedAllowList, AA.getName()); Function *Fn = AA.getAnchorScope(); if (FunctionSeedAllowList.size() != 0 && Fn) Result &= llvm::is_contained(FunctionSeedAllowList, Fn->getName()); #endif return Result; } ChangeStatus Attributor::rewriteFunctionSignatures( SmallPtrSetImpl &ModifiedFns) { ChangeStatus Changed = ChangeStatus::UNCHANGED; for (auto &It : ArgumentReplacementMap) { Function *OldFn = It.getFirst(); // Deleted functions do not require rewrites. if (!Functions.count(OldFn) || ToBeDeletedFunctions.count(OldFn)) continue; const SmallVectorImpl> &ARIs = It.getSecond(); assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!"); SmallVector NewArgumentTypes; SmallVector NewArgumentAttributes; // Collect replacement argument types and copy over existing attributes. AttributeList OldFnAttributeList = OldFn->getAttributes(); for (Argument &Arg : OldFn->args()) { if (const std::unique_ptr &ARI = ARIs[Arg.getArgNo()]) { NewArgumentTypes.append(ARI->ReplacementTypes.begin(), ARI->ReplacementTypes.end()); NewArgumentAttributes.append(ARI->getNumReplacementArgs(), AttributeSet()); } else { NewArgumentTypes.push_back(Arg.getType()); NewArgumentAttributes.push_back( OldFnAttributeList.getParamAttrs(Arg.getArgNo())); } } FunctionType *OldFnTy = OldFn->getFunctionType(); Type *RetTy = OldFnTy->getReturnType(); // Construct the new function type using the new arguments types. FunctionType *NewFnTy = FunctionType::get(RetTy, NewArgumentTypes, OldFnTy->isVarArg()); LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName() << "' from " << *OldFn->getFunctionType() << " to " << *NewFnTy << "\n"); // Create the new function body and insert it into the module. Function *NewFn = Function::Create(NewFnTy, OldFn->getLinkage(), OldFn->getAddressSpace(), ""); Functions.insert(NewFn); OldFn->getParent()->getFunctionList().insert(OldFn->getIterator(), NewFn); NewFn->takeName(OldFn); NewFn->copyAttributesFrom(OldFn); // Patch the pointer to LLVM function in debug info descriptor. NewFn->setSubprogram(OldFn->getSubprogram()); OldFn->setSubprogram(nullptr); // Recompute the parameter attributes list based on the new arguments for // the function. LLVMContext &Ctx = OldFn->getContext(); NewFn->setAttributes(AttributeList::get( Ctx, OldFnAttributeList.getFnAttrs(), OldFnAttributeList.getRetAttrs(), NewArgumentAttributes)); // Since we have now created the new function, splice the body of the old // function right into the new function, leaving the old rotting hulk of the // function empty. NewFn->getBasicBlockList().splice(NewFn->begin(), OldFn->getBasicBlockList()); // Fixup block addresses to reference new function. SmallVector BlockAddresses; for (User *U : OldFn->users()) if (auto *BA = dyn_cast(U)) BlockAddresses.push_back(BA); for (auto *BA : BlockAddresses) BA->replaceAllUsesWith(BlockAddress::get(NewFn, BA->getBasicBlock())); // Set of all "call-like" instructions that invoke the old function mapped // to their new replacements. SmallVector, 8> CallSitePairs; // Callback to create a new "call-like" instruction for a given one. auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) { CallBase *OldCB = cast(ACS.getInstruction()); const AttributeList &OldCallAttributeList = OldCB->getAttributes(); // Collect the new argument operands for the replacement call site. SmallVector NewArgOperands; SmallVector NewArgOperandAttributes; for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) { unsigned NewFirstArgNum = NewArgOperands.size(); (void)NewFirstArgNum; // only used inside assert. if (const std::unique_ptr &ARI = ARIs[OldArgNum]) { if (ARI->ACSRepairCB) ARI->ACSRepairCB(*ARI, ACS, NewArgOperands); assert(ARI->getNumReplacementArgs() + NewFirstArgNum == NewArgOperands.size() && "ACS repair callback did not provide as many operand as new " "types were registered!"); // TODO: Exose the attribute set to the ACS repair callback NewArgOperandAttributes.append(ARI->ReplacementTypes.size(), AttributeSet()); } else { NewArgOperands.push_back(ACS.getCallArgOperand(OldArgNum)); NewArgOperandAttributes.push_back( OldCallAttributeList.getParamAttrs(OldArgNum)); } } assert(NewArgOperands.size() == NewArgOperandAttributes.size() && "Mismatch # argument operands vs. # argument operand attributes!"); assert(NewArgOperands.size() == NewFn->arg_size() && "Mismatch # argument operands vs. # function arguments!"); SmallVector OperandBundleDefs; OldCB->getOperandBundlesAsDefs(OperandBundleDefs); // Create a new call or invoke instruction to replace the old one. CallBase *NewCB; if (InvokeInst *II = dyn_cast(OldCB)) { NewCB = InvokeInst::Create(NewFn, II->getNormalDest(), II->getUnwindDest(), NewArgOperands, OperandBundleDefs, "", OldCB); } else { auto *NewCI = CallInst::Create(NewFn, NewArgOperands, OperandBundleDefs, "", OldCB); NewCI->setTailCallKind(cast(OldCB)->getTailCallKind()); NewCB = NewCI; } // Copy over various properties and the new attributes. NewCB->copyMetadata(*OldCB, {LLVMContext::MD_prof, LLVMContext::MD_dbg}); NewCB->setCallingConv(OldCB->getCallingConv()); NewCB->takeName(OldCB); NewCB->setAttributes(AttributeList::get( Ctx, OldCallAttributeList.getFnAttrs(), OldCallAttributeList.getRetAttrs(), NewArgOperandAttributes)); CallSitePairs.push_back({OldCB, NewCB}); return true; }; // Use the CallSiteReplacementCreator to create replacement call sites. bool UsedAssumedInformation = false; bool Success = checkForAllCallSites(CallSiteReplacementCreator, *OldFn, true, nullptr, UsedAssumedInformation); (void)Success; assert(Success && "Assumed call site replacement to succeed!"); // Rewire the arguments. Argument *OldFnArgIt = OldFn->arg_begin(); Argument *NewFnArgIt = NewFn->arg_begin(); for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum, ++OldFnArgIt) { if (const std::unique_ptr &ARI = ARIs[OldArgNum]) { if (ARI->CalleeRepairCB) ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt); NewFnArgIt += ARI->ReplacementTypes.size(); } else { NewFnArgIt->takeName(&*OldFnArgIt); OldFnArgIt->replaceAllUsesWith(&*NewFnArgIt); ++NewFnArgIt; } } // Eliminate the instructions *after* we visited all of them. for (auto &CallSitePair : CallSitePairs) { CallBase &OldCB = *CallSitePair.first; CallBase &NewCB = *CallSitePair.second; assert(OldCB.getType() == NewCB.getType() && "Cannot handle call sites with different types!"); ModifiedFns.insert(OldCB.getFunction()); CGUpdater.replaceCallSite(OldCB, NewCB); OldCB.replaceAllUsesWith(&NewCB); OldCB.eraseFromParent(); } // Replace the function in the call graph (if any). CGUpdater.replaceFunctionWith(*OldFn, *NewFn); // If the old function was modified and needed to be reanalyzed, the new one // does now. if (ModifiedFns.erase(OldFn)) ModifiedFns.insert(NewFn); Changed = ChangeStatus::CHANGED; } return Changed; } void InformationCache::initializeInformationCache(const Function &CF, FunctionInfo &FI) { // As we do not modify the function here we can remove the const // withouth breaking implicit assumptions. At the end of the day, we could // initialize the cache eagerly which would look the same to the users. Function &F = const_cast(CF); // Walk all instructions to find interesting instructions that might be // queried by abstract attributes during their initialization or update. // This has to happen before we create attributes. for (Instruction &I : instructions(&F)) { bool IsInterestingOpcode = false; // To allow easy access to all instructions in a function with a given // opcode we store them in the InfoCache. As not all opcodes are interesting // to concrete attributes we only cache the ones that are as identified in // the following switch. // Note: There are no concrete attributes now so this is initially empty. switch (I.getOpcode()) { default: assert(!isa(&I) && "New call base instruction type needs to be known in the " "Attributor."); break; case Instruction::Call: // Calls are interesting on their own, additionally: // For `llvm.assume` calls we also fill the KnowledgeMap as we find them. // For `must-tail` calls we remember the caller and callee. if (auto *Assume = dyn_cast(&I)) { fillMapFromAssume(*Assume, KnowledgeMap); } else if (cast(I).isMustTailCall()) { FI.ContainsMustTailCall = true; if (const Function *Callee = cast(I).getCalledFunction()) getFunctionInfo(*Callee).CalledViaMustTail = true; } LLVM_FALLTHROUGH; case Instruction::CallBr: case Instruction::Invoke: case Instruction::CleanupRet: case Instruction::CatchSwitch: case Instruction::AtomicRMW: case Instruction::AtomicCmpXchg: case Instruction::Br: case Instruction::Resume: case Instruction::Ret: case Instruction::Load: // The alignment of a pointer is interesting for loads. case Instruction::Store: // The alignment of a pointer is interesting for stores. case Instruction::Alloca: case Instruction::AddrSpaceCast: IsInterestingOpcode = true; } if (IsInterestingOpcode) { auto *&Insts = FI.OpcodeInstMap[I.getOpcode()]; if (!Insts) Insts = new (Allocator) InstructionVectorTy(); Insts->push_back(&I); } if (I.mayReadOrWriteMemory()) FI.RWInsts.push_back(&I); } if (F.hasFnAttribute(Attribute::AlwaysInline) && isInlineViable(F).isSuccess()) InlineableFunctions.insert(&F); } AAResults *InformationCache::getAAResultsForFunction(const Function &F) { return AG.getAnalysis(F); } InformationCache::FunctionInfo::~FunctionInfo() { // The instruction vectors are allocated using a BumpPtrAllocator, we need to // manually destroy them. for (auto &It : OpcodeInstMap) It.getSecond()->~InstructionVectorTy(); } void Attributor::recordDependence(const AbstractAttribute &FromAA, const AbstractAttribute &ToAA, DepClassTy DepClass) { if (DepClass == DepClassTy::NONE) return; // If we are outside of an update, thus before the actual fixpoint iteration // started (= when we create AAs), we do not track dependences because we will // put all AAs into the initial worklist anyway. if (DependenceStack.empty()) return; if (FromAA.getState().isAtFixpoint()) return; DependenceStack.back()->push_back({&FromAA, &ToAA, DepClass}); } void Attributor::rememberDependences() { assert(!DependenceStack.empty() && "No dependences to remember!"); for (DepInfo &DI : *DependenceStack.back()) { assert((DI.DepClass == DepClassTy::REQUIRED || DI.DepClass == DepClassTy::OPTIONAL) && "Expected required or optional dependence (1 bit)!"); auto &DepAAs = const_cast(*DI.FromAA).Deps; DepAAs.push_back(AbstractAttribute::DepTy( const_cast(DI.ToAA), unsigned(DI.DepClass))); } } void Attributor::identifyDefaultAbstractAttributes(Function &F) { if (!VisitedFunctions.insert(&F).second) return; if (F.isDeclaration()) return; // In non-module runs we need to look at the call sites of a function to // determine if it is part of a must-tail call edge. This will influence what // attributes we can derive. InformationCache::FunctionInfo &FI = InfoCache.getFunctionInfo(F); if (!isModulePass() && !FI.CalledViaMustTail) { for (const Use &U : F.uses()) if (const auto *CB = dyn_cast(U.getUser())) if (CB->isCallee(&U) && CB->isMustTailCall()) FI.CalledViaMustTail = true; } IRPosition FPos = IRPosition::function(F); // Check for dead BasicBlocks in every function. // We need dead instruction detection because we do not want to deal with // broken IR in which SSA rules do not apply. getOrCreateAAFor(FPos); // Every function might be "will-return". getOrCreateAAFor(FPos); // Every function might contain instructions that cause "undefined behavior". getOrCreateAAFor(FPos); // Every function can be nounwind. getOrCreateAAFor(FPos); // Every function might be marked "nosync" getOrCreateAAFor(FPos); // Every function might be "no-free". getOrCreateAAFor(FPos); // Every function might be "no-return". getOrCreateAAFor(FPos); // Every function might be "no-recurse". getOrCreateAAFor(FPos); // Every function might be "readnone/readonly/writeonly/...". getOrCreateAAFor(FPos); // Every function can be "readnone/argmemonly/inaccessiblememonly/...". getOrCreateAAFor(FPos); // Every function can track active assumptions. getOrCreateAAFor(FPos); // Every function might be applicable for Heap-To-Stack conversion. if (EnableHeapToStack) getOrCreateAAFor(FPos); // Return