//===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass performs global common subexpression elimination on machine // instructions using a scoped hash table based value numbering scheme. It // must be run while the machine function is still in SSA form. // //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/ScopedHashTable.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/CFG.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/InitializePasses.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCRegister.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Pass.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Debug.h" #include "llvm/Support/RecyclingAllocator.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include using namespace llvm; #define DEBUG_TYPE "machine-cse" STATISTIC(NumCoalesces, "Number of copies coalesced"); STATISTIC(NumCSEs, "Number of common subexpression eliminated"); STATISTIC(NumPREs, "Number of partial redundant expression" " transformed to fully redundant"); STATISTIC(NumPhysCSEs, "Number of physreg referencing common subexpr eliminated"); STATISTIC(NumCrossBBCSEs, "Number of cross-MBB physreg referencing CS eliminated"); STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); namespace { class MachineCSE : public MachineFunctionPass { const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; AliasAnalysis *AA; MachineDominatorTree *DT; MachineRegisterInfo *MRI; MachineBlockFrequencyInfo *MBFI; public: static char ID; // Pass identification MachineCSE() : MachineFunctionPass(ID) { initializeMachineCSEPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); AU.addRequired(); AU.addPreservedID(MachineLoopInfoID); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); } void releaseMemory() override { ScopeMap.clear(); PREMap.clear(); Exps.clear(); } private: using AllocatorTy = RecyclingAllocator>; using ScopedHTType = ScopedHashTable; using ScopeType = ScopedHTType::ScopeTy; using PhysDefVector = SmallVector, 2>; unsigned LookAheadLimit = 0; DenseMap ScopeMap; DenseMap PREMap; ScopedHTType VNT; SmallVector Exps; unsigned CurrVN = 0; bool PerformTrivialCopyPropagation(MachineInstr *MI, MachineBasicBlock *MBB); bool isPhysDefTriviallyDead(MCRegister Reg, MachineBasicBlock::const_iterator I, MachineBasicBlock::const_iterator E) const; bool hasLivePhysRegDefUses(const MachineInstr *MI, const MachineBasicBlock *MBB, SmallSet &PhysRefs, PhysDefVector &PhysDefs, bool &PhysUseDef) const; bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, SmallSet &PhysRefs, PhysDefVector &PhysDefs, bool &NonLocal) const; bool isCSECandidate(MachineInstr *MI); bool isProfitableToCSE(Register CSReg, Register Reg, MachineBasicBlock *CSBB, MachineInstr *MI); void EnterScope(MachineBasicBlock *MBB); void ExitScope(MachineBasicBlock *MBB); bool ProcessBlockCSE(MachineBasicBlock *MBB); void ExitScopeIfDone(MachineDomTreeNode *Node, DenseMap &OpenChildren); bool PerformCSE(MachineDomTreeNode *Node); bool isPRECandidate(MachineInstr *MI); bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB); bool PerformSimplePRE(MachineDominatorTree *DT); /// Heuristics to see if it's profitable to move common computations of MBB /// and MBB1 to CandidateBB. bool isProfitableToHoistInto(MachineBasicBlock *CandidateBB, MachineBasicBlock *MBB, MachineBasicBlock *MBB1); }; } // end anonymous namespace char MachineCSE::ID = 0; char &llvm::MachineCSEID = MachineCSE::ID; INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE, "Machine Common Subexpression Elimination", false, false) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE, "Machine Common Subexpression Elimination", false, false) /// The source register of a COPY machine instruction can be propagated to all /// its users, and this propagation could increase the probability of finding /// common subexpressions. If the COPY has only one user, the COPY itself can /// be removed. bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI, MachineBasicBlock *MBB) { bool Changed = false; for (MachineOperand &MO : MI->operands()) { if (!MO.isReg() || !MO.isUse()) continue; Register Reg = MO.getReg(); if (!Register::isVirtualRegister(Reg)) continue; bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg); MachineInstr *DefMI = MRI->getVRegDef(Reg); if (!DefMI->isCopy()) continue; Register SrcReg = DefMI->getOperand(1).getReg(); if (!Register::isVirtualRegister(SrcReg)) continue; if (DefMI->getOperand(0).getSubReg()) continue; // FIXME: We should trivially coalesce subregister copies to expose CSE // opportunities on instructions with truncated operands (see // cse-add-with-overflow.ll). This can be done here as follows: // if (SrcSubReg) // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC, // SrcSubReg); // MO.substVirtReg(SrcReg, SrcSubReg, *TRI); // // The 2-addr pass has been updated to handle coalesced subregs. However, // some machine-specific code still can't handle it. // To handle it properly we also need a way find a constrained subregister // class given a super-reg class and subreg index. if (DefMI->getOperand(1).getSubReg()) continue; if (!MRI->constrainRegAttrs(SrcReg, Reg)) continue; LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); LLVM_DEBUG(dbgs() << "*** to: " << *MI); // Propagate SrcReg of copies to MI. MO.setReg(SrcReg); MRI->clearKillFlags(SrcReg); // Coalesce single use copies. if (OnlyOneUse) { // If (and only if) we've eliminated all uses of the copy, also // copy-propagate to any debug-users of MI, or they'll be left using // an undefined value. DefMI->changeDebugValuesDefReg(SrcReg); DefMI->eraseFromParent(); ++NumCoalesces; } Changed = true; } return Changed; } bool MachineCSE::isPhysDefTriviallyDead( MCRegister Reg, MachineBasicBlock::const_iterator I, MachineBasicBlock::const_iterator E) const { unsigned LookAheadLeft = LookAheadLimit; while (LookAheadLeft) { // Skip over dbg_value's. I = skipDebugInstructionsForward(I, E); if (I == E) // Reached end of block, we don't know if register is dead or not. return false; bool SeenDef = false; for (const MachineOperand &MO : I->operands()) { if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) SeenDef = true; if (!MO.isReg() || !MO.getReg()) continue; if (!TRI->regsOverlap(MO.getReg(), Reg)) continue; if (MO.isUse()) // Found a use! return false; SeenDef = true; } if (SeenDef) // See a def of Reg (or an alias) before encountering any use, it's // trivially dead. return true; --LookAheadLeft; ++I; } return false; } static bool isCallerPreservedOrConstPhysReg(MCRegister Reg, const MachineFunction &MF, const TargetRegisterInfo &TRI) { // MachineRegisterInfo::isConstantPhysReg directly called by // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the // reserved registers to be frozen. That doesn't cause a problem post-ISel as // most (if not all) targets freeze reserved registers right after ISel. // // It does cause issues mid-GlobalISel, however, hence the additional // reservedRegsFrozen check. const MachineRegisterInfo &MRI = MF.getRegInfo(); return TRI.isCallerPreservedPhysReg(Reg, MF) || (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg)); } /// hasLivePhysRegDefUses - Return true if the specified instruction read/write /// physical registers (except for dead defs of physical registers). It also /// returns the physical register def by reference if it's the only one and the /// instruction does not uses a physical register. bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, const MachineBasicBlock *MBB, SmallSet &PhysRefs, PhysDefVector &PhysDefs, bool &PhysUseDef) const { // First, add all uses to PhysRefs. for (const MachineOperand &MO : MI->operands()) { if (!MO.isReg() || MO.isDef()) continue; Register Reg = MO.getReg(); if (!Reg) continue; if (Register::isVirtualRegister(Reg)) continue; // Reading either caller preserved or constant physregs is ok. if (!isCallerPreservedOrConstPhysReg(Reg.asMCReg(), *MI->getMF(), *TRI)) for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) PhysRefs.insert(*AI); } // Next, collect all defs into PhysDefs. If any is already in PhysRefs // (which currently contains only uses), set the PhysUseDef flag. PhysUseDef = false; MachineBasicBlock::const_iterator I = MI; I = std::next(I); for (const auto &MOP : llvm::enumerate(MI->operands())) { const MachineOperand &MO = MOP.value(); if (!MO.isReg() || !MO.isDef()) continue; Register Reg = MO.getReg(); if (!Reg) continue; if (Register::isVirtualRegister(Reg)) continue; // Check against PhysRefs even if the def is "dead". if (PhysRefs.count(Reg.asMCReg())) PhysUseDef = true; // If the def is dead, it's ok. But the def may not marked "dead". That's // common since this pass is run before livevariables. We can scan // forward a few instructions and check if it is obviously dead. if (!MO.isDead() && !isPhysDefTriviallyDead(Reg.asMCReg(), I, MBB->end())) PhysDefs.push_back(std::make_pair(MOP.index(), Reg)); } // Finally, add all defs