//===- SValBuilder.cpp - Basic class for all SValBuilder implementations --===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines SValBuilder, the base class for all (complete) SValBuilder // implementations. // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/Stmt.h" #include "clang/AST/Type.h" #include "clang/Analysis/AnalysisDeclContext.h" #include "clang/Basic/LLVM.h" #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" #include "llvm/ADT/APSInt.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include #include #include using namespace clang; using namespace ento; //===----------------------------------------------------------------------===// // Basic SVal creation. //===----------------------------------------------------------------------===// void SValBuilder::anchor() {} SValBuilder::SValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context, ProgramStateManager &stateMgr) : Context(context), BasicVals(context, alloc), SymMgr(context, BasicVals, alloc), MemMgr(context, alloc), StateMgr(stateMgr), AnOpts( stateMgr.getOwningEngine().getAnalysisManager().getAnalyzerOptions()), ArrayIndexTy(context.LongLongTy), ArrayIndexWidth(context.getTypeSize(ArrayIndexTy)) {} DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) { if (Loc::isLocType(type)) return makeNullWithType(type); if (type->isIntegralOrEnumerationType()) return makeIntVal(0, type); if (type->isArrayType() || type->isRecordType() || type->isVectorType() || type->isAnyComplexType()) return makeCompoundVal(type, BasicVals.getEmptySValList()); // FIXME: Handle floats. return UnknownVal(); } nonloc::SymbolVal SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op, const llvm::APSInt &rhs, QualType type) { // The Environment ensures we always get a persistent APSInt in // BasicValueFactory, so we don't need to get the APSInt from // BasicValueFactory again. assert(lhs); assert(!Loc::isLocType(type)); return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type)); } nonloc::SymbolVal SValBuilder::makeNonLoc(const llvm::APSInt &lhs, BinaryOperator::Opcode op, const SymExpr *rhs, QualType type) { assert(rhs); assert(!Loc::isLocType(type)); return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type)); } nonloc::SymbolVal SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op, const SymExpr *rhs, QualType type) { assert(lhs && rhs); assert(!Loc::isLocType(type)); return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type)); } NonLoc SValBuilder::makeNonLoc(const SymExpr *operand, UnaryOperator::Opcode op, QualType type) { assert(operand); assert(!Loc::isLocType(type)); return nonloc::SymbolVal(SymMgr.getUnarySymExpr(operand, op, type)); } nonloc::SymbolVal SValBuilder::makeNonLoc(const SymExpr *operand, QualType fromTy, QualType toTy) { assert(operand); assert(!Loc::isLocType(toTy)); if (fromTy == toTy) return operand; return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy)); } SVal SValBuilder::convertToArrayIndex(SVal val) { if (val.isUnknownOrUndef()) return val; // Common case: we have an appropriately sized integer. if (std::optional CI = val.getAs()) { const llvm::APSInt& I = CI->getValue(); if (I.getBitWidth() == ArrayIndexWidth && I.isSigned()) return val; } return evalCast(val, ArrayIndexTy, QualType{}); } nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){ return makeTruthVal(boolean->getValue()); } DefinedOrUnknownSVal SValBuilder::getRegionValueSymbolVal(const TypedValueRegion *region) { QualType T = region->getValueType(); if (T->isNullPtrType()) return makeZeroVal(T); if (!SymbolManager::canSymbolicate(T)) return UnknownVal(); SymbolRef sym = SymMgr.getRegionValueSymbol(region); if (Loc::isLocType(T)) return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); return nonloc::SymbolVal(sym); } DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *SymbolTag, const Expr *Ex, const LocationContext *LCtx, unsigned Count) { QualType T = Ex->getType(); if (T->isNullPtrType()) return makeZeroVal(T); // Compute