//===- lib/MC/ARMELFStreamer.cpp - ELF Object Output for ARM --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file assembles .s files and emits ARM ELF .o object files. Different // from generic ELF streamer in emitting mapping symbols ($a, $t and $d) to // delimit regions of data and code. // //===----------------------------------------------------------------------===// #include "ARMRegisterInfo.h" #include "ARMUnwindOpAsm.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Triple.h" #include "llvm/ADT/Twine.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/MC/MCAsmBackend.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCELFStreamer.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCFixup.h" #include "llvm/MC/MCFragment.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstPrinter.h" #include "llvm/MC/MCObjectWriter.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCSymbolELF.h" #include "llvm/MC/SectionKind.h" #include "llvm/Support/ARMBuildAttributes.h" #include "llvm/Support/ARMEHABI.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/TargetParser.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include using namespace llvm; static std::string GetAEABIUnwindPersonalityName(unsigned Index) { assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && "Invalid personality index"); return (Twine("__aeabi_unwind_cpp_pr") + Twine(Index)).str(); } namespace { class ARMELFStreamer; class ARMTargetAsmStreamer : public ARMTargetStreamer { formatted_raw_ostream &OS; MCInstPrinter &InstPrinter; bool IsVerboseAsm; void emitFnStart() override; void emitFnEnd() override; void emitCantUnwind() override; void emitPersonality(const MCSymbol *Personality) override; void emitPersonalityIndex(unsigned Index) override; void emitHandlerData() override; void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override; void emitMovSP(unsigned Reg, int64_t Offset = 0) override; void emitPad(int64_t Offset) override; void emitRegSave(const SmallVectorImpl &RegList, bool isVector) override; void emitUnwindRaw(int64_t Offset, const SmallVectorImpl &Opcodes) override; void switchVendor(StringRef Vendor) override; void emitAttribute(unsigned Attribute, unsigned Value) override; void emitTextAttribute(unsigned Attribute, StringRef String) override; void emitIntTextAttribute(unsigned Attribute, unsigned IntValue, StringRef StringValue) override; void emitArch(ARM::ArchKind Arch) override; void emitArchExtension(uint64_t ArchExt) override; void emitObjectArch(ARM::ArchKind Arch) override; void emitFPU(unsigned FPU) override; void emitInst(uint32_t Inst, char Suffix = '\0') override; void finishAttributeSection() override; void AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override; void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override; public: ARMTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS, MCInstPrinter &InstPrinter, bool VerboseAsm); }; ARMTargetAsmStreamer::ARMTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS, MCInstPrinter &InstPrinter, bool VerboseAsm) : ARMTargetStreamer(S), OS(OS), InstPrinter(InstPrinter), IsVerboseAsm(VerboseAsm) {} void ARMTargetAsmStreamer::emitFnStart() { OS << "\t.fnstart\n"; } void ARMTargetAsmStreamer::emitFnEnd() { OS << "\t.fnend\n"; } void ARMTargetAsmStreamer::emitCantUnwind() { OS << "\t.cantunwind\n"; } void ARMTargetAsmStreamer::emitPersonality(const MCSymbol *Personality) { OS << "\t.personality " << Personality->getName() << '\n'; } void ARMTargetAsmStreamer::emitPersonalityIndex(unsigned Index) { OS << "\t.personalityindex " << Index << '\n'; } void ARMTargetAsmStreamer::emitHandlerData() { OS << "\t.handlerdata\n"; } void ARMTargetAsmStreamer::emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset) { OS << "\t.setfp\t"; InstPrinter.printRegName(OS, FpReg); OS << ", "; InstPrinter.printRegName(OS, SpReg); if (Offset) OS << ", #" << Offset; OS << '\n'; } void ARMTargetAsmStreamer::emitMovSP(unsigned Reg, int64_t Offset) { assert((Reg != ARM::SP && Reg != ARM::PC) && "the operand of .movsp cannot be either sp or pc"); OS << "\t.movsp\t"; InstPrinter.printRegName(OS, Reg); if (Offset) OS << ", #" << Offset; OS << '\n'; } void ARMTargetAsmStreamer::emitPad(int64_t Offset) { OS << "\t.pad\t#" << Offset << '\n'; } void ARMTargetAsmStreamer::emitRegSave(const SmallVectorImpl &RegList, bool isVector) { assert(RegList.size() && "RegList should not be empty"); if (isVector) OS << "\t.vsave\t{"; else OS << "\t.save\t{"; InstPrinter.printRegName(OS, RegList[0]); for (unsigned i = 1, e = RegList.size(); i != e; ++i) { OS << ", "; InstPrinter.printRegName(OS, RegList[i]); } OS << "}\n"; } void ARMTargetAsmStreamer::switchVendor(StringRef Vendor) {} void ARMTargetAsmStreamer::emitAttribute(unsigned Attribute, unsigned Value) { OS << "\t.eabi_attribute\t" << Attribute << ", " << Twine(Value); if (IsVerboseAsm) { StringRef Name = ELFAttrs::attrTypeAsString( Attribute, ARMBuildAttrs::getARMAttributeTags()); if (!Name.empty()) OS << "\t@ " << Name; } OS << "\n"; } void ARMTargetAsmStreamer::emitTextAttribute(unsigned Attribute, StringRef String) { switch (Attribute) { case ARMBuildAttrs::CPU_name: OS << "\t.cpu\t" << String.lower(); break; default: OS << "\t.eabi_attribute\t" << Attribute << ", \"" << String << "\""; if (IsVerboseAsm) { StringRef Name = ELFAttrs::attrTypeAsString( Attribute, ARMBuildAttrs::getARMAttributeTags()); if (!Name.empty()) OS << "\t@ " << Name; } break; } OS << "\n"; } void ARMTargetAsmStreamer::emitIntTextAttribute(unsigned Attribute, unsigned IntValue, StringRef StringValue) { switch (Attribute) { default: llvm_unreachable("unsupported multi-value attribute in asm mode"); case ARMBuildAttrs::compatibility: OS << "\t.eabi_attribute\t" << Attribute << ", " << IntValue; if (!StringValue.empty()) OS << ", \"" << StringValue << "\""; if (IsVerboseAsm) OS << "\t@ " << ELFAttrs::attrTypeAsString(Attribute, ARMBuildAttrs::getARMAttributeTags()); break; } OS << "\n"; } void ARMTargetAsmStreamer::emitArch(ARM::ArchKind Arch) { OS << "\t.arch\t" << ARM::getArchName(Arch) << "\n"; } void ARMTargetAsmStreamer::emitArchExtension(uint64_t ArchExt) { OS << "\t.arch_extension\t" << ARM::getArchExtName(ArchExt) << "\n"; } void ARMTargetAsmStreamer::emitObjectArch(ARM::ArchKind Arch) { OS << "\t.object_arch\t" << ARM::getArchName(Arch) << '\n'; } void ARMTargetAsmStreamer::emitFPU(unsigned FPU) { OS << "\t.fpu\t" << ARM::getFPUName(FPU) << "\n"; } void ARMTargetAsmStreamer::finishAttributeSection() {} void ARMTargetAsmStreamer::AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *S) { OS << "\t.tlsdescseq\t" << S->getSymbol().getName() << "\n"; } void ARMTargetAsmStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) { const MCAsmInfo *MAI = Streamer.getContext().getAsmInfo(); OS << "\t.thumb_set\t"; Symbol->print(OS, MAI); OS << ", "; Value->print(OS, MAI); OS << '\n'; } void ARMTargetAsmStreamer::emitInst(uint32_t Inst, char Suffix) { OS << "\t.inst"; if (Suffix) OS << "." << Suffix; OS << "\t0x" << Twine::utohexstr(Inst) << "\n"; } void ARMTargetAsmStreamer::emitUnwindRaw(int64_t Offset, const SmallVectorImpl &Opcodes) { OS << "\t.unwind_raw " << Offset; for (uint8_t Opcode : Opcodes) OS << ", 0x" << Twine::utohexstr(Opcode); OS << '\n'; } class ARMTargetELFStreamer : public ARMTargetStreamer { private: StringRef CurrentVendor; unsigned FPU = ARM::FK_INVALID; ARM::ArchKind Arch = ARM::ArchKind::INVALID; ARM::ArchKind EmittedArch = ARM::ArchKind::INVALID; MCSection *AttributeSection = nullptr; void emitArchDefaultAttributes(); void emitFPUDefaultAttributes(); ARMELFStreamer &getStreamer(); void emitFnStart() override; void emitFnEnd() override; void emitCantUnwind() override; void emitPersonality(const MCSymbol *Personality) override; void emitPersonalityIndex(unsigned Index) override; void emitHandlerData() override; void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override; void emitMovSP(unsigned Reg, int64_t Offset = 0) override; void emitPad(int64_t Offset) override; void emitRegSave(const SmallVectorImpl &RegList, bool isVector) override; void emitUnwindRaw(int64_t Offset, const SmallVectorImpl &Opcodes) override; void switchVendor(StringRef Vendor) override; void emitAttribute(unsigned Attribute, unsigned Value) override; void emitTextAttribute(unsigned Attribute, StringRef String) override; void emitIntTextAttribute(unsigned Attribute, unsigned IntValue, StringRef StringValue) override; void emitArch(ARM::ArchKind Arch) override; void emitObjectArch(ARM::ArchKind Arch) override; void emitFPU(unsigned FPU) override; void emitInst(uint32_t Inst, char Suffix = '\0') override; void finishAttributeSection() override; void emitLabel(MCSymbol *Symbol) override; void AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override; void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override; // Reset state between object emissions void reset() override; public: ARMTargetELFStreamer(MCStreamer &S) : ARMTargetStreamer(S), CurrentVendor("aeabi") {} }; /// Extend the generic ELFStreamer class so that it can emit mapping symbols at /// the appropriate points in the object files. These symbols are defined in the /// ARM ELF ABI: infocenter.arm.com/help/topic/com.arm.../IHI0044D_aaelf.pdf. /// /// In brief: $a, $t or $d should be emitted at the start of each contiguous /// region of ARM code, Thumb code or data in a section. In practice, this /// emission does not rely on explicit assembler directives but on inherent /// properties of the directives doing the emission (e.g. ".byte" is data, "add /// r0, r0, r0" an instruction). /// /// As a result this system is orthogonal to the DataRegion infrastructure used /// by MachO. Beware! class ARMELFStreamer : public MCELFStreamer { public: friend class ARMTargetELFStreamer; ARMELFStreamer(MCContext &Context, std::unique_ptr TAB, std::unique_ptr OW, std::unique_ptr Emitter, bool IsThumb, bool