//===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains support for writing exception info into assembly files. // //===----------------------------------------------------------------------===// #include "EHStreamer.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Twine.h" #include "llvm/ADT/iterator_range.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCTargetOptions.h" #include "llvm/Support/Casting.h" #include "llvm/Support/LEB128.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include #include #include #include using namespace llvm; EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {} EHStreamer::~EHStreamer() = default; /// How many leading type ids two landing pads have in common. unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L, const LandingPadInfo *R) { const std::vector &LIds = L->TypeIds, &RIds = R->TypeIds; return std::mismatch(LIds.begin(), LIds.end(), RIds.begin(), RIds.end()) .first - LIds.begin(); } /// Compute the actions table and gather the first action index for each landing /// pad site. void EHStreamer::computeActionsTable( const SmallVectorImpl &LandingPads, SmallVectorImpl &Actions, SmallVectorImpl &FirstActions) { // The action table follows the call-site table in the LSDA. The individual // records are of two types: // // * Catch clause // * Exception specification // // The two record kinds have the same format, with only small differences. // They are distinguished by the "switch value" field: Catch clauses // (TypeInfos) have strictly positive switch values, and exception // specifications (FilterIds) have strictly negative switch values. Value 0 // indicates a catch-all clause. // // Negative type IDs index into FilterIds. Positive type IDs index into // TypeInfos. The value written for a positive type ID is just the type ID // itself. For a negative type ID, however, the value written is the // (negative) byte offset of the corresponding FilterIds entry. The byte // offset is usually equal to the type ID (because the FilterIds entries are // written using a variable width encoding, which outputs one byte per entry // as long as the value written is not too large) but can differ. This kind // of complication does not occur for positive type IDs because type infos are // output using a fixed width encoding. FilterOffsets[i] holds the byte // offset corresponding to FilterIds[i]. const std::vector &FilterIds = Asm->MF->getFilterIds(); SmallVector FilterOffsets; FilterOffsets.reserve(FilterIds.size()); int Offset = -1; for (unsigned FilterId : FilterIds) { FilterOffsets.push_back(Offset); Offset -= getULEB128Size(FilterId); } FirstActions.reserve(LandingPads.size()); int FirstAction = 0; unsigned SizeActions = 0; // Total size of all action entries for a function const LandingPadInfo *PrevLPI = nullptr; for (const LandingPadInfo *LPI : LandingPads) { const std::vector &TypeIds = LPI->TypeIds; unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0; unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad if (NumShared < TypeIds.size()) { // Size of one action entry (typeid + next action) unsigned SizeActionEntry = 0; unsigned PrevAction = (unsigned)-1; if (NumShared) { unsigned SizePrevIds = PrevLPI->TypeIds.size(); assert(Actions.size()); PrevAction = Actions.size() - 1; SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) + getSLEB128Size(Actions[PrevAction].ValueForTypeID); for (unsigned j = NumShared; j != SizePrevIds; ++j) { assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!"); SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID); SizeActionEntry += -Actions[PrevAction].NextAction; PrevAction = Actions[PrevAction].Previous; } } // Compute the actions. for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) { int TypeID = TypeIds[J]; assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); int ValueForTypeID = isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID; unsigned SizeTypeID = getSLEB128Size(ValueForTypeID); int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0; SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction); SizeSiteActions += SizeActionEntry; ActionEntry Action = { ValueForTypeID, NextAction, PrevAction }; Actions.push_back(Action); PrevAction = Actions.size() - 1; } // Record the first action of the landing pad site. FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1; } // else identical - re-use previous FirstAction // Information used when creating the call-site table. The action record // field of the call site record is the offset of the first associated // action record, relative to the start of the actions table. This value is // biased by 1 (1 indicating the start of the actions table), and 0 // indicates that there are no actions. FirstActions.push_back(FirstAction); // Compute this sites contribution to size. SizeActions += SizeSiteActions; PrevLPI = LPI; } } /// Return `true' if this is a call to a function marked `nounwind'. Return /// `false' otherwise. bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) { assert(MI->isCall() && "This should be a call instruction!"); bool MarkedNoUnwind = false; bool SawFunc = false; for (const MachineOperand &MO : MI->operands()) { if (!MO.isGlobal()) continue; const Function *F = dyn_cast(MO.getGlobal()); if (!F) continue; if (SawFunc) { // Be conservative. If we have more than one function operand for this // call, then we can't make the assumption that it's the callee and // not a parameter to the call. // // FIXME: Determine if there's a way to say that `F' is the callee or // parameter. MarkedNoUnwind = false; break; } MarkedNoUnwind = F->doesNotThrow(); SawFunc = true; } return MarkedNoUnwind; } void EHStreamer::computePadMap( const SmallVectorImpl &LandingPads, RangeMapType &PadMap) { // Invokes and nounwind calls have entries in PadMap (due to being bracketed // by try-range labels when lowered). Ordinary calls do not, so appropriate // try-ranges for them need be deduced so we can put them in the LSDA. for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { const LandingPadInfo *LandingPad = LandingPads[i]; for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) { MCSymbol *BeginLabel = LandingPad->BeginLabels[j]; assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); PadRange P = { i, j }; PadMap[BeginLabel] = P; } } } /// Compute the call-site table. The entry for an invoke has a try-range /// containing the call, a non-zero landing pad, and an appropriate action. The /// entry for an ordinary call has a try-range containing the call and zero for /// the landing pad and the action. Calls marked 'nounwind' have no entry and /// must not be contained in the try-range of any entry - they form gaps in the /// table. Entries must be ordered by try-range address. /// /// Call-sites are split into one or more call-site ranges associated with /// different sections of the function. /// /// - Without -basic-block-sections, all call-sites are grouped into one /// call-site-range corresponding to the function section. /// /// - With -basic-block-sections, one call-site range is created for each /// section, with its FragmentBeginLabel and FragmentEndLabel respectively // set to the beginning and ending of the corresponding section and its // ExceptionLabel set to the exception symbol dedicated for this section. // Later, one LSDA header will be emitted for each call-site range with its // call-sites following. The action table and type info table will be // shared across all ranges. void EHStreamer::computeCallSiteTable( SmallVectorImpl &CallSites, SmallVectorImpl &CallSiteRanges, const SmallVectorImpl &LandingPads, const SmallVectorImpl &FirstActions) { RangeMapType PadMap; computePadMap(LandingPads, PadMap); // The end label of the previous invoke or nounwind try-range. MCSymbol *LastLabel = Asm->getFunctionBegin(); // Whether there is a potentially throwing instruction (currently this means // an ordinary call) between the end of the previous try-range and now. bool SawPotentiallyThrowing = false; // Whether the last CallSite entry was for an invoke. bool PreviousIsInvoke = false; bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; // Visit all instructions in order of address. for (const auto &MBB : *Asm->MF) { if (&MBB == &Asm->MF->front() || MBB.isBeginSection()) { // We