the type of the result. If the expression is not an R-value, the // result should be a location. QualType ExType = Ex->getType(); if (Ex->isGLValue()) T = LCtx->getAnalysisDeclContext()->getASTContext().getPointerType(ExType); return conjureSymbolVal(SymbolTag, Ex, LCtx, T, Count); } DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag, const Expr *expr, const LocationContext *LCtx, QualType type, unsigned count) { if (type->isNullPtrType()) return makeZeroVal(type); if (!SymbolManager::canSymbolicate(type)) return UnknownVal(); SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag); if (Loc::isLocType(type)) return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); return nonloc::SymbolVal(sym); } DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt, const LocationContext *LCtx, QualType type, unsigned visitCount) { if (type->isNullPtrType()) return makeZeroVal(type); if (!SymbolManager::canSymbolicate(type)) return UnknownVal(); SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount); if (Loc::isLocType(type)) return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); return nonloc::SymbolVal(sym); } DefinedOrUnknownSVal SValBuilder::getConjuredHeapSymbolVal(const Expr *E, const LocationContext *LCtx, unsigned VisitCount) { QualType T = E->getType(); return getConjuredHeapSymbolVal(E, LCtx, T, VisitCount); } DefinedOrUnknownSVal SValBuilder::getConjuredHeapSymbolVal(const Expr *E, const LocationContext *LCtx, QualType type, unsigned VisitCount) { assert(Loc::isLocType(type)); assert(SymbolManager::canSymbolicate(type)); if (type->isNullPtrType()) return makeZeroVal(type); SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, type, VisitCount); return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym)); } DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag, const MemRegion *region, const Expr *expr, QualType type, const LocationContext *LCtx, unsigned count) { assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type"); SymbolRef sym = SymMgr.getMetadataSymbol(region, expr, type, LCtx, count, symbolTag); if (Loc::isLocType(type)) return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); return nonloc::SymbolVal(sym); } DefinedOrUnknownSVal SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol, const TypedValueRegion *region) { QualType T = region->getValueType(); if (T->isNullPtrType()) return makeZeroVal(T); if (!SymbolManager::canSymbolicate(T)) return UnknownVal(); SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region); if (Loc::isLocType(T)) return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); return nonloc::SymbolVal(sym); } DefinedSVal SValBuilder::getMemberPointer(const NamedDecl *ND) { assert(!ND || (isa(ND))); if (const auto *MD = dyn_cast_or_null(ND)) { // Sema treats pointers to static member functions as have function pointer // type, so return a function pointer for the method. // We don't need to play a similar trick for static member fields // because these are represented as plain VarDecls and not FieldDecls // in the AST. if (MD->isStatic()) return getFunctionPointer(MD); } return nonloc::PointerToMember(ND); } DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) { return loc::MemRegionVal(MemMgr.getFunctionCodeRegion(func)); } DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block, CanQualType locTy, const LocationContext *locContext, unsigned blockCount) { const BlockCodeRegion *BC = MemMgr.getBlockCodeRegion(block, locTy, locContext->getAnalysisDeclContext()); const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext, blockCount); return loc::MemRegionVal(BD); } std::optional SValBuilder::getCastedMemRegionVal(const MemRegion *R, QualType Ty) { if (auto OptR = StateMgr.getStoreManager().castRegion(R, Ty)) return loc::MemRegionVal(*OptR); return std::nullopt; } /// Return a memory region for the 'this' object reference. loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D, const StackFrameContext *SFC) { return