IsAndroid) : MCELFStreamer(Context, std::move(TAB), std::move(OW), std::move(Emitter)), IsThumb(IsThumb), IsAndroid(IsAndroid) { EHReset(); } ~ARMELFStreamer() override = default; void finishImpl() override; // ARM exception handling directives void emitFnStart(); void emitFnEnd(); void emitCantUnwind(); void emitPersonality(const MCSymbol *Per); void emitPersonalityIndex(unsigned index); void emitHandlerData(); void emitSetFP(unsigned NewFpReg, unsigned NewSpReg, int64_t Offset = 0); void emitMovSP(unsigned Reg, int64_t Offset = 0); void emitPad(int64_t Offset); void emitRegSave(const SmallVectorImpl &RegList, bool isVector); void emitUnwindRaw(int64_t Offset, const SmallVectorImpl &Opcodes); void emitFill(const MCExpr &NumBytes, uint64_t FillValue, SMLoc Loc) override { emitDataMappingSymbol(); MCObjectStreamer::emitFill(NumBytes, FillValue, Loc); } void changeSection(MCSection *Section, const MCExpr *Subsection) override { LastMappingSymbols[getCurrentSection().first] = std::move(LastEMSInfo); MCELFStreamer::changeSection(Section, Subsection); auto LastMappingSymbol = LastMappingSymbols.find(Section); if (LastMappingSymbol != LastMappingSymbols.end()) { LastEMSInfo = std::move(LastMappingSymbol->second); return; } LastEMSInfo.reset(new ElfMappingSymbolInfo(SMLoc(), nullptr, 0)); } /// This function is the one used to emit instruction data into the ELF /// streamer. We override it to add the appropriate mapping symbol if /// necessary. void emitInstruction(const MCInst &Inst, const MCSubtargetInfo &STI) override { if (IsThumb) EmitThumbMappingSymbol(); else EmitARMMappingSymbol(); MCELFStreamer::emitInstruction(Inst, STI); } void emitInst(uint32_t Inst, char Suffix) { unsigned Size; char Buffer[4]; const bool LittleEndian = getContext().getAsmInfo()->isLittleEndian(); switch (Suffix) { case '\0': Size = 4; assert(!IsThumb); EmitARMMappingSymbol(); for (unsigned II = 0, IE = Size; II != IE; II++) { const unsigned I = LittleEndian ? (Size - II - 1) : II; Buffer[Size - II - 1] = uint8_t(Inst >> I * CHAR_BIT); } break; case 'n': case 'w': Size = (Suffix == 'n' ? 2 : 4); assert(IsThumb); EmitThumbMappingSymbol(); // Thumb wide instructions are emitted as a pair of 16-bit words of the // appropriate endianness. for (unsigned II = 0, IE = Size; II != IE; II = II + 2) { const unsigned I0 = LittleEndian ? II + 0 : II + 1; const unsigned I1 = LittleEndian ? II + 1 : II + 0; Buffer[Size - II - 2] = uint8_t(Inst >> I0 * CHAR_BIT); Buffer[Size - II - 1] = uint8_t(Inst >> I1 * CHAR_BIT); } break; default: llvm_unreachable("Invalid Suffix"); } MCELFStreamer::emitBytes(StringRef(Buffer, Size)); } /// This is one of the functions used to emit data into an ELF section, so the /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if /// necessary. void emitBytes(StringRef Data) override { emitDataMappingSymbol(); MCELFStreamer::emitBytes(Data); } void FlushPendingMappingSymbol() { if (!LastEMSInfo->hasInfo()) return; ElfMappingSymbolInfo *EMS = LastEMSInfo.get(); EmitMappingSymbol("$d", EMS->Loc, EMS->F, EMS->Offset); EMS->resetInfo(); } /// This is one of the functions used to emit data into an ELF section, so the /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if /// necessary. void emitValueImpl(const MCExpr *Value, unsigned Size, SMLoc Loc) override { if (const MCSymbolRefExpr *SRE = dyn_cast_or_null(Value)) { if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_SBREL && !(Size == 4)) { getContext().reportError(Loc, "relocated expression must be 32-bit"); return; } getOrCreateDataFragment(); } emitDataMappingSymbol(); MCELFStreamer::emitValueImpl(Value, Size, Loc); } void emitAssemblerFlag(MCAssemblerFlag Flag) override { MCELFStreamer::emitAssemblerFlag(Flag); switch (Flag) { case MCAF_SyntaxUnified: return; // no-op here. case MCAF_Code16: IsThumb = true; return; // Change to Thumb mode case MCAF_Code32: IsThumb = false; return; // Change to ARM mode case MCAF_Code64: return; case MCAF_SubsectionsViaSymbols: return; } } /// If a label is defined before the .type directive sets the label's type /// then the label can't be recorded as thumb function when the label is /// defined. We override emitSymbolAttribute() which is called as part of the /// parsing of .type so that if the symbol has already been defined we can /// record the label as Thumb. FIXME: there is a corner case where the state /// is changed in between the label definition and the .type directive, this /// is not expected to occur in practice and handling it would require the /// backend to track IsThumb for every label. bool emitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute) override { bool Val = MCELFStreamer::emitSymbolAttribute(Symbol, Attribute); if (!IsThumb) return Val; unsigned Type = cast(Symbol)->getType(); if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC) && Symbol->isDefined()) getAssembler().setIsThumbFunc(Symbol); return Val; }; private: enum ElfMappingSymbol { EMS_None, EMS_ARM, EMS_Thumb, EMS_Data }; struct ElfMappingSymbolInfo { explicit ElfMappingSymbolInfo(SMLoc Loc, MCFragment *F, uint64_t O) : Loc(Loc), F(F), Offset(O), State(EMS_None) {} void resetInfo() { F = nullptr; Offset = 0; } bool hasInfo() { return F != nullptr; } SMLoc Loc; MCFragment *F; uint64_t Offset; ElfMappingSymbol State; }; void emitDataMappingSymbol() { if (LastEMSInfo->State == EMS_Data) return; else if (LastEMSInfo->State == EMS_None) { // This is a tentative symbol, it won't really be emitted until it's // actually needed. ElfMappingSymbolInfo *EMS = LastEMSInfo.get(); auto *DF = dyn_cast_or_null(getCurrentFragment()); if (!DF) return; EMS->Loc = SMLoc(); EMS->F = getCurrentFragment(); EMS->Offset = DF->getContents().size(); LastEMSInfo->State = EMS_Data; return; } EmitMappingSymbol("$d"); LastEMSInfo->State = EMS_Data; } void EmitThumbMappingSymbol() { if (LastEMSInfo->State == EMS_Thumb) return; FlushPendingMappingSymbol(); EmitMappingSymbol("$t"); LastEMSInfo->State = EMS_Thumb; } void EmitARMMappingSymbol() { if (LastEMSInfo->State == EMS_ARM) return; FlushPendingMappingSymbol(); EmitMappingSymbol("$a"); LastEMSInfo->State = EMS_ARM; } void EmitMappingSymbol(StringRef Name) { auto *Symbol = cast(getContext().getOrCreateSymbol( Name + "." + Twine(MappingSymbolCounter++))); emitLabel(Symbol); Symbol->setType(ELF::STT_NOTYPE); Symbol->setBinding(ELF::STB_LOCAL); } void EmitMappingSymbol(StringRef Name, SMLoc Loc, MCFragment *F, uint64_t Offset) { auto *Symbol = cast(getContext().getOrCreateSymbol( Name + "." + Twine(MappingSymbolCounter++))); emitLabelAtPos(Symbol, Loc, F, Offset); Symbol->setType(ELF::STT_NOTYPE); Symbol->setBinding(ELF::STB_LOCAL); } void emitThumbFunc(MCSymbol *Func) override { getAssembler().setIsThumbFunc(Func); emitSymbolAttribute(Func, MCSA_ELF_TypeFunction); } // Helper functions for ARM exception handling directives void EHReset(); // Reset state between object emissions void reset() override; void EmitPersonalityFixup(StringRef Name); void FlushPendingOffset(); void FlushUnwindOpcodes(bool NoHandlerData); void SwitchToEHSection(StringRef Prefix, unsigned Type, unsigned Flags, SectionKind Kind, const MCSymbol &Fn); void SwitchToExTabSection(const MCSymbol &FnStart); void SwitchToExIdxSection(const MCSymbol &FnStart); void EmitFixup(const MCExpr *Expr, MCFixupKind Kind); bool IsThumb; bool IsAndroid; int64_t MappingSymbolCounter = 0; DenseMap> LastMappingSymbols; std::unique_ptr LastEMSInfo; // ARM Exception Handling Frame Information MCSymbol *ExTab; MCSymbol *FnStart; const MCSymbol *Personality; unsigned PersonalityIndex; unsigned FPReg; // Frame pointer register int64_t FPOffset; // Offset: (final frame pointer) - (initial $sp) int64_t SPOffset; // Offset: (final $sp) - (initial $sp) int64_t PendingOffset; // Offset: (final $sp) - (emitted $sp) bool UsedFP; bool CantUnwind; SmallVector Opcodes; UnwindOpcodeAssembler UnwindOpAsm; }; } // end anonymous namespace ARMELFStreamer &ARMTargetELFStreamer::getStreamer() { return static_cast(Streamer); } void ARMTargetELFStreamer::emitFnStart() { getStreamer().emitFnStart(); } void ARMTargetELFStreamer::emitFnEnd() { getStreamer().emitFnEnd(); } void ARMTargetELFStreamer::emitCantUnwind() { getStreamer().emitCantUnwind(); } void ARMTargetELFStreamer::emitPersonality(const MCSymbol *Personality) { getStreamer().emitPersonality(Personality); } void ARMTargetELFStreamer::emitPersonalityIndex(unsigned Index) { getStreamer().emitPersonalityIndex(Index); } void ARMTargetELFStreamer::emitHandlerData() { getStreamer().emitHandlerData(); } void ARMTargetELFStreamer::emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset) { getStreamer().emitSetFP(FpReg, SpReg, Offset); } void ARMTargetELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) { getStreamer().emitMovSP(Reg, Offset); } void ARMTargetELFStreamer::emitPad(int64_t Offset) { getStreamer().emitPad(Offset); } void ARMTargetELFStreamer::emitRegSave(const SmallVectorImpl &RegList, bool isVector) { getStreamer().emitRegSave(RegList, isVector); } void ARMTargetELFStreamer::emitUnwindRaw(int64_t Offset, const SmallVectorImpl &Opcodes) { getStreamer().emitUnwindRaw(Offset, Opcodes); } void ARMTargetELFStreamer::switchVendor(StringRef Vendor) { assert(!Vendor.empty() && "Vendor cannot be empty."); if (CurrentVendor == Vendor) return; if (!CurrentVendor.empty()) finishAttributeSection(); assert(getStreamer().Contents.empty() && ".ARM.attributes should be flushed before changing vendor"); CurrentVendor = Vendor; } void ARMTargetELFStreamer::emitAttribute(unsigned Attribute, unsigned Value) { getStreamer().setAttributeItem(Attribute, Value, /* OverwriteExisting= */ true); } void ARMTargetELFStreamer::emitTextAttribute(unsigned Attribute, StringRef Value) { getStreamer().setAttributeItem(Attribute, Value, /* OverwriteExisting= */ true); } void ARMTargetELFStreamer::emitIntTextAttribute(unsigned Attribute, unsigned IntValue, StringRef StringValue) { getStreamer().setAttributeItems(Attribute, IntValue, StringValue, /* OverwriteExisting= */ true); } void ARMTargetELFStreamer::emitArch(ARM::ArchKind