start a call-site range upon function entry and at the beginning of // every basic block section. CallSiteRanges.push_back( {Asm->MBBSectionRanges[MBB.getSectionIDNum()].BeginLabel, Asm->MBBSectionRanges[MBB.getSectionIDNum()].EndLabel, Asm->getMBBExceptionSym(MBB), CallSites.size()}); PreviousIsInvoke = false; SawPotentiallyThrowing = false; LastLabel = nullptr; } if (MBB.isEHPad()) CallSiteRanges.back().IsLPRange = true; for (const auto &MI : MBB) { if (!MI.isEHLabel()) { if (MI.isCall()) SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI); continue; } // End of the previous try-range? MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol(); if (BeginLabel == LastLabel) SawPotentiallyThrowing = false; // Beginning of a new try-range? RangeMapType::const_iterator L = PadMap.find(BeginLabel); if (L == PadMap.end()) // Nope, it was just some random label. continue; const PadRange &P = L->second; const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && "Inconsistent landing pad map!"); // For Dwarf and AIX exception handling (SjLj handling doesn't use this). // If some instruction between the previous try-range and this one may // throw, create a call-site entry with no landing pad for the region // between the try-ranges. if (SawPotentiallyThrowing && (Asm->MAI->usesCFIForEH() || Asm->MAI->getExceptionHandlingType() == ExceptionHandling::AIX)) { CallSites.push_back({LastLabel, BeginLabel, nullptr, 0}); PreviousIsInvoke = false; } LastLabel = LandingPad->EndLabels[P.RangeIndex]; assert(BeginLabel && LastLabel && "Invalid landing pad!"); if (!LandingPad->LandingPadLabel) { // Create a gap. PreviousIsInvoke = false; } else { // This try-range is for an invoke. CallSiteEntry Site = { BeginLabel, LastLabel, LandingPad, FirstActions[P.PadIndex] }; // Try to merge with the previous call-site. SJLJ doesn't do this if (PreviousIsInvoke && !IsSJLJ) { CallSiteEntry &Prev = CallSites.back(); if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) { // Extend the range of the previous entry. Prev.EndLabel = Site.EndLabel; continue; } } // Otherwise, create a new call-site. if (!IsSJLJ) CallSites.push_back(Site); else { // SjLj EH must maintain the call sites in the order assigned // to them by the SjLjPrepare pass. unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel); if (CallSites.size() < SiteNo) CallSites.resize(SiteNo); CallSites[SiteNo - 1] = Site; } PreviousIsInvoke = true; } } // We end the call-site range upon function exit and at the end of every // basic block section. if (&MBB == &Asm->MF->back() || MBB.isEndSection()) { // If some instruction between the previous try-range and the end of the // function may throw, create a call-site entry with no landing pad for // the region following the try-range. if (SawPotentiallyThrowing && !IsSJLJ) { CallSiteEntry Site = {LastLabel, CallSiteRanges.back().FragmentEndLabel, nullptr, 0}; CallSites.push_back(Site); SawPotentiallyThrowing = false; } CallSiteRanges.back().CallSiteEndIdx = CallSites.size(); } } } /// Emit landing pads and actions. /// /// The general organization of the table is complex, but the basic concepts are /// easy. First there is a header which describes the location and organization /// of the three components that follow. /// /// 1. The landing pad site information describes the range of code covered by /// the try. In our case it's an accumulation of the ranges covered by the /// invokes in the try. There is also a reference to the landing pad that /// handles the exception once processed. Finally an index into the actions /// table. /// 2. The action table, in our case, is composed of pairs of type IDs and next /// action offset. Starting with the action index from the landing pad /// site, each type ID is checked for a match to the current exception. If /// it matches then the exception and type id are passed on to the landing /// pad. Otherwise the next action is looked up. This chain is terminated /// with a next action of zero. If no type id is found then the frame is /// unwound and handling continues. /// 3. Type ID table contains references to all the C++ typeinfo for all /// catches