loc::MemRegionVal( getRegionManager().getCXXThisRegion(D->getThisType(), SFC)); } /// Return a memory region for the 'this' object reference. loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D, const StackFrameContext *SFC) { const Type *T = D->getTypeForDecl(); QualType PT = getContext().getPointerType(QualType(T, 0)); return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC)); } std::optional SValBuilder::getConstantVal(const Expr *E) { E = E->IgnoreParens(); switch (E->getStmtClass()) { // Handle expressions that we treat differently from the AST's constant // evaluator. case Stmt::AddrLabelExprClass: return makeLoc(cast(E)); case Stmt::CXXScalarValueInitExprClass: case Stmt::ImplicitValueInitExprClass: return makeZeroVal(E->getType()); case Stmt::ObjCStringLiteralClass: { const auto *SL = cast(E); return makeLoc(getRegionManager().getObjCStringRegion(SL)); } case Stmt::StringLiteralClass: { const auto *SL = cast(E); return makeLoc(getRegionManager().getStringRegion(SL)); } case Stmt::PredefinedExprClass: { const auto *PE = cast(E); assert(PE->getFunctionName() && "Since we analyze only instantiated functions, PredefinedExpr " "should have a function name."); return makeLoc(getRegionManager().getStringRegion(PE->getFunctionName())); } // Fast-path some expressions to avoid the overhead of going through the AST's // constant evaluator case Stmt::CharacterLiteralClass: { const auto *C = cast(E); return makeIntVal(C->getValue(), C->getType()); } case Stmt::CXXBoolLiteralExprClass: return makeBoolVal(cast(E)); case Stmt::TypeTraitExprClass: { const auto *TE = cast(E); return makeTruthVal(TE->getValue(), TE->getType()); } case Stmt::IntegerLiteralClass: return makeIntVal(cast(E)); case Stmt::ObjCBoolLiteralExprClass: return makeBoolVal(cast(E)); case Stmt::CXXNullPtrLiteralExprClass: return makeNullWithType(E->getType()); case Stmt::CStyleCastExprClass: case Stmt::CXXFunctionalCastExprClass: case Stmt::CXXConstCastExprClass: case Stmt::CXXReinterpretCastExprClass: case Stmt::CXXStaticCastExprClass: case Stmt::ImplicitCastExprClass: { const auto *CE = cast(E); switch (CE->getCastKind()) { default: break; case CK_ArrayToPointerDecay: case CK_IntegralToPointer: case CK_NoOp: case CK_BitCast: { const Expr *SE = CE->getSubExpr(); std::optional Val = getConstantVal(SE); if (!Val) return std::nullopt; return evalCast(*Val, CE->getType(), SE->getType()); } } // FALLTHROUGH [[fallthrough]]; } // If we don't have a special case, fall back to the AST's constant evaluator. default: { // Don't try to come up with a value for materialized temporaries. if (E->isGLValue()) return std::nullopt; ASTContext &Ctx = getContext(); Expr::EvalResult Result; if (E->EvaluateAsInt(Result, Ctx)) return makeIntVal(Result.Val.getInt()); if (Loc::isLocType(E->getType())) if (E->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull)) return makeNullWithType(E->getType()); return std::nullopt; } } } SVal SValBuilder::makeSymExprValNN(BinaryOperator::Opcode Op, NonLoc LHS, NonLoc RHS, QualType ResultTy) { SymbolRef symLHS = LHS.getAsSymbol(); SymbolRef symRHS = RHS.getAsSymbol(); // TODO: When the Max Complexity is reached, we should conjure a symbol // instead of generating an Unknown value and propagate the taint info to it. const unsigned MaxComp = AnOpts.MaxSymbolComplexity; if (symLHS && symRHS && (symLHS->computeComplexity() + symRHS->computeComplexity()) < MaxComp) return makeNonLoc(symLHS, Op, symRHS, ResultTy); if (symLHS && symLHS->computeComplexity() < MaxComp) if (std::optional rInt = RHS.getAs()) return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy); if (symRHS && symRHS->computeComplexity() < MaxComp) if (std::optional lInt = LHS.getAs()) return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy); return UnknownVal(); } SVal SValBuilder::evalMinus(NonLoc X) { switch (X.getSubKind()) { case nonloc::ConcreteIntKind: return makeIntVal(-X.castAs().getValue()); case nonloc::SymbolValKind: return