//===- SymbolManager.h - Management of Symbolic Values --------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines SymbolManager, a class that manages symbolic values // created for use by ExprEngine and related classes. // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Expr.h" #include "clang/AST/StmtObjC.h" #include "clang/Analysis/Analyses/LiveVariables.h" #include "clang/Analysis/AnalysisDeclContext.h" #include "clang/Basic/LLVM.h" #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include using namespace clang; using namespace ento; void SymExpr::anchor() {} StringRef SymbolConjured::getKindStr() const { return "conj_$"; } StringRef SymbolDerived::getKindStr() const { return "derived_$"; } StringRef SymbolExtent::getKindStr() const { return "extent_$"; } StringRef SymbolMetadata::getKindStr() const { return "meta_$"; } StringRef SymbolRegionValue::getKindStr() const { return "reg_$"; } LLVM_DUMP_METHOD void SymExpr::dump() const { dumpToStream(llvm::errs()); } void BinarySymExpr::dumpToStreamImpl(raw_ostream &OS, const SymExpr *Sym) { OS << '('; Sym->dumpToStream(OS); OS << ')'; } void BinarySymExpr::dumpToStreamImpl(raw_ostream &OS, const llvm::APSInt &Value) { if (Value.isUnsigned()) OS << Value.getZExtValue(); else OS << Value.getSExtValue(); if (Value.isUnsigned()) OS << 'U'; } void BinarySymExpr::dumpToStreamImpl(raw_ostream &OS, BinaryOperator::Opcode Op) { OS << ' ' << BinaryOperator::getOpcodeStr(Op) << ' '; } void SymbolCast::dumpToStream(raw_ostream &os) const { os << '(' << ToTy << ") ("; Operand->dumpToStream(os); os << ')'; } void UnarySymExpr::dumpToStream(raw_ostream &os) const { os << UnaryOperator::getOpcodeStr(Op); bool Binary = isa(Operand); if (Binary) os << '('; Operand->dumpToStream(os); if (Binary) os << ')'; } void SymbolConjured::dumpToStream(raw_ostream &os) const { os << getKindStr() << getSymbolID() << '{' << T << ", LC" << LCtx->getID(); if (S) os << ", S" << S->getID(LCtx->getDecl()->getASTContext()); else os << ", no stmt"; os << ", #" << Count << '}'; } void SymbolDerived::dumpToStream(raw_ostream &os) const { os << getKindStr() << getSymbolID() << '{' << getParentSymbol() << ',' << getRegion() << '}'; } void SymbolExtent::dumpToStream(raw_ostream &os) const { os << getKindStr() << getSymbolID() << '{' << getRegion() << '}'; } void SymbolMetadata::dumpToStream(raw_ostream &os) const { os << getKindStr() << getSymbolID() << '{' << getRegion() << ',' << T << '}'; } void SymbolData::anchor() {} void SymbolRegionValue::dumpToStream(raw_ostream &os) const { os << getKindStr() << getSymbolID() << '<' << getType() << ' ' << R << '>'; } bool SymExpr::symbol_iterator::operator==(const symbol_iterator &X) const { return itr == X.itr; } bool SymExpr::symbol_iterator::operator!=(const symbol_iterator &X) const { return itr != X.itr; } SymExpr::symbol_iterator::symbol_iterator(const SymExpr *SE) { itr.push_back(SE); } SymExpr::symbol_iterator &SymExpr::symbol_iterator::operator++() { assert(!itr.empty() && "attempting to iterate on an 'end' iterator"); expand(); return *this; } SymbolRef SymExpr::symbol_iterator::operator*() { assert(!itr.empty() && "attempting to dereference an 'end' iterator"); return itr.back(); } void SymExpr::symbol_iterator::expand() { const SymExpr *SE = itr.pop_back_val(); switch (SE->getKind()) { case SymExpr::SymbolRegionValueKind: case SymExpr::SymbolConjuredKind: case SymExpr::SymbolDerivedKind: case SymExpr::SymbolExtentKind: case SymExpr::SymbolMetadataKind: return; case SymExpr::SymbolCastKind: itr.push_back(cast(SE)->getOperand()); return; case SymExpr::UnarySymExprKind: itr.push_back(cast(SE)->getOperand()); return; case SymExpr::SymIntExprKind: itr.push_back(cast(SE)->getLHS()); return; case SymExpr::IntSymExprKind: itr.push_back(cast(SE)->getRHS()); return; case SymExpr::SymSymExprKind: { const auto *x = cast(SE); itr.push_back(x->getLHS()); itr.push_back(x->getRHS()); return; } } llvm_unreachable("unhandled expansion case"); } const SymbolRegionValue* SymbolManager::getRegionValueSymbol(const TypedValueRegion* R) { llvm::FoldingSetNodeID profile; SymbolRegionValue::Profile(profile, R); void *InsertPos; SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos); if (!SD) { SD = (SymExpr*) BPAlloc.Allocate(); new (SD) SymbolRegionValue(SymbolCounter, R); DataSet.InsertNode(SD, InsertPos); ++SymbolCounter; } return cast(SD); } const SymbolConjured* SymbolManager::conjureSymbol(const Stmt *E, const LocationContext *LCtx, QualType T, unsigned Count, const void *SymbolTag) { llvm::FoldingSetNodeID profile; SymbolConjured::Profile(profile, E, T, Count, LCtx, SymbolTag); void *InsertPos; SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos); if (!SD) { SD = (SymExpr*) BPAlloc.Allocate(); new (SD) SymbolConjured(SymbolCounter, E, LCtx, T, Count, SymbolTag); DataSet.InsertNode(SD, InsertPos); ++SymbolCounter; } return cast(SD); } const SymbolDerived* SymbolManager::getDerivedSymbol(SymbolRef parentSymbol, const TypedValueRegion *R) { llvm::FoldingSetNodeID profile; SymbolDerived::Profile(profile, parentSymbol, R); void *InsertPos; SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos); if (!SD) { SD = (SymExpr*) BPAlloc.Allocate(); new (SD) SymbolDerived(SymbolCounter, parentSymbol, R); DataSet.InsertNode(SD, InsertPos); ++SymbolCounter; } return cast(SD); } const SymbolExtent* SymbolManager::getExtentSymbol(const SubRegion *R) { llvm::FoldingSetNodeID profile; SymbolExtent::Profile(profile, R); void *InsertPos; SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos); if (!SD) { SD = (SymExpr*) BPAlloc.Allocate(); new (SD) SymbolExtent(SymbolCounter, R); DataSet.InsertNode(SD, InsertPos); ++SymbolCounter; } return cast(SD); } const SymbolMetadata * SymbolManager::getMetadataSymbol(const MemRegion* R, const Stmt *S, QualType T, const LocationContext *LCtx, unsigned Count, const void *SymbolTag) { llvm::FoldingSetNodeID profile; SymbolMetadata::Profile(profile, R, S, T, LCtx, Count, SymbolTag); void *InsertPos; SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos); if (!SD) { SD = (SymExpr*) BPAlloc.Allocate(); new (SD) SymbolMetadata(SymbolCounter, R, S, T, LCtx, Count, SymbolTag); DataSet.InsertNode(SD, InsertPos); ++SymbolCounter; } return cast(SD); } const SymbolCast* SymbolManager::getCastSymbol(const SymExpr *Op, QualType From, QualType To) { llvm::FoldingSetNodeID ID; SymbolCast::Profile(ID, Op, From, To); void *InsertPos; SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos); if (!data) { data = (SymbolCast*) BPAlloc.Allocate(); new (data) SymbolCast(Op, From, To); DataSet.InsertNode(data, InsertPos); } return cast(data); } const SymIntExpr *SymbolManager::getSymIntExpr(const SymExpr *lhs, BinaryOperator::Opcode op, const llvm::APSInt& v, QualType t) { llvm::FoldingSetNodeID ID; SymIntExpr::Profile(ID, lhs, op, v, t); void *InsertPos; SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos); if (!data) { data = (SymIntExpr*) BPAlloc.Allocate(); new (data) SymIntExpr(lhs, op, v, t); DataSet.InsertNode(data, InsertPos); } return cast(data); } const IntSymExpr *SymbolManager::getIntSymExpr(const llvm::APSInt& lhs, BinaryOperator::Opcode op, const SymExpr *rhs, QualType t) { llvm::FoldingSetNodeID