in the function. This tables is reverse indexed base 1. /// /// Returns the starting symbol of an exception table. MCSymbol *EHStreamer::emitExceptionTable() { const MachineFunction *MF = Asm->MF; const std::vector &TypeInfos = MF->getTypeInfos(); const std::vector &FilterIds = MF->getFilterIds(); const std::vector &PadInfos = MF->getLandingPads(); // Sort the landing pads in order of their type ids. This is used to fold // duplicate actions. SmallVector LandingPads; LandingPads.reserve(PadInfos.size()); for (const LandingPadInfo &LPI : PadInfos) LandingPads.push_back(&LPI); // Order landing pads lexicographically by type id. llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) { return L->TypeIds < R->TypeIds; }); // Compute the actions table and gather the first action index for each // landing pad site. SmallVector Actions; SmallVector FirstActions; computeActionsTable(LandingPads, Actions, FirstActions); // Compute the call-site table and call-site ranges. Normally, there is only // one call-site-range which covers the whole funciton. With // -basic-block-sections, there is one call-site-range per basic block // section. SmallVector CallSites; SmallVector CallSiteRanges; computeCallSiteTable(CallSites, CallSiteRanges, LandingPads, FirstActions); bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm; bool HasLEB128Directives = Asm->MAI->hasLEB128Directives(); unsigned CallSiteEncoding = IsSJLJ ? static_cast(dwarf::DW_EH_PE_udata4) : Asm->getObjFileLowering().getCallSiteEncoding(); bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty(); // Type infos. MCSection *LSDASection = Asm->getObjFileLowering().getSectionForLSDA( MF->getFunction(), *Asm->CurrentFnSym, Asm->TM); unsigned TTypeEncoding; if (!HaveTTData) { // If there is no TypeInfo, then we just explicitly say that we're omitting // that bit. TTypeEncoding = dwarf::DW_EH_PE_omit; } else { // Okay, we have actual filters or typeinfos to emit. As such, we need to // pick a type encoding for them. We're about to emit a list of pointers to // typeinfo objects at the end of the LSDA. However, unless we're in static // mode, this reference will require a relocation by the dynamic linker. // // Because of this, we have a couple of options: // // 1) If we are in -static mode, we can always use an absolute reference // from the LSDA, because the static linker will resolve it. // // 2) Otherwise, if the LSDA section is writable, we can output the direct // reference to the typeinfo and allow the dynamic linker to relocate // it. Since it is in a writable section, the dynamic linker won't // have a problem. // // 3) Finally, if we're in PIC mode and the LDSA section isn't writable, // we need to use some form of indirection. For example, on Darwin, // we can output a statically-relocatable reference to a dyld stub. The // offset to the stub is constant, but the contents are in a section // that is updated by the dynamic linker. This is easy enough, but we // need to tell the personality function of the unwinder to indirect // through the dyld stub. // // FIXME: When (3) is actually implemented, we'll have to emit the stubs // somewhere. This predicate should be moved to a shared location that is // in target-independent code. // TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding(); } // Begin the exception table. // Sometimes we want not to emit the data into separate section (e.g. ARM // EHABI). In this case LSDASection will be NULL. if (LSDASection) Asm->OutStreamer->SwitchSection(LSDASection); Asm->emitAlignment(Align(4)); // Emit the LSDA. MCSymbol *GCCETSym = Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+ Twine(Asm->getFunctionNumber())); Asm->OutStreamer->emitLabel(GCCETSym); MCSymbol *CstEndLabel = Asm->createTempSymbol( CallSiteRanges.size() > 1 ? "action_table_base" : "cst_end"); MCSymbol *TTBaseLabel = nullptr; if (HaveTTData) TTBaseLabel = Asm->createTempSymbol("ttbase"); const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm(); // Helper for emitting references (offsets) for type table and the end of the // call-site table (which marks the beginning of the action table). // * For Itanium, these