makeNonLoc(X.castAs().getSymbol(), UO_Minus, X.getType(Context)); default: return UnknownVal(); } } SVal SValBuilder::evalComplement(NonLoc X) { switch (X.getSubKind()) { case nonloc::ConcreteIntKind: return makeIntVal(~X.castAs().getValue()); case nonloc::SymbolValKind: return makeNonLoc(X.castAs().getSymbol(), UO_Not, X.getType(Context)); default: return UnknownVal(); } } SVal SValBuilder::evalUnaryOp(ProgramStateRef state, UnaryOperator::Opcode opc, SVal operand, QualType type) { auto OpN = operand.getAs(); if (!OpN) return UnknownVal(); if (opc == UO_Minus) return evalMinus(*OpN); if (opc == UO_Not) return evalComplement(*OpN); llvm_unreachable("Unexpected unary operator"); } SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op, SVal lhs, SVal rhs, QualType type) { if (lhs.isUndef() || rhs.isUndef()) return UndefinedVal(); if (lhs.isUnknown() || rhs.isUnknown()) return UnknownVal(); if (isa(lhs) || isa(rhs)) { return UnknownVal(); } if (op == BinaryOperatorKind::BO_Cmp) { // We can't reason about C++20 spaceship operator yet. // // FIXME: Support C++20 spaceship operator. // The main problem here is that the result is not integer. return UnknownVal(); } if (std::optional LV = lhs.getAs()) { if (std::optional RV = rhs.getAs()) return evalBinOpLL(state, op, *LV, *RV, type); return evalBinOpLN(state, op, *LV, rhs.castAs(), type); } if (const std::optional RV = rhs.getAs()) { const auto IsCommutative = [](BinaryOperatorKind Op) { return Op == BO_Mul || Op == BO_Add || Op == BO_And || Op == BO_Xor || Op == BO_Or; }; if (IsCommutative(op)) { // Swap operands. return evalBinOpLN(state, op, *RV, lhs.castAs(), type); } // If the right operand is a concrete int location then we have nothing // better but to treat it as a simple nonloc. if (auto RV = rhs.getAs()) { const nonloc::ConcreteInt RhsAsLoc = makeIntVal(RV->getValue()); return evalBinOpNN(state, op, lhs.castAs(), RhsAsLoc, type); } } return evalBinOpNN(state, op, lhs.castAs(), rhs.castAs(), type); } ConditionTruthVal SValBuilder::areEqual(ProgramStateRef state, SVal lhs, SVal rhs) { return state->isNonNull(evalEQ(state, lhs, rhs)); } SVal SValBuilder::evalEQ(ProgramStateRef state, SVal lhs, SVal rhs) { return evalBinOp(state, BO_EQ, lhs, rhs, getConditionType()); } DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state, DefinedOrUnknownSVal lhs, DefinedOrUnknownSVal rhs) { return evalEQ(state, static_cast(lhs), static_cast(rhs)) .castAs(); } /// Recursively check if the pointer types are equal modulo const, volatile, /// and restrict qualifiers. Also, assume that all types are similar to 'void'. /// Assumes the input types are canonical. static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy, QualType FromTy) { while (Context.UnwrapSimilarTypes(ToTy, FromTy)) { Qualifiers Quals1, Quals2; ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1); FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2); // Make sure that non-cvr-qualifiers the other qualifiers (e.g., address // spaces) are identical. Quals1.removeCVRQualifiers(); Quals2.removeCVRQualifiers(); if (Quals1 != Quals2) return false; } // If we are casting to void, the 'From' value can be used to represent the // 'To' value. // // FIXME: Doing this after unwrapping the types doesn't make any sense. A // cast from 'int**' to 'void**' is not special in the way that a cast from // 'int*' to 'void*' is. if (ToTy->isVoidType()) return true; if (ToTy != FromTy) return false; return true; } // Handles casts of type CK_IntegralCast. // At the moment, this function will redirect to evalCast, except when the range // of the original value is known to be greater than the max of the target type. SVal SValBuilder::evalIntegralCast(ProgramStateRef state, SVal val, QualType castTy, QualType originalTy) { // No truncations if target type is big enough. if (getContext().getTypeSize(castTy) >= getContext().getTypeSize(originalTy)) return evalCast(val, castTy, originalTy); SymbolRef se = val.getAsSymbol(); if (!se) // Let