Value) { Arch = Value; } void ARMTargetELFStreamer::emitObjectArch(ARM::ArchKind Value) { EmittedArch = Value; } void ARMTargetELFStreamer::emitArchDefaultAttributes() { using namespace ARMBuildAttrs; ARMELFStreamer &S = getStreamer(); S.setAttributeItem(CPU_name, ARM::getCPUAttr(Arch), false); if (EmittedArch == ARM::ArchKind::INVALID) S.setAttributeItem(CPU_arch, ARM::getArchAttr(Arch), false); else S.setAttributeItem(CPU_arch, ARM::getArchAttr(EmittedArch), false); switch (Arch) { case ARM::ArchKind::ARMV2: case ARM::ArchKind::ARMV2A: case ARM::ArchKind::ARMV3: case ARM::ArchKind::ARMV3M: case ARM::ArchKind::ARMV4: S.setAttributeItem(ARM_ISA_use, Allowed, false); break; case ARM::ArchKind::ARMV4T: case ARM::ArchKind::ARMV5T: case ARM::ArchKind::XSCALE: case ARM::ArchKind::ARMV5TE: case ARM::ArchKind::ARMV6: S.setAttributeItem(ARM_ISA_use, Allowed, false); S.setAttributeItem(THUMB_ISA_use, Allowed, false); break; case ARM::ArchKind::ARMV6T2: S.setAttributeItem(ARM_ISA_use, Allowed, false); S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); break; case ARM::ArchKind::ARMV6K: case ARM::ArchKind::ARMV6KZ: S.setAttributeItem(ARM_ISA_use, Allowed, false); S.setAttributeItem(THUMB_ISA_use, Allowed, false); S.setAttributeItem(Virtualization_use, AllowTZ, false); break; case ARM::ArchKind::ARMV6M: S.setAttributeItem(THUMB_ISA_use, Allowed, false); break; case ARM::ArchKind::ARMV7A: S.setAttributeItem(CPU_arch_profile, ApplicationProfile, false); S.setAttributeItem(ARM_ISA_use, Allowed, false); S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); break; case ARM::ArchKind::ARMV7R: S.setAttributeItem(CPU_arch_profile, RealTimeProfile, false); S.setAttributeItem(ARM_ISA_use, Allowed, false); S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); break; case ARM::ArchKind::ARMV7EM: case ARM::ArchKind::ARMV7M: S.setAttributeItem(CPU_arch_profile, MicroControllerProfile, false); S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); break; case ARM::ArchKind::ARMV8A: case ARM::ArchKind::ARMV8_1A: case ARM::ArchKind::ARMV8_2A: case ARM::ArchKind::ARMV8_3A: case ARM::ArchKind::ARMV8_4A: case ARM::ArchKind::ARMV8_5A: case ARM::ArchKind::ARMV8_6A: case ARM::ArchKind::ARMV9A: case ARM::ArchKind::ARMV9_1A: case ARM::ArchKind::ARMV9_2A: case ARM::ArchKind::ARMV9_3A: S.setAttributeItem(CPU_arch_profile, ApplicationProfile, false); S.setAttributeItem(ARM_ISA_use, Allowed, false); S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); S.setAttributeItem(MPextension_use, Allowed, false); S.setAttributeItem(Virtualization_use, AllowTZVirtualization, false); break; case ARM::ArchKind::ARMV8MBaseline: case ARM::ArchKind::ARMV8MMainline: S.setAttributeItem(THUMB_ISA_use, AllowThumbDerived, false); S.setAttributeItem(CPU_arch_profile, MicroControllerProfile, false); break; case ARM::ArchKind::IWMMXT: S.setAttributeItem(ARM_ISA_use, Allowed, false); S.setAttributeItem(THUMB_ISA_use, Allowed, false); S.setAttributeItem(WMMX_arch, AllowWMMXv1, false); break; case ARM::ArchKind::IWMMXT2: S.setAttributeItem(ARM_ISA_use, Allowed, false); S.setAttributeItem(THUMB_ISA_use, Allowed, false); S.setAttributeItem(WMMX_arch, AllowWMMXv2, false); break; default: report_fatal_error("Unknown Arch: " + Twine(ARM::getArchName(Arch))); break; } } void ARMTargetELFStreamer::emitFPU(unsigned Value) { FPU = Value; } void ARMTargetELFStreamer::emitFPUDefaultAttributes() { ARMELFStreamer &S = getStreamer(); switch (FPU) { case ARM::FK_VFP: case ARM::FK_VFPV2: S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv2, /* OverwriteExisting= */ false); break; case ARM::FK_VFPV3: S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, /* OverwriteExisting= */ false); break; case ARM::FK_VFPV3_FP16: S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, /* OverwriteExisting= */ false); S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, /* OverwriteExisting= */ false); break; case ARM::FK_VFPV3_D16: S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, /* OverwriteExisting= */ false); break; case ARM::FK_VFPV3_D16_FP16: S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, /* OverwriteExisting= */ false); S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, /* OverwriteExisting= */ false); break; case ARM::FK_VFPV3XD: S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, /* OverwriteExisting= */ false); break; case ARM::FK_VFPV3XD_FP16: S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, /* OverwriteExisting= */ false); S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, /* OverwriteExisting= */ false); break; case ARM::FK_VFPV4: S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A, /* OverwriteExisting= */ false); break; // ABI_HardFP_use is handled in ARMAsmPrinter, so _SP_D16 is treated the same // as _D16 here. case ARM::FK_FPV4_SP_D16: case ARM::FK_VFPV4_D16: S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4B, /* OverwriteExisting= */ false); break; case ARM::FK_FP_ARMV8: S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A, /* OverwriteExisting= */ false); break; // FPV5_D16 is identical to FP_ARMV8 except for the number of D registers, so // uses the FP_ARMV8_D16 build attribute. case ARM::FK_FPV5_SP_D16: case ARM::FK_FPV5_D16: S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8B, /* OverwriteExisting= */ false); break; case ARM::FK_NEON: S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, /* OverwriteExisting= */ false); S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, ARMBuildAttrs::AllowNeon, /* OverwriteExisting= */ false); break; case ARM::FK_NEON_FP16: S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, /* OverwriteExisting= */ false); S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, ARMBuildAttrs::AllowNeon, /* OverwriteExisting= */ false); S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, /* OverwriteExisting= */ false); break; case ARM::FK_NEON_VFPV4: S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A, /* OverwriteExisting= */ false); S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, ARMBuildAttrs::AllowNeon2, /* OverwriteExisting= */ false); break; case ARM::FK_NEON_FP_ARMV8: case ARM::FK_CRYPTO_NEON_FP_ARMV8: S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A, /* OverwriteExisting= */ false); // 'Advanced_SIMD_arch' must be emitted not here, but within // ARMAsmPrinter::emitAttributes(), depending on hasV8Ops() and hasV8_1a() break; case ARM::FK_SOFTVFP: case ARM::FK_NONE: break; default: report_fatal_error("Unknown FPU: " + Twine(FPU)); break; } } void ARMTargetELFStreamer::finishAttributeSection() { ARMELFStreamer &S = getStreamer(); if (FPU != ARM::FK_INVALID) emitFPUDefaultAttributes(); if (Arch != ARM::ArchKind::INVALID) emitArchDefaultAttributes(); if (S.Contents.empty()) return; auto LessTag = [](const MCELFStreamer::AttributeItem &LHS, const MCELFStreamer::AttributeItem &RHS) -> bool { // The conformance tag must be emitted first when serialised into an // object file. Specifically, the addenda to the ARM ABI states that // (2.3.7.4): // // "To simplify recognition by consumers in the common case of claiming // conformity for the whole file, this tag should be emitted first in a // file-scope sub-subsection of the first public subsection of the // attributes section." // // So it is special-cased in this comparison predicate when the // attributes are sorted in finishAttributeSection(). return (RHS.Tag != ARMBuildAttrs::conformance) && ((LHS.Tag == ARMBuildAttrs::conformance) || (LHS.Tag < RHS.Tag)); }; llvm::sort(S.Contents, LessTag); S.emitAttributesSection(CurrentVendor, ".ARM.attributes", ELF::SHT_ARM_ATTRIBUTES, AttributeSection); FPU = ARM::FK_INVALID; } void ARMTargetELFStreamer::emitLabel(MCSymbol *Symbol) { ARMELFStreamer &Streamer = getStreamer(); if (!Streamer.IsThumb) return; Streamer.getAssembler().registerSymbol(*Symbol); unsigned Type = cast(Symbol)->getType(); if (Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC) Streamer.emitThumbFunc(Symbol); } void ARMTargetELFStreamer::AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *S) { getStreamer().EmitFixup(S, FK_Data_4); } void ARMTargetELFStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) { if (const MCSymbolRefExpr *SRE = dyn_cast(Value)) { const MCSymbol &Sym = SRE->getSymbol(); if (!Sym.isDefined()) { getStreamer().emitAssignment(Symbol, Value); return; } } getStreamer().emitThumbFunc(Symbol); getStreamer().emitAssignment(Symbol, Value); } void ARMTargetELFStreamer::emitInst(uint32_t Inst, char Suffix) { getStreamer().emitInst(Inst, Suffix); } void ARMTargetELFStreamer::reset() { AttributeSection = nullptr; } void ARMELFStreamer::finishImpl() { MCTargetStreamer &TS = *getTargetStreamer(); ARMTargetStreamer &ATS = static_cast(TS); ATS.finishAttributeSection(); MCELFStreamer::finishImpl(); } void ARMELFStreamer::reset() { MCTargetStreamer &TS = *getTargetStreamer(); ARMTargetStreamer &ATS = static_cast(TS); ATS.reset(); MappingSymbolCounter = 0; MCELFStreamer::reset(); LastMappingSymbols.clear(); LastEMSInfo.reset(); // MCELFStreamer clear's the assembler's e_flags. However, for // arm we manually set the ABI version on streamer creation, so // do the same here getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5); } inline void ARMELFStreamer::SwitchToEHSection(StringRef Prefix, unsigned Type, unsigned Flags, SectionKind Kind, const MCSymbol &Fn) { const MCSectionELF &FnSection = static_cast(Fn.getSection()); // Create the name for new section StringRef FnSecName(FnSection.getName()); SmallString<128> EHSecName(Prefix); if (FnSecName != ".text") { EHSecName += FnSecName; } // Get .ARM.extab or .ARM.exidx section const MCSymbolELF *Group = FnSection.getGroup(); if (Group) Flags |= ELF::SHF_GROUP; MCSectionELF *EHSection = getContext().getELFSection( EHSecName, Type, Flags, 0, Group, /*IsComdat=*/true, FnSection.getUniqueID(), static_cast(FnSection.getBeginSymbol())); assert(EHSection && "Failed to get the required EH section"); // Switch