to PhysRefs as well. for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid(); ++AI) PhysRefs.insert(*AI); return !PhysRefs.empty(); } bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, SmallSet &PhysRefs, PhysDefVector &PhysDefs, bool &NonLocal) const { // For now conservatively returns false if the common subexpression is // not in the same basic block as the given instruction. The only exception // is if the common subexpression is in the sole predecessor block. const MachineBasicBlock *MBB = MI->getParent(); const MachineBasicBlock *CSMBB = CSMI->getParent(); bool CrossMBB = false; if (CSMBB != MBB) { if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) return false; for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { if (MRI->isAllocatable(PhysDefs[i].second) || MRI->isReserved(PhysDefs[i].second)) // Avoid extending live range of physical registers if they are //allocatable or reserved. return false; } CrossMBB = true; } MachineBasicBlock::const_iterator I = CSMI; I = std::next(I); MachineBasicBlock::const_iterator E = MI; MachineBasicBlock::const_iterator EE = CSMBB->end(); unsigned LookAheadLeft = LookAheadLimit; while (LookAheadLeft) { // Skip over dbg_value's. while (I != E && I != EE && I->isDebugInstr()) ++I; if (I == EE) { assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); (void)CrossMBB; CrossMBB = false; NonLocal = true; I = MBB->begin(); EE = MBB->end(); continue; } if (I == E) return true; for (const MachineOperand &MO : I->operands()) { // RegMasks go on instructions like calls that clobber lots of physregs. // Don't attempt to CSE across such an instruction. if (MO.isRegMask()) return false; if (!MO.isReg() || !MO.isDef()) continue; Register MOReg = MO.getReg(); if (Register::isVirtualRegister(MOReg)) continue; if (PhysRefs.count(MOReg.asMCReg())) return false; } --LookAheadLeft; ++I; } return false; } bool MachineCSE::isCSECandidate(MachineInstr *MI) { if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() || MI->isInlineAsm() || MI->isDebugInstr()) return false; // Ignore copies. if (MI->isCopyLike()) return false; // Ignore stuff that we obviously can't move. if (MI->mayStore() || MI->isCall() || MI->isTerminator() || MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects()) return false; if (MI->mayLoad()) { // Okay, this instruction does a load. As a refinement, we allow the target // to decide whether the loaded value is actually a constant. If so, we can // actually use it as a load. if (!MI->isDereferenceableInvariantLoad(AA)) // FIXME: we should be able to hoist loads with no other side effects if // there are no other instructions which can change memory in this loop. // This is a trivial form of alias analysis. return false; } // Ignore stack guard loads, otherwise the register that holds CSEed value may // be spilled and get loaded back with corrupted data. if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD) return false; return true; } /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a /// common expression that defines Reg. CSBB is basic block where CSReg is /// defined. bool MachineCSE::isProfitableToCSE(Register CSReg, Register Reg, MachineBasicBlock *CSBB, MachineInstr *MI) { // FIXME: Heuristics that works around the lack the live range splitting. // If CSReg is used at all uses of Reg, CSE should not increase register // pressure of CSReg. bool MayIncreasePressure = true; if (Register::isVirtualRegister(CSReg) && Register::isVirtualRegister(Reg)) { MayIncreasePressure = false; SmallPtrSet CSUses; for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) { CSUses.insert(&MI); } for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { if (!CSUses.count(&MI)) { MayIncreasePressure = true; break; } } } if (!MayIncreasePressure) return true; // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in // an immediate predecessor. We don't want to increase register pressure and // end up causing other computation to be spilled. if (TII->isAsCheapAsAMove(*MI)) { MachineBasicBlock *BB = MI->getParent(); if (CSBB != BB && !CSBB->isSuccessor(BB)) return false; } // Heuristics #2: If the expression doesn't not use a vr and the only use // of the redundant computation are copies, do not cse. bool HasVRegUse = false; for (const MachineOperand &MO : MI->operands()) { if (MO.isReg() && MO.isUse() && Register::isVirtualRegister(MO.getReg())) { HasVRegUse = true; break; } } if (!HasVRegUse) { bool HasNonCopyUse = false; for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { // Ignore copies. if (!MI.isCopyLike()) { HasNonCopyUse = true; break; } } if (!HasNonCopyUse) return false; } // Heuristics #3: If the common subexpression is used by PHIs, do not reuse // it unless the defined value is already used in the BB of the new use. bool HasPHI = false; for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) { HasPHI |= UseMI.isPHI(); if (UseMI.getParent() == MI->getParent()) return true; } return !HasPHI; } void MachineCSE::EnterScope(MachineBasicBlock *MBB) { LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); ScopeType *Scope = new ScopeType(VNT); ScopeMap[MBB] = Scope; } void MachineCSE::ExitScope(MachineBasicBlock *MBB) { LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); DenseMap::iterator SI = ScopeMap.find(MBB); assert(SI != ScopeMap.end()); delete SI->second; ScopeMap.erase(SI); } bool MachineCSE::ProcessBlockCSE(MachineBasicBlock *MBB) { bool Changed = false; SmallVector, 8> CSEPairs; SmallVector ImplicitDefsToUpdate; SmallVector ImplicitDefs; for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) { if (!isCSECandidate(&MI)) continue; bool FoundCSE = VNT.count(&MI); if (!FoundCSE) { // Using trivial copy propagation to find more CSE opportunities. if (PerformTrivialCopyPropagation(&MI, MBB)) { Changed = true; // After coalescing MI itself may become a copy. if (MI.isCopyLike()) continue; // Try again to see if CSE is possible. FoundCSE = VNT.count(&MI); } } // Commute commutable instructions. bool Commuted = false; if (!FoundCSE && MI.isCommutable()) { if (MachineInstr *NewMI = TII->commuteInstruction(MI)) { Commuted = true; FoundCSE = VNT.count(NewMI); if (NewMI != &MI) { // New instruction. It doesn't need to be kept. NewMI->eraseFromParent(); Changed = true; } else if (!FoundCSE) // MI was changed but it didn't help, commute it back! (void)TII->commuteInstruction(MI); } } // If the instruction defines physical registers and the values *may* be // used, then it's not safe to replace it with a common subexpression. // It's also not safe if the instruction uses physical registers. bool CrossMBBPhysDef = false; SmallSet PhysRefs; PhysDefVector PhysDefs; bool PhysUseDef = false; if (FoundCSE && hasLivePhysRegDefUses(&MI, MBB, PhysRefs, PhysDefs, PhysUseDef)) { FoundCSE = false; // ... Unless the CS is local or is in the sole predecessor block // and it also defines the physical register which is not clobbered // in between and the physical register uses were not clobbered. // This can never be the case if the instruction both uses and // defines the same physical register, which was detected above. if (!PhysUseDef) { unsigned CSVN = VNT.lookup(&MI); MachineInstr *CSMI = Exps[CSVN]; if (PhysRegDefsReach(CSMI, &MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) FoundCSE = true; } } if (!FoundCSE) { VNT.insert(&MI, CurrVN++); Exps.push_back(&MI); continue; } // Found a common subexpression, eliminate it. unsigned CSVN = VNT.lookup(&MI); MachineInstr *CSMI = Exps[CSVN]; LLVM_DEBUG(dbgs() << "Examining: " << MI); LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); // Prevent CSE-ing non-local convergent instructions. // LLVM's current definition of `isConvergent` does not necessarily prove // that non-local CSE is illegal. The following check extends the definition // of `isConvergent` to assume a convergent instruction is dependent not // only on additional conditions, but also on fewer conditions. LLVM does // not have a MachineInstr attribute which expresses this extended // definition, so it's necessary to use `isConvergent` to prevent illegally // CSE-ing the subset of `isConvergent` instructions which do fall into this // extended definition. if (MI.isConvergent() && MI.getParent() != CSMI->getParent()) { LLVM_DEBUG(dbgs() << "*** Convergent MI and subexpression exist in " "different BBs, avoid CSE!