attributes are only appropriate if the return type is non void. Type *ReturnType = F.getReturnType(); if (!ReturnType->isVoidTy()) { // Argument attribute "returned" --- Create only one per function even // though it is an argument attribute. getOrCreateAAFor(FPos); IRPosition RetPos = IRPosition::returned(F); // Every returned value might be dead. getOrCreateAAFor(RetPos); // Every function might be simplified. getOrCreateAAFor(RetPos); // Every returned value might be marked noundef. getOrCreateAAFor(RetPos); if (ReturnType->isPointerTy()) { // Every function with pointer return type might be marked align. getOrCreateAAFor(RetPos); // Every function with pointer return type might be marked nonnull. getOrCreateAAFor(RetPos); // Every function with pointer return type might be marked noalias. getOrCreateAAFor(RetPos); // Every function with pointer return type might be marked // dereferenceable. getOrCreateAAFor(RetPos); } } for (Argument &Arg : F.args()) { IRPosition ArgPos = IRPosition::argument(Arg); // Every argument might be simplified. We have to go through the Attributor // interface though as outside AAs can register custom simplification // callbacks. bool UsedAssumedInformation = false; getAssumedSimplified(ArgPos, /* AA */ nullptr, UsedAssumedInformation); // Every argument might be dead. getOrCreateAAFor(ArgPos); // Every argument might be marked noundef. getOrCreateAAFor(ArgPos); if (Arg.getType()->isPointerTy()) { // Every argument with pointer type might be marked nonnull. getOrCreateAAFor(ArgPos); // Every argument with pointer type might be marked noalias. getOrCreateAAFor(ArgPos); // Every argument with pointer type might be marked dereferenceable. getOrCreateAAFor(ArgPos); // Every argument with pointer type might be marked align. getOrCreateAAFor(ArgPos); // Every argument with pointer type might be marked nocapture. getOrCreateAAFor(ArgPos); // Every argument with pointer type might be marked // "readnone/readonly/writeonly/..." getOrCreateAAFor(ArgPos); // Every argument with pointer type might be marked nofree. getOrCreateAAFor(ArgPos); // Every argument with pointer type might be privatizable (or promotable) getOrCreateAAFor(ArgPos); } } auto CallSitePred = [&](Instruction &I) -> bool { auto &CB = cast(I); IRPosition CBInstPos = IRPosition::inst(CB); IRPosition CBFnPos = IRPosition::callsite_function(CB); // Call sites might be dead if they do not have side effects and no live // users. The return value might be dead if there are no live users. getOrCreateAAFor(CBInstPos); Function *Callee = CB.getCalledFunction(); // TODO: Even if the callee is not known now we might be able to simplify // the call/callee. if (!Callee) return true; // Every call site can track active assumptions. getOrCreateAAFor(CBFnPos); // Skip declarations except if annotations on their call sites were // explicitly requested. if (!AnnotateDeclarationCallSites && Callee->isDeclaration() && !Callee->hasMetadata(LLVMContext::MD_callback)) return true; if (!Callee->getReturnType()->isVoidTy() && !CB.use_empty()) { IRPosition CBRetPos = IRPosition::callsite_returned(CB); getOrCreateAAFor(CBRetPos); } for (int I = 0, E = CB.arg_size(); I < E; ++I) { IRPosition CBArgPos = IRPosition::callsite_argument(CB, I); // Every call site argument might be dead. getOrCreateAAFor(CBArgPos); // Call site argument might be simplified. We have to go through the // Attributor interface though as outside AAs can register custom // simplification callbacks. bool UsedAssumedInformation = false; getAssumedSimplified(CBArgPos, /* AA */ nullptr, UsedAssumedInformation); // Every call site argument might be marked "noundef". getOrCreateAAFor(CBArgPos); if (!CB.getArgOperand(I)->getType()->isPointerTy()) continue; // Call site argument attribute "non-null". getOrCreateAAFor(CBArgPos); // Call site argument attribute "nocapture". getOrCreateAAFor(CBArgPos); // Call site argument attribute "no-alias". getOrCreateAAFor(CBArgPos); // Call site argument attribute "dereferenceable". getOrCreateAAFor(CBArgPos); // Call