evalCast handle non symbolic expressions. return evalCast(val, castTy, originalTy); // Find the maximum value of the target type. APSIntType ToType(getContext().getTypeSize(castTy), castTy->isUnsignedIntegerType()); llvm::APSInt ToTypeMax = ToType.getMaxValue(); NonLoc ToTypeMaxVal = makeIntVal(ToTypeMax.isUnsigned() ? ToTypeMax.getZExtValue() : ToTypeMax.getSExtValue(), castTy) .castAs(); // Check the range of the symbol being casted against the maximum value of the // target type. NonLoc FromVal = val.castAs(); QualType CmpTy = getConditionType(); NonLoc CompVal = evalBinOpNN(state, BO_LE, FromVal, ToTypeMaxVal, CmpTy).castAs(); ProgramStateRef IsNotTruncated, IsTruncated; std::tie(IsNotTruncated, IsTruncated) = state->assume(CompVal); if (!IsNotTruncated && IsTruncated) { // Symbol is truncated so we evaluate it as a cast. return makeNonLoc(se, originalTy, castTy); } return evalCast(val, castTy, originalTy); } //===----------------------------------------------------------------------===// // Cast method. // `evalCast` and its helper `EvalCastVisitor` //===----------------------------------------------------------------------===// namespace { class EvalCastVisitor : public SValVisitor { private: SValBuilder &VB; ASTContext &Context; QualType CastTy, OriginalTy; public: EvalCastVisitor(SValBuilder &VB, QualType CastTy, QualType OriginalTy) : VB(VB), Context(VB.getContext()), CastTy(CastTy), OriginalTy(OriginalTy) {} SVal Visit(SVal V) { if (CastTy.isNull()) return V; CastTy = Context.getCanonicalType(CastTy); const bool IsUnknownOriginalType = OriginalTy.isNull(); if (!IsUnknownOriginalType) { OriginalTy = Context.getCanonicalType(OriginalTy); if (CastTy == OriginalTy) return V; // FIXME: Move this check to the most appropriate // evalCastKind/evalCastSubKind function. For const casts, casts to void, // just propagate the value. if (!CastTy->isVariableArrayType() && !OriginalTy->isVariableArrayType()) if (shouldBeModeledWithNoOp(Context, Context.getPointerType(CastTy), Context.getPointerType(OriginalTy))) return V; } return SValVisitor::Visit(V); } SVal VisitUndefinedVal(UndefinedVal V) { return V; } SVal VisitUnknownVal(UnknownVal V) { return V; } SVal VisitLocConcreteInt(loc::ConcreteInt V) { // Pointer to bool. if (CastTy->isBooleanType()) return VB.makeTruthVal(V.getValue().getBoolValue(), CastTy); // Pointer to integer. if (CastTy->isIntegralOrEnumerationType()) { llvm::APSInt Value = V.getValue(); VB.getBasicValueFactory().getAPSIntType(CastTy).apply(Value); return VB.makeIntVal(Value); } // Pointer to any pointer. if (Loc::isLocType(CastTy)) { llvm::APSInt Value = V.getValue(); VB.getBasicValueFactory().getAPSIntType(CastTy).apply(Value); return loc::ConcreteInt(VB.getBasicValueFactory().getValue(Value)); } // Pointer to whatever else. return UnknownVal(); } SVal VisitLocGotoLabel(loc::GotoLabel V) { // Pointer to bool. if (CastTy->isBooleanType()) // Labels are always true. return VB.makeTruthVal(true, CastTy); // Pointer to integer. if (CastTy->isIntegralOrEnumerationType()) { const unsigned BitWidth = Context.getIntWidth(CastTy); return VB.makeLocAsInteger(V, BitWidth); } const bool IsUnknownOriginalType = OriginalTy.isNull(); if (!IsUnknownOriginalType) { // Array to pointer. if (isa(OriginalTy)) if (CastTy->isPointerType() || CastTy->isReferenceType()) return UnknownVal(); } // Pointer to any pointer. if (Loc::isLocType(CastTy)) return V; // Pointer to whatever else. return UnknownVal(); } SVal VisitLocMemRegionVal(loc::MemRegionVal V) { // Pointer to bool. if (CastTy->isBooleanType()) { const MemRegion *R = V.getRegion(); if (const FunctionCodeRegion *FTR = dyn_cast(R)) if (const FunctionDecl *FD = dyn_cast(FTR->getDecl())) if (FD->isWeak()) // FIXME: Currently we are using an extent symbol here, // because there are no generic region address metadata // symbols to use, only content metadata. return nonloc::SymbolVal( VB.getSymbolManager().getExtentSymbol(FTR)); if (const SymbolicRegion *SymR = R->getSymbolicBase()) { SymbolRef Sym = SymR->getSymbol(); QualType Ty = Sym->getType(); // This change is needed for architectures with varying // pointer widths. See the amdgcn opencl reproducer with // this change as an example: solver-sym-simplification-ptr-bool.cl if (!Ty->isReferenceType()) return VB.makeNonLoc( Sym, BO_NE, VB.getBasicValueFactory().getZeroWithTypeSize(Ty), CastTy); } // Non-symbolic memory regions are always true. return VB.makeTruthVal(true, CastTy); } const bool IsUnknownOriginalType = OriginalTy.isNull(); // Try to cast to array const auto *ArrayTy = IsUnknownOriginalType ? nullptr : dyn_cast(OriginalTy.getCanonicalType()); // Pointer to integer. if (CastTy->isIntegralOrEnumerationType()) { SVal Val = V; // Array to integer. if (ArrayTy) { // We will always decay to a pointer. QualType ElemTy = ArrayTy->getElementType(); Val = VB.getStateManager().ArrayToPointer(V, ElemTy); // FIXME: Keep these here for now in case we decide soon that we // need the original decayed type. // QualType elemTy = cast(originalTy)->getElementType(); // QualType pointerTy = C.getPointerType(elemTy); } const unsigned BitWidth = Context.getIntWidth(CastTy); return VB.makeLocAsInteger(Val.castAs(), BitWidth); } // Pointer to pointer. if (Loc::isLocType(CastTy)) { if (IsUnknownOriginalType) { // When retrieving symbolic pointer and expecting a non-void pointer, // wrap them into element regions of the expected type if necessary. // It is necessary to make sure that the retrieved value makes sense, // because there's no other cast in the AST that would tell us to cast // it to the correct pointer type. We might need to do that for non-void // pointers as well. // FIXME: We really need a single good function to perform casts for us // correctly every time we need it. const MemRegion *R = V.getRegion(); if (CastTy->isPointerType() && !CastTy->isVoidPointerType()) { if (const auto *SR = dyn_cast(R)) { QualType SRTy = SR->getSymbol()->getType(); auto HasSameUnqualifiedPointeeType = [](QualType ty1, QualType ty2) { return ty1->getPointeeType().getCanonicalType().getTypePtr() == ty2->getPointeeType().getCanonicalType().getTypePtr(); }; if (!HasSameUnqualifiedPointeeType(SRTy, CastTy)) { if (auto OptMemRegV = VB.getCastedMemRegionVal(SR, CastTy)) return *OptMemRegV; } } } // Next fixes pointer dereference using type different from its initial // one. See PR37503 and PR49007 for details. if (const auto *ER = dyn_cast(R)) { if (auto OptMemRegV = VB.getCastedMemRegionVal(ER, CastTy)) return *OptMemRegV; } return V; } if (OriginalTy->isIntegralOrEnumerationType() || OriginalTy->isBlockPointerType() || OriginalTy->isFunctionPointerType()) return V; // Array to pointer. if (ArrayTy) { // Are we casting from an array to a pointer? If so just pass on // the decayed value. if (CastTy->isPointerType() || CastTy->isReferenceType()) { // We will always decay to a pointer. QualType ElemTy = ArrayTy->getElementType(); return VB.getStateManager().ArrayToPointer(V, ElemTy); } // Are we casting from an array to an integer? If so, cast the decayed // pointer value to an integer. assert(CastTy->isIntegralOrEnumerationType()); } // Other pointer to pointer. assert(Loc::isLocType(OriginalTy) || OriginalTy->isFunctionType() || CastTy->isReferenceType()); // We get a symbolic function pointer for a dereference of a function // pointer, but it is of function type. Example: // struct FPRec { // void (*my_func)(int * x); // }; // // int bar(int x); // // int f1_a(struct FPRec* foo) { // int x; // (*foo->my_func)(&x); // return bar(x)+1; // no-warning // } // Get the result of casting a region to a different type. const MemRegion *R = V.getRegion(); if (auto OptMemRegV = VB.getCastedMemRegionVal(R, CastTy)) return *OptMemRegV; } // Pointer to whatever else. // FIXME: There can be gross cases where one casts the result of a // function (that returns a pointer) to some other value that happens to // fit within that pointer value. We currently have no good way