references will be emitted for every callsite range. // * For SJLJ and Wasm, they will be emitted only once in the LSDA header. auto EmitTypeTableRefAndCallSiteTableEndRef = [&]() { Asm->emitEncodingByte(TTypeEncoding, "@TType"); if (HaveTTData) { // N.B.: There is a dependency loop between the size of the TTBase uleb128 // here and the amount of padding before the aligned type table. The // assembler must sometimes pad this uleb128 or insert extra padding // before the type table. See PR35809 or GNU as bug 4029. MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref"); Asm->emitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel); Asm->OutStreamer->emitLabel(TTBaseRefLabel); } // The Action table follows the call-site table. So we emit the // label difference from here (start of the call-site table for SJLJ and // Wasm, and start of a call-site range for Itanium) to the end of the // whole call-site table (end of the last call-site range for Itanium). MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin"); Asm->emitEncodingByte(CallSiteEncoding, "Call site"); Asm->emitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel); Asm->OutStreamer->emitLabel(CstBeginLabel); }; // An alternative path to EmitTypeTableRefAndCallSiteTableEndRef. // For some platforms, the system assembler does not accept the form of // `.uleb128 label2 - label1`. In those situations, we would need to calculate // the size between label1 and label2 manually. // In this case, we would need to calculate the LSDA size and the call // site table size. auto EmitTypeTableOffsetAndCallSiteTableOffset = [&]() { assert(CallSiteEncoding == dwarf::DW_EH_PE_udata4 && !HasLEB128Directives && "Targets supporting .uleb128 do not need to take this path."); if (CallSiteRanges.size() > 1) report_fatal_error( "-fbasic-block-sections is not yet supported on " "platforms that do not have general LEB128 directive support."); uint64_t CallSiteTableSize = 0; const CallSiteRange &CSRange = CallSiteRanges.back(); for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx; CallSiteIdx < CSRange.CallSiteEndIdx; ++CallSiteIdx) { const CallSiteEntry &S = CallSites[CallSiteIdx]; // Each call site entry consists of 3 udata4 fields (12 bytes) and // 1 ULEB128 field. CallSiteTableSize += 12 + getULEB128Size(S.Action); assert(isUInt<32>(CallSiteTableSize) && "CallSiteTableSize overflows."); } Asm->emitEncodingByte(TTypeEncoding, "@TType"); if (HaveTTData) { const unsigned ByteSizeOfCallSiteOffset = getULEB128Size(CallSiteTableSize); uint64_t ActionTableSize = 0; for (const ActionEntry &Action : Actions) { // Each action entry consists of two SLEB128 fields. ActionTableSize += getSLEB128Size(Action.ValueForTypeID) + getSLEB128Size(Action.NextAction); assert(isUInt<32>(ActionTableSize) && "ActionTableSize overflows."); } const unsigned TypeInfoSize = Asm->GetSizeOfEncodedValue(TTypeEncoding) * MF->getTypeInfos().size(); const uint64_t LSDASizeBeforeAlign = 1 // Call site encoding byte. + ByteSizeOfCallSiteOffset // ULEB128 encoding of CallSiteTableSize. + CallSiteTableSize // Call site table content. + ActionTableSize; // Action table content. const uint64_t LSDASizeWithoutAlign = LSDASizeBeforeAlign + TypeInfoSize; const unsigned ByteSizeOfLSDAWithoutAlign = getULEB128Size(LSDASizeWithoutAlign); const uint64_t DisplacementBeforeAlign = 2 // LPStartEncoding and TypeTableEncoding. + ByteSizeOfLSDAWithoutAlign + LSDASizeBeforeAlign; // The type info area starts with 4 byte alignment. const unsigned NeedAlignVal = (4 - DisplacementBeforeAlign % 4) % 4; uint64_t LSDASizeWithAlign = LSDASizeWithoutAlign + NeedAlignVal; const unsigned ByteSizeOfLSDAWithAlign = getULEB128Size(LSDASizeWithAlign); // The LSDASizeWithAlign could use 1 byte less padding for alignment // when the data we use to represent the LSDA Size "needs" to be 1 byte // larger than the one previously calculated without alignment. if (ByteSizeOfLSDAWithAlign > ByteSizeOfLSDAWithoutAlign) LSDASizeWithAlign -= 1; Asm->OutStreamer->emitULEB128IntValue(LSDASizeWithAlign, ByteSizeOfLSDAWithAlign); } Asm->emitEncodingByte(CallSiteEncoding, "Call site"); Asm->OutStreamer->emitULEB128IntValue(CallSiteTableSize); }; // SjLj / Wasm Exception handling if (IsSJLJ || IsWasm) { Asm->OutStreamer->emitLabel(Asm->getMBBExceptionSym(Asm->MF->front())); // emit the LSDA header. Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart"); EmitTypeTableRefAndCallSiteTableEndRef(); unsigned idx = 0; for (SmallVectorImpl::const_iterator I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) { const CallSiteEntry &S = *I; // Index of the call site entry. if (VerboseAsm) { Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<"); Asm->OutStreamer->AddComment(" On exception at call site "+Twine(idx)); } Asm->emitULEB128(idx); // Offset of the first associated action record, relative to the start of // the action table. This value is biased by 1 (1 indicates the start of // the action table), and 0 indicates that there are no actions. if (VerboseAsm) { if (S.Action == 0) Asm->OutStreamer->AddComment(" Action: cleanup"); else Asm->OutStreamer->AddComment(" Action: " + Twine((S.Action - 1) / 2 + 1)); } Asm->emitULEB128(S.Action); } Asm->OutStreamer->emitLabel(CstEndLabel); } else { // Itanium LSDA exception handling // The call-site table is a list of all call sites that may throw an // exception (including C++ 'throw' statements) in the procedure // fragment. It immediately follows the LSDA header. Each entry indicates, // for a given call, the first corresponding action record and corresponding // landing pad. // // The table begins with the number of bytes, stored as an LEB128 // compressed, unsigned integer. The records immediately follow the record // count. They are sorted in increasing call-site address. Each record // indicates: // // * The position of the call-site. // * The position of the landing pad. // * The first action record for that call site. // // A missing entry in the call-site table indicates that a call is not // supposed to throw. assert(CallSiteRanges.size() != 0 && "No call-site ranges!"); // There should be only one call-site range which includes all the landing // pads. Find that call-site range here. const CallSiteRange *LandingPadRange = nullptr; for (const CallSiteRange &CSRange : CallSiteRanges) { if (CSRange.IsLPRange) { assert(LandingPadRange == nullptr && "All landing pads must be in a single callsite range."); LandingPadRange = &CSRange; } } // The call-site table is split into its call-site ranges, each being // emitted as: // [ LPStartEncoding | LPStart ] // [ TypeTableEncoding | TypeTableOffset ] // [ CallSiteEncoding | CallSiteTableEndOffset ] // cst_begin -> { call-site entries contained in this range } // // and is followed by the next call-site range. // // For each call-site range, CallSiteTableEndOffset is computed as the // difference between cst_begin of that range and the last call-site-table's // end label. This offset is used to find the action table. unsigned Entry = 0; for (const CallSiteRange &CSRange : CallSiteRanges) { if (CSRange.CallSiteBeginIdx != 0) { // Align the call-site range for all ranges except the first. The // first range is already aligned due to the exception table alignment. Asm->emitAlignment(Align(4)); } Asm->OutStreamer->emitLabel(CSRange.ExceptionLabel); // Emit the LSDA header. // If only one call-site range exists, LPStart is omitted as it is the // same as the function entry. if (CallSiteRanges.size() == 1) { Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart"); } else if (!Asm->isPositionIndependent()) { // For more than one call-site ranges, LPStart must be explicitly // specified. // For non-PIC we can simply use the absolute value. Asm->emitEncodingByte(dwarf::DW_EH_PE_absptr, "@LPStart"); Asm->OutStreamer->emitSymbolValue(LandingPadRange->FragmentBeginLabel, Asm->MAI->getCodePointerSize()); } else { // For PIC mode, we Emit a PC-relative address for LPStart. Asm->emitEncodingByte(dwarf::DW_EH_PE_pcrel, "@LPStart"); MCContext &Context = Asm->OutStreamer->getContext(); MCSymbol *Dot = Context.createTempSymbol(); Asm->OutStreamer->emitLabel(Dot); Asm->OutStreamer->emitValue( MCBinaryExpr::createSub( MCSymbolRefExpr::create(LandingPadRange->FragmentBeginLabel, Context), MCSymbolRefExpr::create(Dot, Context), Context), Asm->MAI->getCodePointerSize()); } if (HasLEB128Directives) EmitTypeTableRefAndCallSiteTableEndRef(); else EmitTypeTableOffsetAndCallSiteTableOffset(); for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx; CallSiteIdx != CSRange.CallSiteEndIdx; ++CallSiteIdx) { const CallSiteEntry &S = CallSites[CallSiteIdx]; MCSymbol *EHFuncBeginSym = CSRange.FragmentBeginLabel; MCSymbol *EHFuncEndSym = CSRange.FragmentEndLabel; MCSymbol *BeginLabel = S.BeginLabel; if (!BeginLabel) BeginLabel = EHFuncBeginSym; MCSymbol *EndLabel = S.EndLabel; if (!EndLabel) EndLabel = EHFuncEndSym; // Offset of the call site relative to the start of the procedure. if (VerboseAsm) Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) + " <<"); Asm->emitCallSiteOffset(BeginLabel, EHFuncBeginSym, CallSiteEncoding); if (VerboseAsm) Asm->OutStreamer->AddComment(Twine(" Call between ") + BeginLabel->getName() + " and " + EndLabel->getName()); Asm->emitCallSiteOffset(EndLabel, BeginLabel, CallSiteEncoding); // Offset of the landing pad relative to the start of the landing pad // fragment. if (!S.LPad) { if (VerboseAsm) Asm->OutStreamer->AddComment(" has no landing pad"); Asm->emitCallSiteValue(0, CallSiteEncoding); } else { if (VerboseAsm) Asm->OutStreamer->AddComment(Twine(" jumps to ") + S.LPad->LandingPadLabel->getName()); Asm->emitCallSiteOffset(S.LPad->LandingPadLabel, LandingPadRange->FragmentBeginLabel, CallSiteEncoding); } // Offset of the first associated action record, relative to the start // of the action table. This value is biased by 1 (1 indicates the start // of the action table), and 0 indicates that there are no actions. if (VerboseAsm) { if (S.Action == 0) Asm->OutStreamer->AddComment(" On action: cleanup"); else Asm->OutStreamer->AddComment(" On action: " + Twine((S.Action - 1) / 2 + 1)); } Asm->emitULEB128(S.Action); } } Asm->OutStreamer->emitLabel(CstEndLabel); } // Emit the Action Table. int Entry = 0; for (const ActionEntry &Action : Actions) { if (VerboseAsm) { // Emit comments that decode the action table. Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<"); } // Type Filter // // Used by the runtime to match the type of the thrown exception to the // type of the catch clauses or the types in the exception specification. if (VerboseAsm) { if (Action.ValueForTypeID > 0) Asm->OutStreamer->AddComment(" Catch TypeInfo " + Twine(Action.ValueForTypeID)); else if (Action.ValueForTypeID < 0) Asm->OutStreamer->AddComment(" Filter TypeInfo " + Twine(Action.ValueForTypeID)); else Asm->OutStreamer->AddComment(" Cleanup"); } Asm->emitSLEB128(Action.ValueForTypeID); // Action Record if (VerboseAsm) { if (Action.Previous == unsigned(-1)) { Asm->OutStreamer->AddComment(" No further actions"); } else { Asm->OutStreamer->AddComment(" Continue to action " + Twine(Action.Previous + 1)); } } Asm->emitSLEB128(Action.NextAction); } if (HaveTTData) { Asm->emitAlignment(Align(4)); emitTypeInfos(TTypeEncoding, TTBaseLabel); } Asm->emitAlignment(Align(4)); return GCCETSym; } void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) { const MachineFunction *MF = Asm->MF; const std::vector &TypeInfos = MF->getTypeInfos(); const std::vector &FilterIds = MF->getFilterIds(); const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm(); int Entry = 0; // Emit the Catch TypeInfos. if (VerboseAsm && !TypeInfos.empty()) { Asm->OutStreamer->AddComment(">> Catch TypeInfos <<"); Asm->OutStreamer->AddBlankLine(); Entry = TypeInfos.size(); } for (const GlobalValue *GV : llvm::reverse(TypeInfos)) { if (VerboseAsm) Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--)); Asm->emitTTypeReference(GV, TTypeEncoding); } Asm->OutStreamer->emitLabel(TTBaseLabel); // Emit the Exception Specifications. if (VerboseAsm && !FilterIds.empty()) { Asm->OutStreamer->AddComment(">> Filter TypeInfos <<"); Asm->OutStreamer->AddBlankLine(); Entry = 0; } for (std::vector::const_iterator I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) { unsigned TypeID = *I; if (VerboseAsm) { --Entry; if (isFilterEHSelector(TypeID)) Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry)); } Asm->emitULEB128(TypeID); } }