site argument attribute "align". getOrCreateAAFor(CBArgPos); // Call site argument attribute // "readnone/readonly/writeonly/..." getOrCreateAAFor(CBArgPos); // Call site argument attribute "nofree". getOrCreateAAFor(CBArgPos); } return true; }; auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F); bool Success; bool UsedAssumedInformation = false; Success = checkForAllInstructionsImpl( nullptr, OpcodeInstMap, CallSitePred, nullptr, nullptr, {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr, (unsigned)Instruction::Call}, UsedAssumedInformation); (void)Success; assert(Success && "Expected the check call to be successful!"); auto LoadStorePred = [&](Instruction &I) -> bool { if (isa(I)) { getOrCreateAAFor( IRPosition::value(*cast(I).getPointerOperand())); if (SimplifyAllLoads) getOrCreateAAFor(IRPosition::value(I)); } else getOrCreateAAFor( IRPosition::value(*cast(I).getPointerOperand())); return true; }; Success = checkForAllInstructionsImpl( nullptr, OpcodeInstMap, LoadStorePred, nullptr, nullptr, {(unsigned)Instruction::Load, (unsigned)Instruction::Store}, UsedAssumedInformation); (void)Success; assert(Success && "Expected the check call to be successful!"); } /// Helpers to ease debugging through output streams and print calls. /// ///{ raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) { return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged"); } raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) { switch (AP) { case IRPosition::IRP_INVALID: return OS << "inv"; case IRPosition::IRP_FLOAT: return OS << "flt"; case IRPosition::IRP_RETURNED: return OS << "fn_ret"; case IRPosition::IRP_CALL_SITE_RETURNED: return OS << "cs_ret"; case IRPosition::IRP_FUNCTION: return OS << "fn"; case IRPosition::IRP_CALL_SITE: return OS << "cs"; case IRPosition::IRP_ARGUMENT: return OS << "arg"; case IRPosition::IRP_CALL_SITE_ARGUMENT: return OS << "cs_arg"; } llvm_unreachable("Unknown attribute position!"); } raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) { const Value &AV = Pos.getAssociatedValue(); OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " [" << Pos.getAnchorValue().getName() << "@" << Pos.getCallSiteArgNo() << "]"; if (Pos.hasCallBaseContext()) OS << "[cb_context:" << *Pos.getCallBaseContext() << "]"; return OS << "}"; } raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) { OS << "range-state(" << S.getBitWidth() << ")<"; S.getKnown().print(OS); OS << " / "; S.getAssumed().print(OS); OS << ">"; return OS << static_cast(S); } raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) { return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : "")); } raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) { AA.print(OS); return OS; } raw_ostream &llvm::operator<<(raw_ostream &OS, const PotentialConstantIntValuesState &S) { OS << "set-state(< {"; if (!S.isValidState()) OS << "full-set"; else { for (auto &it : S.getAssumedSet()) OS << it << ", "; if (S.undefIsContained()) OS << "undef "; } OS << "} >)"; return OS; } void AbstractAttribute::print(raw_ostream &OS) const { OS << "["; OS << getName(); OS << "] for CtxI "; if (auto *I = getCtxI()) { OS << "'"; I->print(OS); OS << "'"; } else OS << "<>"; OS << " at position " << getIRPosition() << " with state " << getAsStr() << '\n'; } void AbstractAttribute::printWithDeps(raw_ostream &OS) const { print(OS); for (const auto &DepAA : Deps) { auto *AA = DepAA.getPointer(); OS << " updates "; AA->print(OS); } OS << '\n'; } raw_ostream &llvm::operator<<(raw_ostream &OS, const AAPointerInfo::Access &Acc) { OS << " [" << Acc.getKind() << "] " << *Acc.getRemoteInst(); if (Acc.getLocalInst() != Acc.getRemoteInst()) OS << " via " << *Acc.getLocalInst(); if (Acc.getContent().hasValue()) OS << " [" << *Acc.getContent() << "]"; return OS; } ///} /// ---------------------------------------------------------------------------- /// Pass (Manager) Boilerplate /// ---------------------------------------------------------------------------- static bool runAttributorOnFunctions(InformationCache &InfoCache, SetVector &Functions, AnalysisGetter &AG, CallGraphUpdater &CGUpdater, bool DeleteFns) { if (Functions.empty()) return false; LLVM_DEBUG({ dbgs() << "[Attributor] Run on module with " << Functions.size() << " functions:\n"; for (Function *Fn : Functions) dbgs() << " - " << Fn->getName() << "\n"; }); // Create an Attributor and initially empty information cache that is filled // while we identify default attribute opportunities. Attributor A(Functions, InfoCache, CGUpdater, /* Allowed */ nullptr, DeleteFns); // Create shallow wrappers for all functions that are not IPO amendable if (AllowShallowWrappers) for (Function *F : Functions) if (!A.isFunctionIPOAmendable(*F)) Attributor::createShallowWrapper(*F); // Internalize non-exact functions // TODO: for now we eagerly internalize functions without calculating the // cost, we need a cost interface to determine whether internalizing // a function is "benefitial" if (AllowDeepWrapper) { unsigned FunSize = Functions.size(); for (unsigned u = 0; u < FunSize; u++) { Function *F = Functions[u]; if (!F->isDeclaration() && !F->isDefinitionExact() && F->getNumUses() && !GlobalValue::isInterposableLinkage(F->getLinkage())) { Function *NewF = Attributor::internalizeFunction(*F); assert(NewF && "Could not internalize function."); Functions.insert(NewF); // Update call graph CGUpdater.replaceFunctionWith(*F, *NewF); for (const Use &U : NewF->uses()) if (CallBase *CB = dyn_cast(U.getUser())) { auto *CallerF = CB->getCaller(); CGUpdater.reanalyzeFunction(*CallerF); } } } } for (Function *F : Functions) { if (F->hasExactDefinition()) NumFnWithExactDefinition++; else NumFnWithoutExactDefinition++; // We look at internal functions only on-demand but if any use is not a // direct call or outside the current set of analyzed functions, we have // to do it eagerly. if (F->hasLocalLinkage()) { if (llvm::all_of(F->uses(), [&Functions](const Use &U) { const auto *CB = dyn_cast(U.getUser()); return CB && CB->isCallee(&U) && Functions.count(const_cast(CB->getCaller())); })) continue; } // Populate the Attributor with abstract attribute opportunities in the // function and the information cache with IR information. A.identifyDefaultAbstractAttributes(*F); } ChangeStatus Changed = A.run(); LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size() << " functions, result: " << Changed << ".\n"); return Changed == ChangeStatus::CHANGED; } void AADepGraph::viewGraph() { llvm::ViewGraph(this, "Dependency Graph"); } void AADepGraph::dumpGraph() { static std::atomic CallTimes; std::string Prefix; if (!DepGraphDotFileNamePrefix.empty()) Prefix = DepGraphDotFileNamePrefix; else Prefix = "dep_graph"; std::string Filename = Prefix + "_" + std::to_string(CallTimes.load()) + ".dot"; outs() << "Dependency graph dump to " << Filename << ".\n"; std::error_code EC; raw_fd_ostream File(Filename, EC, sys::fs::OF_TextWithCRLF); if (!EC) llvm::WriteGraph(File, this); CallTimes++; } void AADepGraph::print() { for (auto DepAA : SyntheticRoot.Deps) cast(DepAA.getPointer())->printWithDeps(outs()); } PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) { FunctionAnalysisManager &FAM = AM.getResult(M).getManager(); AnalysisGetter AG(FAM); SetVector Functions; for (Function &F : M) Functions.insert(&F); CallGraphUpdater CGUpdater; BumpPtrAllocator Allocator; InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr); if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater, /* DeleteFns */ true)) { // FIXME: Think about passes we will preserve and add them here. return PreservedAnalyses::none(); } return PreservedAnalyses::all(); } PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG, CGSCCUpdateResult &UR) { FunctionAnalysisManager &FAM = AM.getResult(C, CG).getManager(); AnalysisGetter AG(FAM); SetVector Functions; for (LazyCallGraph::Node &N : C) Functions.insert(&N.getFunction()); if (Functions.empty()) return PreservedAnalyses::all(); Module &M = *Functions.back()->getParent(); CallGraphUpdater