to model // such operations. When this happens, the underlying operation is that // the caller is reasoning about bits. Conceptually we are layering a // "view" of a location on top of those bits. Perhaps we need to be more // lazy about mutual possible views, even on an SVal? This may be // necessary for bit-level reasoning as well. return UnknownVal(); } SVal VisitNonLocCompoundVal(nonloc::CompoundVal V) { // Compound to whatever. return UnknownVal(); } SVal VisitNonLocConcreteInt(nonloc::ConcreteInt V) { auto CastedValue = [V, this]() { llvm::APSInt Value = V.getValue(); VB.getBasicValueFactory().getAPSIntType(CastTy).apply(Value); return Value; }; // Integer to bool. if (CastTy->isBooleanType()) return VB.makeTruthVal(V.getValue().getBoolValue(), CastTy); // Integer to pointer. if (CastTy->isIntegralOrEnumerationType()) return VB.makeIntVal(CastedValue()); // Integer to pointer. if (Loc::isLocType(CastTy)) return VB.makeIntLocVal(CastedValue()); // Pointer to whatever else. return UnknownVal(); } SVal VisitNonLocLazyCompoundVal(nonloc::LazyCompoundVal V) { // LazyCompound to whatever. return UnknownVal(); } SVal VisitNonLocLocAsInteger(nonloc::LocAsInteger V) { Loc L = V.getLoc(); // Pointer as integer to bool. if (CastTy->isBooleanType()) // Pass to Loc function. return Visit(L); const bool IsUnknownOriginalType = OriginalTy.isNull(); // Pointer as integer to pointer. if (!IsUnknownOriginalType && Loc::isLocType(CastTy) && OriginalTy->isIntegralOrEnumerationType()) { if (const MemRegion *R = L.getAsRegion()) if (auto OptMemRegV = VB.getCastedMemRegionVal(R, CastTy)) return *OptMemRegV; return L; } // Pointer as integer with region to integer/pointer. const MemRegion *R = L.getAsRegion(); if (!IsUnknownOriginalType && R) { if (CastTy->isIntegralOrEnumerationType()) return VisitLocMemRegionVal(loc::MemRegionVal(R)); if (Loc::isLocType(CastTy)) { assert(Loc::isLocType(OriginalTy) || OriginalTy->isFunctionType() || CastTy->isReferenceType()); // Delegate to store manager to get the result of casting a region to a // different type. If the MemRegion* returned is NULL, this expression // Evaluates to UnknownVal. if (auto OptMemRegV = VB.getCastedMemRegionVal(R, CastTy)) return *OptMemRegV; } } else { if (Loc::isLocType(CastTy)) { if (IsUnknownOriginalType) return VisitLocMemRegionVal(loc::MemRegionVal(R)); return L; } SymbolRef SE = nullptr; if (R) { if (const SymbolicRegion *SR = dyn_cast(R->StripCasts())) { SE = SR->getSymbol(); } } if (!CastTy->isFloatingType() || !SE || SE->getType()->isFloatingType()) { // FIXME: Correctly support promotions/truncations. const unsigned CastSize = Context.getIntWidth(CastTy); if (CastSize == V.getNumBits()) return V; return VB.makeLocAsInteger(L, CastSize); } } // Pointer as integer to whatever else. return UnknownVal(); } SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) { SymbolRef SE = V.getSymbol(); const bool IsUnknownOriginalType = OriginalTy.isNull(); // Symbol to bool. if (!IsUnknownOriginalType && CastTy->isBooleanType()) { // Non-float to bool. if (Loc::isLocType(OriginalTy) || OriginalTy->isIntegralOrEnumerationType() || OriginalTy->isMemberPointerType()) { BasicValueFactory &BVF = VB.getBasicValueFactory(); return VB.makeNonLoc(SE, BO_NE, BVF.getValue(0, SE->getType()), CastTy); } } else { // Symbol to integer, float. QualType T = Context.getCanonicalType(SE->getType()); // Produce SymbolCast if CastTy and T are different integers. // NOTE: In the end the type of SymbolCast shall be equal to CastTy. if (T->isIntegralOrUnscopedEnumerationType() && CastTy->isIntegralOrUnscopedEnumerationType()) { AnalyzerOptions &Opts = VB.getStateManager() .getOwningEngine() .getAnalysisManager() .getAnalyzerOptions(); // If appropriate option is disabled, ignore the cast. // NOTE: ShouldSupportSymbolicIntegerCasts is `false` by default. if (!Opts.ShouldSupportSymbolicIntegerCasts) return V; return simplifySymbolCast(V, CastTy); } if (!Loc::isLocType(CastTy)) if (!IsUnknownOriginalType || !CastTy->isFloatingType() || T->isFloatingType()) return VB.makeNonLoc(SE, T, CastTy); } // Symbol to pointer and whatever else. return UnknownVal(); } SVal VisitNonLocPointerToMember(nonloc::PointerToMember V) { // Member pointer to whatever. return V; } /// Reduce cast expression by removing redundant intermediate casts. /// E.g. /// - (char)(short)(int x) -> (char)(int x) /// - (int)(int x) -> int x /// /// \param V -- SymbolVal, which pressumably contains SymbolCast or any symbol /// that is applicable for cast operation. /// \param CastTy -- QualType, which `V` shall be cast to. /// \return SVal with simplified cast expression. /// \note: Currently only support integral casts. nonloc::SymbolVal simplifySymbolCast(nonloc::SymbolVal V, QualType CastTy) { // We use seven conditions to recognize a simplification case. // For the clarity let `CastTy` be `C`, SE->getType() - `T`, root type - // `R`, prefix `u` for unsigned, `s` for signed, no prefix - any sign: E.g. // (char)(short)(uint x) // ( sC )( sT )( uR x) // // C === R (the same type) // (char)(char x) -> (char x) // (long)(long x) -> (long x) // Note: Comparisons operators below are for bit width. // C == T // (short)(short)(int x) -> (short)(int x) // (int)(long)(char x) -> (int)(char x) (sizeof(long) == sizeof(int)) // (long)(ullong)(char x) -> (long)(char x) (sizeof(long) == // sizeof(ullong)) // C < T // (short)(int)(char x) -> (short)(char x) // (char)(int)(short x) -> (char)(short x) // (short)(int)(short x) -> (short x) // C > T > uR // (int)(short)(uchar x) -> (int)(uchar x) // (uint)(short)(uchar x) -> (uint)(uchar x) // (int)(ushort)(uchar x) -> (int)(uchar x) // C > sT > sR // (int)(short)(char x) -> (int)(char x) // (uint)(short)(char x) -> (uint)(char x) // C > sT == sR // (int)(char)(char x) -> (int)(char x) // (uint)(short)(short x) -> (uint)(short x) // C > uT == uR // (int)(uchar)(uchar x) -> (int)(uchar x) // (uint)(ushort)(ushort x) -> (uint)(ushort x) // (llong)(ulong)(uint x) -> (llong)(uint x) (sizeof(ulong) == // sizeof(uint)) SymbolRef SE = V.getSymbol(); QualType T = Context.getCanonicalType(SE->getType()); if (T == CastTy) return V; if (!isa(SE)) return VB.makeNonLoc(SE, T, CastTy); SymbolRef RootSym = cast(SE)->getOperand(); QualType RT = RootSym->getType().getCanonicalType(); // FIXME support simplification from non-integers. if (!RT->isIntegralOrEnumerationType()) return VB.makeNonLoc(SE, T, CastTy); BasicValueFactory &BVF = VB.getBasicValueFactory(); APSIntType CTy = BVF.getAPSIntType(CastTy); APSIntType TTy = BVF.getAPSIntType(T); const auto WC = CTy.getBitWidth(); const auto WT = TTy.getBitWidth(); if (WC <= WT) { const bool isSameType = (RT == CastTy); if (isSameType) return nonloc::SymbolVal(RootSym); return VB.makeNonLoc(RootSym, RT, CastTy); } APSIntType RTy = BVF.getAPSIntType(RT); const auto WR = RTy.getBitWidth(); const bool UT = TTy.isUnsigned(); const bool UR = RTy.isUnsigned(); if (((WT > WR) && (UR || !UT)) || ((WT == WR) && (UT == UR))) return VB.makeNonLoc(RootSym, RT, CastTy); return VB.makeNonLoc(SE, T, CastTy); } }; } // end anonymous namespace /// Cast a given SVal to another SVal using given QualType's. /// \param V -- SVal that should be casted. /// \param CastTy -- QualType that V should be casted according to. /// \param OriginalTy -- QualType which is associated to V. It provides /// additional information about what type the cast performs from. /// \returns the most appropriate casted SVal. /// Note: Many cases don't use an exact OriginalTy. It can be extracted /// from SVal or the cast can performs unconditionaly. Always pass OriginalTy! /// It can be crucial in certain cases and generates different results. /// FIXME: If `OriginalTy.isNull()` is true, then cast performs based on CastTy /// only. This behavior is uncertain and should be improved. SVal SValBuilder::evalCast(SVal V, QualType CastTy, QualType OriginalTy) { EvalCastVisitor TRV{*this, CastTy, OriginalTy}; return TRV.Visit(V); }