ID; IntSymExpr::Profile(ID, lhs, op, rhs, t); void *InsertPos; SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos); if (!data) { data = (IntSymExpr*) BPAlloc.Allocate(); new (data) IntSymExpr(lhs, op, rhs, t); DataSet.InsertNode(data, InsertPos); } return cast(data); } const SymSymExpr *SymbolManager::getSymSymExpr(const SymExpr *lhs, BinaryOperator::Opcode op, const SymExpr *rhs, QualType t) { llvm::FoldingSetNodeID ID; SymSymExpr::Profile(ID, lhs, op, rhs, t); void *InsertPos; SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos); if (!data) { data = (SymSymExpr*) BPAlloc.Allocate(); new (data) SymSymExpr(lhs, op, rhs, t); DataSet.InsertNode(data, InsertPos); } return cast(data); } const UnarySymExpr *SymbolManager::getUnarySymExpr(const SymExpr *Operand, UnaryOperator::Opcode Opc, QualType T) { llvm::FoldingSetNodeID ID; UnarySymExpr::Profile(ID, Operand, Opc, T); void *InsertPos; SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos); if (!data) { data = (UnarySymExpr *)BPAlloc.Allocate(); new (data) UnarySymExpr(Operand, Opc, T); DataSet.InsertNode(data, InsertPos); } return cast(data); } QualType SymbolConjured::getType() const { return T; } QualType SymbolDerived::getType() const { return R->getValueType(); } QualType SymbolExtent::getType() const { ASTContext &Ctx = R->getMemRegionManager().getContext(); return Ctx.getSizeType(); } QualType SymbolMetadata::getType() const { return T; } QualType SymbolRegionValue::getType() const { return R->getValueType(); } bool SymbolManager::canSymbolicate(QualType T) { T = T.getCanonicalType(); if (Loc::isLocType(T)) return true; if (T->isIntegralOrEnumerationType()) return true; if (T->isRecordType() && !T->isUnionType()) return true; return false; } void SymbolManager::addSymbolDependency(const SymbolRef Primary, const SymbolRef Dependent) { auto &dependencies = SymbolDependencies[Primary]; if (!dependencies) { dependencies = std::make_unique(); } dependencies->push_back(Dependent); } const SymbolRefSmallVectorTy *SymbolManager::getDependentSymbols( const SymbolRef Primary) { SymbolDependTy::const_iterator I = SymbolDependencies.find(Primary); if (I == SymbolDependencies.end()) return nullptr; return I->second.get(); } void SymbolReaper::markDependentsLive(SymbolRef sym) { // Do not mark dependents more then once. SymbolMapTy::iterator LI = TheLiving.find(sym); assert(LI != TheLiving.end() && "The primary symbol is not live."); if (LI->second == HaveMarkedDependents) return; LI->second = HaveMarkedDependents; if (const SymbolRefSmallVectorTy *Deps = SymMgr.getDependentSymbols(sym)) { for (const auto I : *Deps) { if (TheLiving.find(I) != TheLiving.end()) continue; markLive(I); } } } void SymbolReaper::markLive(SymbolRef sym) { TheLiving[sym] = NotProcessed; markDependentsLive(sym); } void SymbolReaper::markLive(const MemRegion *region) { LiveRegionRoots.insert(region->getBaseRegion()); markElementIndicesLive(region); } void SymbolReaper::markLazilyCopied(const clang::ento::MemRegion *region) { LazilyCopiedRegionRoots.insert(region->getBaseRegion()); } void SymbolReaper::markElementIndicesLive(const MemRegion *region) { for (auto SR = dyn_cast(region); SR; SR = dyn_cast(SR->getSuperRegion())) { if (const auto ER = dyn_cast(SR)) { SVal Idx = ER->getIndex(); for (auto SI = Idx.symbol_begin(), SE = Idx.symbol_end(); SI != SE; ++SI) markLive(*SI); } } } void SymbolReaper::markInUse(SymbolRef sym) { if (isa(sym)) MetadataInUse.insert(sym); } bool SymbolReaper::isLiveRegion(const MemRegion *MR) { // TODO: For now, liveness of a memory region is equivalent to liveness of its // base region. In fact we can do a bit