CGUpdater; CGUpdater.initialize(CG, C, AM, UR); BumpPtrAllocator Allocator; InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions); if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater, /* DeleteFns */ false)) { // FIXME: Think about passes we will preserve and add them here. PreservedAnalyses PA; PA.preserve(); return PA; } return PreservedAnalyses::all(); } namespace llvm { template <> struct GraphTraits { using NodeRef = AADepGraphNode *; using DepTy = PointerIntPair; using EdgeRef = PointerIntPair; static NodeRef getEntryNode(AADepGraphNode *DGN) { return DGN; } static NodeRef DepGetVal(DepTy &DT) { return DT.getPointer(); } using ChildIteratorType = mapped_iterator::iterator, decltype(&DepGetVal)>; using ChildEdgeIteratorType = TinyPtrVector::iterator; static ChildIteratorType child_begin(NodeRef N) { return N->child_begin(); } static ChildIteratorType child_end(NodeRef N) { return N->child_end(); } }; template <> struct GraphTraits : public GraphTraits { static NodeRef getEntryNode(AADepGraph *DG) { return DG->GetEntryNode(); } using nodes_iterator = mapped_iterator::iterator, decltype(&DepGetVal)>; static nodes_iterator nodes_begin(AADepGraph *DG) { return DG->begin(); } static nodes_iterator nodes_end(AADepGraph *DG) { return DG->end(); } }; template <> struct DOTGraphTraits : public DefaultDOTGraphTraits { DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} static std::string getNodeLabel(const AADepGraphNode *Node, const AADepGraph *DG) { std::string AAString; raw_string_ostream O(AAString); Node->print(O); return AAString; } }; } // end namespace llvm namespace { struct AttributorLegacyPass : public ModulePass { static char ID; AttributorLegacyPass() : ModulePass(ID) { initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnModule(Module &M) override { if (skipModule(M)) return false; AnalysisGetter AG; SetVector Functions; for (Function &F : M) Functions.insert(&F); CallGraphUpdater CGUpdater; BumpPtrAllocator Allocator; InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr); return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater, /* DeleteFns*/ true); } void getAnalysisUsage(AnalysisUsage &AU) const override { // FIXME: Think about passes we will preserve and add them here. AU.addRequired(); } }; struct AttributorCGSCCLegacyPass : public CallGraphSCCPass { static char ID; AttributorCGSCCLegacyPass() : CallGraphSCCPass(ID) { initializeAttributorCGSCCLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnSCC(CallGraphSCC &SCC) override { if (skipSCC(SCC)) return false; SetVector Functions; for (CallGraphNode *CGN : SCC) if (Function *Fn = CGN->getFunction()) if (!Fn->isDeclaration()) Functions.insert(Fn); if (Functions.empty()) return false; AnalysisGetter AG; CallGraph &CG = const_cast(SCC.getCallGraph()); CallGraphUpdater CGUpdater; CGUpdater.initialize(CG, SCC); Module &M = *Functions.back()->getParent(); BumpPtrAllocator Allocator; InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions); return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater, /* DeleteFns */ false); } void getAnalysisUsage(AnalysisUsage &AU) const override { // FIXME: Think about passes we will preserve and add them here. AU.addRequired(); CallGraphSCCPass::getAnalysisUsage(AU); } }; } // end anonymous namespace Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); } Pass *llvm::createAttributorCGSCCLegacyPass() { return new AttributorCGSCCLegacyPass(); } char AttributorLegacyPass::ID = 0; char AttributorCGSCCLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor", "Deduce and propagate attributes", false, false) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_END(AttributorLegacyPass, "attributor", "Deduce and propagate attributes", false, false) INITIALIZE_PASS_BEGIN(AttributorCGSCCLegacyPass, "attributor-cgscc", "Deduce and propagate attributes (CGSCC pass)", false, false) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) INITIALIZE_PASS_END(AttributorCGSCCLegacyPass, "attributor-cgscc", "Deduce and propagate attributes (CGSCC pass)", false, false)