\n"); VNT.insert(&MI, CurrVN++); Exps.push_back(&MI); continue; } // Check if it's profitable to perform this CSE. bool DoCSE = true; unsigned NumDefs = MI.getNumDefs(); for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (!MO.isReg() || !MO.isDef()) continue; Register OldReg = MO.getReg(); Register NewReg = CSMI->getOperand(i).getReg(); // Go through implicit defs of CSMI and MI, if a def is not dead at MI, // we should make sure it is not dead at CSMI. if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead()) ImplicitDefsToUpdate.push_back(i); // Keep track of implicit defs of CSMI and MI, to clear possibly // made-redundant kill flags. if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg) ImplicitDefs.push_back(OldReg); if (OldReg == NewReg) { --NumDefs; continue; } assert(Register::isVirtualRegister(OldReg) && Register::isVirtualRegister(NewReg) && "Do not CSE physical register defs!"); if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), &MI)) { LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); DoCSE = false; break; } // Don't perform CSE if the result of the new instruction cannot exist // within the constraints (register class, bank, or low-level type) of // the old instruction. if (!MRI->constrainRegAttrs(NewReg, OldReg)) { LLVM_DEBUG( dbgs() << "*** Not the same register constraints, avoid CSE!\n"); DoCSE = false; break; } CSEPairs.push_back(std::make_pair(OldReg, NewReg)); --NumDefs; } // Actually perform the elimination. if (DoCSE) { for (const std::pair &CSEPair : CSEPairs) { unsigned OldReg = CSEPair.first; unsigned NewReg = CSEPair.second; // OldReg may have been unused but is used now, clear the Dead flag MachineInstr *Def = MRI->getUniqueVRegDef(NewReg); assert(Def != nullptr && "CSEd register has no unique definition?"); Def->clearRegisterDeads(NewReg); // Replace with NewReg and clear kill flags which may be wrong now. MRI->replaceRegWith(OldReg, NewReg); MRI->clearKillFlags(NewReg); } // Go through implicit defs of CSMI and MI, if a def is not dead at MI, // we should make sure it is not dead at CSMI. for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate) CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false); for (const auto &PhysDef : PhysDefs) if (!MI.getOperand(PhysDef.first).isDead()) CSMI->getOperand(PhysDef.first).setIsDead(false); // Go through implicit defs of CSMI and MI, and clear the kill flags on // their uses in all the instructions between CSMI and MI. // We might have made some of the kill flags redundant, consider: // subs ... implicit-def %nzcv <- CSMI // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore // subs ... implicit-def %nzcv <- MI, to be eliminated // csinc ... implicit killed %nzcv // Since we eliminated MI, and reused a register imp-def'd by CSMI // (here %nzcv), that register, if it was killed before MI, should have // that kill flag removed, because it's lifetime was extended. if (CSMI->getParent() == MI.getParent()) { for (MachineBasicBlock::iterator II = CSMI, IE = &MI; II != IE; ++II) for (auto ImplicitDef : ImplicitDefs) if (MachineOperand *MO = II->findRegisterUseOperand( ImplicitDef, /*isKill=*/true, TRI)) MO->setIsKill(false); } else { // If the instructions aren't in the same BB, bail out and clear the // kill flag on all uses of the imp-def'd register. for (auto ImplicitDef : ImplicitDefs) MRI->clearKillFlags(ImplicitDef); } if (CrossMBBPhysDef) { // Add physical register defs now coming in from a predecessor to MBB // livein list. while (!PhysDefs.empty()) { auto LiveIn = PhysDefs.pop_back_val(); if (!MBB->isLiveIn(LiveIn.second)) MBB->addLiveIn(LiveIn.second); } ++NumCrossBBCSEs; } MI.eraseFromParent(); ++NumCSEs; if (!PhysRefs.empty()) ++NumPhysCSEs; if (Commuted) ++NumCommutes; Changed = true; } else { VNT.insert(&MI, CurrVN++); Exps.push_back(&MI); } CSEPairs.clear(); ImplicitDefsToUpdate.clear(); ImplicitDefs.clear(); } return Changed; } /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given /// dominator tree node if its a leaf or all of its children are done. Walk /// up the dominator tree to destroy ancestors which are now done. void MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, DenseMap &OpenChildren) { if (OpenChildren[Node]) return; // Pop scope. ExitScope(Node->getBlock()); // Now traverse upwards to pop ancestors whose offsprings are all done. while (MachineDomTreeNode *Parent = Node->getIDom()) { unsigned Left = --OpenChildren[Parent]; if (Left != 0) break; ExitScope(Parent->getBlock()); Node = Parent; } } bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { SmallVector Scopes; SmallVector WorkList; DenseMap OpenChildren; CurrVN = 0; // Perform a DFS walk to determine the order of visit. WorkList.push_back(Node); do { Node = WorkList.pop_back_val(); Scopes.push_back(Node); OpenChildren[Node] = Node->getNumChildren(); append_range(WorkList, Node->children()); } while (!WorkList.empty()); // Now perform CSE. bool Changed = false; for (MachineDomTreeNode *Node : Scopes) { MachineBasicBlock *MBB = Node->getBlock(); EnterScope(MBB); Changed |= ProcessBlockCSE(MBB); // If it's a leaf node, it's done. Traverse upwards to pop ancestors. ExitScopeIfDone(Node, OpenChildren); } return Changed; } // We use stronger checks for PRE candidate rather than for CSE ones to embrace // checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps // to exclude instrs created by PRE that won't be CSEed later. bool MachineCSE::isPRECandidate(MachineInstr *MI) { if (!isCSECandidate(MI) || MI->isNotDuplicable() || MI->mayLoad() || MI->isAsCheapAsAMove() || MI->getNumDefs() != 1 || MI->getNumExplicitDefs() != 1) return false; for (const auto &def : MI->defs()) if (!Register::isVirtualRegister(def.getReg())) return false; for (const auto &use : MI->uses()) if (use.isReg() && !Register::isVirtualRegister(use.getReg())) return false; return true; } bool MachineCSE::ProcessBlockPRE(MachineDominatorTree *DT, MachineBasicBlock *MBB) { bool Changed = false; for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) { if (!isPRECandidate(&MI)) continue; if (!PREMap.count(&MI)) { PREMap[&MI] = MBB; continue; } auto MBB1 = PREMap[&MI]; assert( !DT->properlyDominates(MBB, MBB1) && "MBB cannot properly dominate MBB1 while DFS through dominators tree!"); auto CMBB = DT->findNearestCommonDominator(MBB, MBB1); if (!CMBB->isLegalToHoistInto()) continue; if (!isProfitableToHoistInto(CMBB, MBB, MBB1)) continue; // Two instrs are partial redundant if their basic blocks are reachable // from one to another but one doesn't dominate another. if (CMBB != MBB1) { auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock(); if (BB != nullptr && BB1 != nullptr && (isPotentiallyReachable(BB1, BB) || isPotentiallyReachable(BB, BB1))) { // The following check extends the definition of `isConvergent` to // assume a convergent instruction is dependent not only on additional // conditions, but also on fewer conditions. LLVM does not have a // MachineInstr attribute which expresses this extended definition, so // it's necessary to use `isConvergent` to prevent illegally PRE-ing the // subset of `isConvergent` instructions which do fall into this // extended definition. if (MI.isConvergent() && CMBB != MBB) continue; assert(MI.getOperand(0).isDef() && "First operand of instr with one explicit def must be this def"); Register VReg = MI.getOperand(0).getReg(); Register NewReg = MRI->cloneVirtualRegister(VReg); if (!isProfitableToCSE(NewReg, VReg, CMBB, &MI)) continue; MachineInstr &NewMI = TII->duplicate(*CMBB, CMBB->getFirstTerminator(), MI); // When hoisting, make sure we don't carry the debug location of // the original instruction, as that's not correct and can cause // unexpected jumps when debugging optimized code. auto EmptyDL = DebugLoc(); NewMI.setDebugLoc(EmptyDL); NewMI.getOperand(0).setReg(NewReg); PREMap[&MI] = CMBB; ++NumPREs; Changed = true; } } } return Changed; } // This simple PRE (partial redundancy elimination) pass doesn't actually // eliminate partial redundancy but transforms it to full redundancy, // anticipating that the next CSE step will eliminate this created redundancy. // If CSE doesn't eliminate this, than created instruction will remain dead // and eliminated later by Remove Dead Machine Instructions pass. bool MachineCSE::PerformSimplePRE(MachineDominatorTree *DT) { SmallVector BBs; PREMap.clear(); bool Changed = false; BBs.push_back(DT->getRootNode()); do { auto Node = BBs.pop_back_val(); append_range(BBs, Node->children()); MachineBasicBlock *MBB = Node->getBlock(); Changed |= ProcessBlockPRE(DT, MBB); } while (!BBs.empty()); return Changed; } bool MachineCSE::isProfitableToHoistInto(MachineBasicBlock *CandidateBB, MachineBasicBlock *MBB, MachineBasicBlock *MBB1) { if (CandidateBB->getParent()->getFunction().hasMinSize()) return true; assert(DT->dominates(CandidateBB, MBB) && "CandidateBB should dominate MBB"); assert(DT->dominates(CandidateBB, MBB1) && "CandidateBB should dominate MBB1"); return MBFI->getBlockFreq(CandidateBB) <= MBFI->getBlockFreq(MBB) + MBFI->getBlockFreq(MBB1); } bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(MF.getFunction())) return false; TII = MF.getSubtarget().getInstrInfo(); TRI = MF.getSubtarget().getRegisterInfo(); MRI = &MF.getRegInfo(); AA = &getAnalysis().getAAResults(); DT = &getAnalysis(); MBFI = &getAnalysis(); LookAheadLimit = TII->getMachineCSELookAheadLimit(); bool ChangedPRE, ChangedCSE; ChangedPRE = PerformSimplePRE(DT); ChangedCSE = PerformCSE(DT->getRootNode()); return ChangedPRE || ChangedCSE; }