better: say, if a particular FieldDecl // is not used later in the path, we can diagnose a leak of a value within // that field earlier than, say, the variable that contains the field dies. MR = MR->getBaseRegion(); if (LiveRegionRoots.count(MR)) return true; if (const auto *SR = dyn_cast(MR)) return isLive(SR->getSymbol()); if (const auto *VR = dyn_cast(MR)) return isLive(VR, true); // FIXME: This is a gross over-approximation. What we really need is a way to // tell if anything still refers to this region. Unlike SymbolicRegions, // AllocaRegions don't have associated symbols, though, so we don't actually // have a way to track their liveness. return isa(MR); } bool SymbolReaper::isLazilyCopiedRegion(const MemRegion *MR) const { // TODO: See comment in isLiveRegion. return LazilyCopiedRegionRoots.count(MR->getBaseRegion()); } bool SymbolReaper::isReadableRegion(const MemRegion *MR) { return isLiveRegion(MR) || isLazilyCopiedRegion(MR); } bool SymbolReaper::isLive(SymbolRef sym) { if (TheLiving.count(sym)) { markDependentsLive(sym); return true; } bool KnownLive; switch (sym->getKind()) { case SymExpr::SymbolRegionValueKind: KnownLive = isReadableRegion(cast(sym)->getRegion()); break; case SymExpr::SymbolConjuredKind: KnownLive = false; break; case SymExpr::SymbolDerivedKind: KnownLive = isLive(cast(sym)->getParentSymbol()); break; case SymExpr::SymbolExtentKind: KnownLive = isLiveRegion(cast(sym)->getRegion()); break; case SymExpr::SymbolMetadataKind: KnownLive = MetadataInUse.count(sym) && isLiveRegion(cast(sym)->getRegion()); if (KnownLive) MetadataInUse.erase(sym); break; case SymExpr::SymIntExprKind: KnownLive = isLive(cast(sym)->getLHS()); break; case SymExpr::IntSymExprKind: KnownLive = isLive(cast(sym)->getRHS()); break; case SymExpr::SymSymExprKind: KnownLive = isLive(cast(sym)->getLHS()) && isLive(cast(sym)->getRHS()); break; case SymExpr::SymbolCastKind: KnownLive = isLive(cast(sym)->getOperand()); break; case SymExpr::UnarySymExprKind: KnownLive = isLive(cast(sym)->getOperand()); break; } if (KnownLive) markLive(sym); return KnownLive; } bool SymbolReaper::isLive(const Expr *ExprVal, const LocationContext *ELCtx) const { if (LCtx == nullptr) return false; if (LCtx != ELCtx) { // If the reaper's location context is a parent of the expression's // location context, then the expression value is now "out of scope". if (LCtx->isParentOf(ELCtx)) return false; return true; } // If no statement is provided, everything in this and parent contexts is // live. if (!Loc) return true; return LCtx->getAnalysis()->isLive(Loc, ExprVal); } bool SymbolReaper::isLive(const VarRegion *VR, bool includeStoreBindings) const{ const StackFrameContext *VarContext = VR->getStackFrame(); if (!VarContext) return true; if (!LCtx) return false; const StackFrameContext *CurrentContext = LCtx->getStackFrame(); if (VarContext == CurrentContext) { // If no statement is provided, everything is live. if (!Loc) return true; // Anonymous parameters of an inheriting constructor are live for the entire // duration of the constructor. if (isa(Loc)) return true; if (LCtx->getAnalysis()->isLive(Loc, VR->getDecl())) return true; if (!includeStoreBindings) return false; unsigned &cachedQuery = const_cast(this)->includedRegionCache[VR]; if (cachedQuery) { return cachedQuery == 1; } // Query the store to see if the region occurs in any live bindings. if (Store store = reapedStore.getStore()) { bool hasRegion = reapedStore.getStoreManager().includedInBindings(store, VR); cachedQuery = hasRegion ? 1 : 2; return hasRegion; } return false; } return VarContext->isParentOf(CurrentContext); }