to .ARM.extab or .ARM.exidx section SwitchSection(EHSection); emitValueToAlignment(4, 0, 1, 0); } inline void ARMELFStreamer::SwitchToExTabSection(const MCSymbol &FnStart) { SwitchToEHSection(".ARM.extab", ELF::SHT_PROGBITS, ELF::SHF_ALLOC, SectionKind::getData(), FnStart); } inline void ARMELFStreamer::SwitchToExIdxSection(const MCSymbol &FnStart) { SwitchToEHSection(".ARM.exidx", ELF::SHT_ARM_EXIDX, ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER, SectionKind::getData(), FnStart); } void ARMELFStreamer::EmitFixup(const MCExpr *Expr, MCFixupKind Kind) { MCDataFragment *Frag = getOrCreateDataFragment(); Frag->getFixups().push_back(MCFixup::create(Frag->getContents().size(), Expr, Kind)); } void ARMELFStreamer::EHReset() { ExTab = nullptr; FnStart = nullptr; Personality = nullptr; PersonalityIndex = ARM::EHABI::NUM_PERSONALITY_INDEX; FPReg = ARM::SP; FPOffset = 0; SPOffset = 0; PendingOffset = 0; UsedFP = false; CantUnwind = false; Opcodes.clear(); UnwindOpAsm.Reset(); } void ARMELFStreamer::emitFnStart() { assert(FnStart == nullptr); FnStart = getContext().createTempSymbol(); emitLabel(FnStart); } void ARMELFStreamer::emitFnEnd() { assert(FnStart && ".fnstart must precedes .fnend"); // Emit unwind opcodes if there is no .handlerdata directive if (!ExTab && !CantUnwind) FlushUnwindOpcodes(true); // Emit the exception index table entry SwitchToExIdxSection(*FnStart); // The EHABI requires a dependency preserving R_ARM_NONE relocation to the // personality routine to protect it from an arbitrary platform's static // linker garbage collection. We disable this for Android where the unwinder // is either dynamically linked or directly references the personality // routine. if (PersonalityIndex < ARM::EHABI::NUM_PERSONALITY_INDEX && !IsAndroid) EmitPersonalityFixup(GetAEABIUnwindPersonalityName(PersonalityIndex)); const MCSymbolRefExpr *FnStartRef = MCSymbolRefExpr::create(FnStart, MCSymbolRefExpr::VK_ARM_PREL31, getContext()); emitValue(FnStartRef, 4); if (CantUnwind) { emitInt32(ARM::EHABI::EXIDX_CANTUNWIND); } else if (ExTab) { // Emit a reference to the unwind opcodes in the ".ARM.extab" section. const MCSymbolRefExpr *ExTabEntryRef = MCSymbolRefExpr::create(ExTab, MCSymbolRefExpr::VK_ARM_PREL31, getContext()); emitValue(ExTabEntryRef, 4); } else { // For the __aeabi_unwind_cpp_pr0, we have to emit the unwind opcodes in // the second word of exception index table entry. The size of the unwind // opcodes should always be 4 bytes. assert(PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0 && "Compact model must use __aeabi_unwind_cpp_pr0 as personality"); assert(Opcodes.size() == 4u && "Unwind opcode size for __aeabi_unwind_cpp_pr0 must be equal to 4"); uint64_t Intval = Opcodes[0] | Opcodes[1] << 8 | Opcodes[2] << 16 | Opcodes[3] << 24; emitIntValue(Intval, Opcodes.size()); } // Switch to the section containing FnStart SwitchSection(&FnStart->getSection()); // Clean exception handling frame information EHReset(); } void ARMELFStreamer::emitCantUnwind() { CantUnwind = true; } // Add the R_ARM_NONE fixup at the same position void ARMELFStreamer::EmitPersonalityFixup(StringRef Name) { const MCSymbol *PersonalitySym = getContext().getOrCreateSymbol(Name); const MCSymbolRefExpr *PersonalityRef = MCSymbolRefExpr::create( PersonalitySym, MCSymbolRefExpr::VK_ARM_NONE, getContext()); visitUsedExpr(*PersonalityRef); MCDataFragment *DF = getOrCreateDataFragment(); DF->getFixups().push_back(MCFixup::create(DF->getContents().size(), PersonalityRef, MCFixup::getKindForSize(4, false))); } void ARMELFStreamer::FlushPendingOffset() { if (PendingOffset != 0) { UnwindOpAsm.EmitSPOffset(-PendingOffset); PendingOffset = 0; } } void ARMELFStreamer::FlushUnwindOpcodes(bool NoHandlerData) { // Emit the unwind opcode to restore $sp. if (UsedFP) { const MCRegisterInfo *MRI = getContext().getRegisterInfo(); int64_t LastRegSaveSPOffset = SPOffset - PendingOffset; UnwindOpAsm.EmitSPOffset(LastRegSaveSPOffset - FPOffset); UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg)); } else { FlushPendingOffset(); } // Finalize the unwind opcode sequence UnwindOpAsm.Finalize(PersonalityIndex, Opcodes); // For compact model 0, we have to emit the unwind opcodes in the .ARM.exidx // section. Thus, we don't have to create an entry in the .ARM.extab // section. if (NoHandlerData && PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0) return; // Switch to .ARM.extab section. SwitchToExTabSection(*FnStart); // Create .ARM.extab label for offset in .ARM.exidx assert(!ExTab); ExTab = getContext().createTempSymbol(); emitLabel(ExTab); // Emit personality if (Personality) { const MCSymbolRefExpr *PersonalityRef = MCSymbolRefExpr::create(Personality, MCSymbolRefExpr::VK_ARM_PREL31, getContext()); emitValue(PersonalityRef, 4); } // Emit unwind opcodes assert((Opcodes.size() % 4) == 0 && "Unwind opcode size for __aeabi_cpp_unwind_pr0 must be multiple of 4"); for (unsigned I = 0; I != Opcodes.size(); I += 4) { uint64_t Intval = Opcodes[I] | Opcodes[I + 1] << 8 | Opcodes[I + 2] << 16 | Opcodes[I + 3] << 24; emitInt32(Intval); } // According to ARM EHABI section 9.2, if the __aeabi_unwind_cpp_pr1() or // __aeabi_unwind_cpp_pr2() is used, then the handler data must be emitted // after the unwind opcodes. The handler data consists of several 32-bit // words, and should be terminated by zero. // // In case that the .handlerdata directive is not specified by the // programmer, we should emit zero to terminate the handler data. if (NoHandlerData && !Personality) emitInt32(0); } void ARMELFStreamer::emitHandlerData() { FlushUnwindOpcodes(false); } void ARMELFStreamer::emitPersonality(const MCSymbol *Per) { Personality = Per; UnwindOpAsm.setPersonality(Per); } void ARMELFStreamer::emitPersonalityIndex(unsigned Index) { assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && "invalid index"); PersonalityIndex = Index; } void ARMELFStreamer::emitSetFP(unsigned NewFPReg, unsigned NewSPReg, int64_t Offset) { assert((NewSPReg == ARM::SP || NewSPReg == FPReg) && "the operand of .setfp directive should be either $sp or $fp"); UsedFP = true; FPReg = NewFPReg; if (NewSPReg == ARM::SP) FPOffset = SPOffset + Offset; else FPOffset += Offset; } void ARMELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) { assert((Reg != ARM::SP && Reg != ARM::PC) && "the operand of .movsp cannot be either sp or pc"); assert(FPReg == ARM::SP && "current FP must be SP"); FlushPendingOffset(); FPReg = Reg; FPOffset = SPOffset + Offset; const MCRegisterInfo *MRI = getContext().getRegisterInfo(); UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg)); } void ARMELFStreamer::emitPad(int64_t Offset) { // Track the change of the $sp offset SPOffset -= Offset; // To squash multiple .pad directives, we should delay the unwind opcode // until the .save, .vsave, .handlerdata, or .fnend directives. PendingOffset -= Offset; } static std::pair collectHWRegs(const MCRegisterInfo &MRI, unsigned Idx, const SmallVectorImpl &RegList, bool IsVector, uint32_t &Mask_) { uint32_t Mask = 0; unsigned Count = 0; while (Idx > 0) { unsigned Reg = RegList[Idx - 1]; if (Reg == ARM::RA_AUTH_CODE) break; Reg = MRI.getEncodingValue(Reg); assert(Reg < (IsVector ? 32U : 16U) && "Register out of range"); unsigned Bit = (1u << Reg); if ((Mask & Bit) == 0) { Mask |= Bit; ++Count; } --Idx; } Mask_ = Mask; return {Idx, Count}; } void ARMELFStreamer::emitRegSave(const SmallVectorImpl &RegList, bool IsVector) { uint32_t Mask; unsigned Idx, Count; const MCRegisterInfo &MRI = *getContext().getRegisterInfo(); // Collect the registers in the register list. Issue unwinding instructions in // three parts: ordinary hardware registers, return address authentication // code pseudo register, the rest of the registers. The RA PAC is kept in an // architectural register (usually r12), but we treat it as a special case in // order to distinguish between that register containing RA PAC or a general // value. Idx = RegList.size(); while (Idx > 0) { std::tie(Idx, Count) = collectHWRegs(MRI, Idx, RegList, IsVector, Mask); if (Count) { // Track the change the $sp offset: For the .save directive, the // corresponding push instruction will decrease the $sp by (4 * Count). // For the .vsave directive, the corresponding vpush instruction will // decrease $sp by (8 * Count). SPOffset -= Count * (IsVector ? 8 : 4); // Emit the opcode FlushPendingOffset(); if (IsVector) UnwindOpAsm.EmitVFPRegSave(Mask); else UnwindOpAsm.EmitRegSave(Mask); } else if (Idx > 0 && RegList[Idx - 1] == ARM::RA_AUTH_CODE) { --Idx; SPOffset -= 4; FlushPendingOffset(); UnwindOpAsm.EmitRegSave(0); } } } void ARMELFStreamer::emitUnwindRaw(int64_t Offset, const SmallVectorImpl &Opcodes) { FlushPendingOffset(); SPOffset = SPOffset - Offset; UnwindOpAsm.EmitRaw(Opcodes); } namespace llvm { MCTargetStreamer *createARMTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS, MCInstPrinter *InstPrint, bool isVerboseAsm) { return new ARMTargetAsmStreamer(S, OS, *InstPrint, isVerboseAsm); } MCTargetStreamer *createARMNullTargetStreamer(MCStreamer &S) { return new ARMTargetStreamer(S); } MCTargetStreamer *createARMObjectTargetStreamer(MCStreamer &S, const MCSubtargetInfo &STI) { const Triple &TT = STI.getTargetTriple(); if (TT.isOSBinFormatELF()) return new ARMTargetELFStreamer(S); return new ARMTargetStreamer(S); } MCELFStreamer *createARMELFStreamer(MCContext &Context, std::unique_ptr TAB, std::unique_ptr OW, std::unique_ptr Emitter, bool RelaxAll, bool IsThumb, bool IsAndroid) { ARMELFStreamer *S = new ARMELFStreamer(Context, std::move(TAB), std::move(OW), std::move(Emitter), IsThumb, IsAndroid); // FIXME: This should eventually end up somewhere else where more // intelligent flag decisions can be made. For now we are just maintaining // the status quo for ARM and setting EF_ARM_EABI_VER5 as the default. S->getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5); if (RelaxAll) S->getAssembler().setRelaxAll(true); return S; } } // end namespace llvm