//===--- Parser.cpp - C Language Family Parser ----------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the Parser interfaces. // //===----------------------------------------------------------------------===// #include "clang/Parse/Parser.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclTemplate.h" #include "clang/Basic/FileManager.h" #include "clang/Parse/ParseDiagnostic.h" #include "clang/Parse/RAIIObjectsForParser.h" #include "clang/Sema/DeclSpec.h" #include "clang/Sema/ParsedTemplate.h" #include "clang/Sema/Scope.h" #include "llvm/Support/Path.h" using namespace clang; namespace { /// A comment handler that passes comments found by the preprocessor /// to the parser action. class ActionCommentHandler : public CommentHandler { Sema &S; public: explicit ActionCommentHandler(Sema &S) : S(S) { } bool HandleComment(Preprocessor &PP, SourceRange Comment) override { S.ActOnComment(Comment); return false; } }; } // end anonymous namespace IdentifierInfo *Parser::getSEHExceptKeyword() { // __except is accepted as a (contextual) keyword if (!Ident__except && (getLangOpts().MicrosoftExt || getLangOpts().Borland)) Ident__except = PP.getIdentifierInfo("__except"); return Ident__except; } Parser::Parser(Preprocessor &pp, Sema &actions, bool skipFunctionBodies) : PP(pp), PreferredType(pp.isCodeCompletionEnabled()), Actions(actions), Diags(PP.getDiagnostics()), GreaterThanIsOperator(true), ColonIsSacred(false), InMessageExpression(false), TemplateParameterDepth(0), ParsingInObjCContainer(false) { SkipFunctionBodies = pp.isCodeCompletionEnabled() || skipFunctionBodies; Tok.startToken(); Tok.setKind(tok::eof); Actions.CurScope = nullptr; NumCachedScopes = 0; CurParsedObjCImpl = nullptr; // Add #pragma handlers. These are removed and destroyed in the // destructor. initializePragmaHandlers(); CommentSemaHandler.reset(new ActionCommentHandler(actions)); PP.addCommentHandler(CommentSemaHandler.get()); PP.setCodeCompletionHandler(*this); } DiagnosticBuilder Parser::Diag(SourceLocation Loc, unsigned DiagID) { return Diags.Report(Loc, DiagID); } DiagnosticBuilder Parser::Diag(const Token &Tok, unsigned DiagID) { return Diag(Tok.getLocation(), DiagID); } /// Emits a diagnostic suggesting parentheses surrounding a /// given range. /// /// \param Loc The location where we'll emit the diagnostic. /// \param DK The kind of diagnostic to emit. /// \param ParenRange Source range enclosing code that should be parenthesized. void Parser::SuggestParentheses(SourceLocation Loc, unsigned DK, SourceRange ParenRange) { SourceLocation EndLoc = PP.getLocForEndOfToken(ParenRange.getEnd()); if (!ParenRange.getEnd().isFileID() || EndLoc.isInvalid()) { // We can't display the parentheses, so just dig the // warning/error and return. Diag(Loc, DK); return; } Diag(Loc, DK) << FixItHint::CreateInsertion(ParenRange.getBegin(), "(") << FixItHint::CreateInsertion(EndLoc, ")"); } static bool IsCommonTypo(tok::TokenKind ExpectedTok, const Token &Tok) { switch (ExpectedTok) { case tok::semi: return Tok.is(tok::colon) || Tok.is(tok::comma); // : or , for ; default: return false; } } bool Parser::ExpectAndConsume(tok::TokenKind ExpectedTok, unsigned DiagID, StringRef Msg) { if (Tok.is(ExpectedTok) || Tok.is(tok::code_completion)) { ConsumeAnyToken(); return false; } // Detect common single-character typos and resume. if (IsCommonTypo(ExpectedTok, Tok)) { SourceLocation Loc = Tok.getLocation(); { DiagnosticBuilder DB = Diag(Loc, DiagID); DB << FixItHint::CreateReplacement( SourceRange(Loc), tok::getPunctuatorSpelling(ExpectedTok)); if (DiagID == diag::err_expected) DB << ExpectedTok; else if (DiagID == diag::err_expected_after) DB << Msg << ExpectedTok; else DB << Msg; } // Pretend there wasn't a problem. ConsumeAnyToken(); return false; } SourceLocation EndLoc = PP.getLocForEndOfToken(PrevTokLocation); const char *Spelling = nullptr; if (EndLoc.isValid()) Spelling = tok::getPunctuatorSpelling(ExpectedTok); DiagnosticBuilder DB = Spelling ? Diag(EndLoc, DiagID) << FixItHint::CreateInsertion(EndLoc, Spelling) : Diag(Tok, DiagID); if (DiagID == diag::err_expected) DB << ExpectedTok; else if (DiagID == diag::err_expected_after) DB << Msg << ExpectedTok; else DB << Msg; return true; } bool Parser::ExpectAndConsumeSemi(unsigned DiagID, StringRef TokenUsed) { if (TryConsumeToken(tok::semi)) return false; if (Tok.is(tok::code_completion)) { handleUnexpectedCodeCompletionToken(); return false; } if ((Tok.is(tok::r_paren) || Tok.is(tok::r_square)) && NextToken().is(tok::semi)) { Diag(Tok, diag::err_extraneous_token_before_semi) << PP.getSpelling(Tok) << FixItHint::CreateRemoval(Tok.getLocation()); ConsumeAnyToken(); // The ')' or ']'. ConsumeToken(); // The ';'. return false; } return ExpectAndConsume(tok::semi, DiagID , TokenUsed); } void Parser::ConsumeExtraSemi(ExtraSemiKind Kind, DeclSpec::TST TST) { if (!Tok.is(tok::semi)) return; bool HadMultipleSemis = false; SourceLocation StartLoc = Tok.getLocation(); SourceLocation EndLoc = Tok.getLocation(); ConsumeToken(); while ((Tok.is(tok::semi) && !Tok.isAtStartOfLine())) { HadMultipleSemis = true; EndLoc = Tok.getLocation(); ConsumeToken(); } // C++11 allows extra semicolons at namespace scope, but not in any of the // other contexts. if (Kind == OutsideFunction && getLangOpts().CPlusPlus) { if (getLangOpts().CPlusPlus11) Diag(StartLoc, diag::warn_cxx98_compat_top_level_semi) << FixItHint::CreateRemoval(SourceRange(StartLoc, EndLoc)); else Diag(StartLoc, diag::ext_extra_semi_cxx11) << FixItHint::CreateRemoval(SourceRange(StartLoc, EndLoc)); return; } if (Kind != AfterMemberFunctionDefinition || HadMultipleSemis) Diag(StartLoc, diag::ext_extra_semi) << Kind << DeclSpec::getSpecifierName(TST, Actions.getASTContext().getPrintingPolicy()) << FixItHint::CreateRemoval(SourceRange(StartLoc, EndLoc)); else // A single semicolon is valid after a member function definition. Diag(StartLoc, diag::warn_extra_semi_after_mem_fn_def) << FixItHint::CreateRemoval(SourceRange(StartLoc, EndLoc)); } bool Parser::expectIdentifier() { if (Tok.is(tok::identifier)) return false; if (const auto *II = Tok.getIdentifierInfo()) { if (II->isCPlusPlusKeyword(getLangOpts())) { Diag(Tok, diag::err_expected_token_instead_of_objcxx_keyword) << tok::identifier << Tok.getIdentifierInfo(); // Objective-C++: Recover by treating this keyword as a valid identifier. return false; } } Diag(Tok, diag::err_expected) << tok::identifier; return true; } void Parser::checkCompoundToken(SourceLocation FirstTokLoc, tok::TokenKind FirstTokKind, CompoundToken Op) { if (FirstTokLoc.isInvalid()) return; SourceLocation SecondTokLoc = Tok.getLocation(); // If either token is in a macro, we expect both tokens to come from the same // macro expansion. if ((FirstTokLoc.isMacroID() || SecondTokLoc.isMacroID()) && PP.getSourceManager().getFileID(FirstTokLoc) != PP.getSourceManager().getFileID(SecondTokLoc)) { Diag(FirstTokLoc, diag::warn_compound_token_split_by_macro) << (FirstTokKind == Tok.getKind()) << FirstTokKind << Tok.getKind() << static_cast(Op) << SourceRange(FirstTokLoc); Diag(SecondTokLoc, diag::note_compound_token_split_second_token_here) << (FirstTokKind == Tok.getKind()) << Tok.getKind() << SourceRange(SecondTokLoc); return; } // We expect the tokens to abut. if (Tok.hasLeadingSpace() || Tok.isAtStartOfLine()) { SourceLocation SpaceLoc = PP.getLocForEndOfToken(FirstTokLoc); if (SpaceLoc.isInvalid()) SpaceLoc = FirstTokLoc; Diag(SpaceLoc, diag::warn_compound_token_split_by_whitespace) << (FirstTokKind == Tok.getKind()) << FirstTokKind << Tok.getKind() << static_cast(Op) << SourceRange(FirstTokLoc, SecondTokLoc); return; } } //===----------------------------------------------------------------------===// // Error recovery. //===----------------------------------------------------------------------===// static bool HasFlagsSet(Parser::SkipUntilFlags L, Parser::SkipUntilFlags R) { return (static_cast(L) & static_cast(R)) != 0; } /// SkipUntil - Read tokens until we get to the specified token, then consume /// it (unless no flag StopBeforeMatch). Because we cannot guarantee that the /// token will ever occur, this skips to the next token, or to some likely /// good stopping point. If StopAtSemi is true, skipping will stop at a ';' /// character. /// /// If SkipUntil finds the specified token, it returns true, otherwise it /// returns false. bool Parser::SkipUntil(ArrayRef Toks, SkipUntilFlags Flags) { // We always want this function to skip at least one token if the first token // isn't T and if not at EOF. bool isFirstTokenSkipped = true; while (true) { // If we found one of the tokens, stop and return true. for (unsigned i = 0, NumToks = Toks.size(); i != NumToks; ++i) { if (Tok.is(Toks[i])) { if (HasFlagsSet(Flags, StopBeforeMatch)) { // Noop, don't consume the token. } else { ConsumeAnyToken(); } return true; } } // Important special case: The caller has given up and just wants us to // skip the rest of the file. Do this without recursing, since we can // get here precisely because the caller detected too much recursion. if (Toks.size() == 1 && Toks[0] == tok::eof && !HasFlagsSet(Flags, StopAtSemi) && !HasFlagsSet(Flags, StopAtCodeCompletion)) { while (Tok.isNot(tok::eof)) ConsumeAnyToken(); return true; } switch (Tok.getKind()) { case tok::eof: // Ran out of tokens. return false; case tok::annot_pragma_openmp: case tok::annot_attr_openmp: case tok::annot_pragma_openmp_end: // Stop before an OpenMP pragma boundary. if (OpenMPDirectiveParsing) return false; ConsumeAnnotationToken(); break; case tok::annot_module_begin: case tok::annot_module_end: case tok::annot_module_include: // Stop before we change submodules. They generally indicate a "good" // place to pick up parsing again (except in the special case where // we're trying to skip to EOF). return false; case tok::code_completion: if (!HasFlagsSet(Flags, StopAtCodeCompletion)) handleUnexpectedCodeCompletionToken(); return false; case tok::l_paren: // Recursively skip properly-nested parens. ConsumeParen(); if (HasFlagsSet(Flags, StopAtCodeCompletion)) SkipUntil(tok::r_paren, StopAtCodeCompletion); else SkipUntil(tok::r_paren); break; case tok::l_square: // Recursively skip properly-nested square brackets. ConsumeBracket(); if (HasFlagsSet(Flags, StopAtCodeCompletion)) SkipUntil(tok::r_square, StopAtCodeCompletion); else SkipUntil(tok::r_square); break; case tok::l_brace: // Recursively skip properly-nested braces. ConsumeBrace(); if (HasFlagsSet(Flags, StopAtCodeCompletion)) SkipUntil(tok::r_brace, StopAtCodeCompletion); else SkipUntil(tok::r_brace); break; case tok::question: // Recursively skip ? ... : pairs; these function as brackets. But // still stop at a semicolon if requested. ConsumeToken(); SkipUntil(tok::colon, SkipUntilFlags(unsigned(Flags) & unsigned(StopAtCodeCompletion | StopAtSemi))); break; // Okay, we found a ']' or '}' or ')', which we think should be balanced. // Since the user wasn't looking for this token (if they were, it would // already be handled), this isn't balanced. If there is a LHS token at a // higher level, we will assume that this matches the unbalanced token // and return it. Otherwise, this is a spurious RHS token, which we skip. case tok::r_paren: if (ParenCount && !isFirstTokenSkipped) return false; // Matches something. ConsumeParen(); break; case tok::r_square: if (BracketCount && !isFirstTokenSkipped) return false; // Matches something. ConsumeBracket(); break; case tok::r_brace: if (BraceCount && !isFirstTokenSkipped) return false; // Matches something. ConsumeBrace(); break; case tok::semi: if (HasFlagsSet(Flags, StopAtSemi)) return false; [[fallthrough]]; default: // Skip this token. ConsumeAnyToken(); break; } isFirstTokenSkipped = false; } } //===----------------------------------------------------------------------===// // Scope manipulation //===----------------------------------------------------------------------===// /// EnterScope - Start a new scope. void Parser::EnterScope(unsigned ScopeFlags) { if (NumCachedScopes) { Scope *N = ScopeCache[--NumCachedScopes]; N->Init(getCurScope(), ScopeFlags); Actions.CurScope = N; } else { Actions.CurScope = new Scope(getCurScope(), ScopeFlags, Diags); } } /// ExitScope - Pop a scope off the scope stack. void Parser::ExitScope() { assert(getCurScope() && "Scope imbalance!"); // Inform the actions module that this scope is going away if there are any // decls in it. Actions.ActOnPopScope(Tok.getLocation(), getCurScope()); Scope *OldScope = getCurScope(); Actions.CurScope = OldScope->getParent(); if (NumCachedScopes == ScopeCacheSize) delete OldScope; else ScopeCache[NumCachedScopes++] = OldScope; } /// Set the flags for the current scope to ScopeFlags. If ManageFlags is false, /// this object does nothing. Parser::ParseScopeFlags::ParseScopeFlags(Parser *Self, unsigned ScopeFlags, bool ManageFlags) : CurScope(ManageFlags ? Self->getCurScope() : nullptr) { if (CurScope) { OldFlags = CurScope->getFlags(); CurScope->setFlags(ScopeFlags); } } /// Restore the flags for the current scope to what they were before this /// object overrode them. Parser::ParseScopeFlags::~ParseScopeFlags() { if (CurScope) CurScope->setFlags(OldFlags); } //===----------------------------------------------------------------------===// // C99 6.9: External Definitions. //===----------------------------------------------------------------------===// Parser::~Parser() { // If we still have scopes active, delete the scope tree. delete getCurScope(); Actions.CurScope = nullptr; // Free the scope cache. for (unsigned i = 0, e = NumCachedScopes; i != e; ++i) delete ScopeCache[i]; resetPragmaHandlers(); PP.removeCommentHandler(CommentSemaHandler.get()); PP.clearCodeCompletionHandler(); DestroyTemplateIds(); } /// Initialize - Warm up the parser. /// void Parser::Initialize() { // Create the translation unit scope. Install it as the current scope. assert(getCurScope() == nullptr && "A scope is already active?"); EnterScope(Scope::DeclScope); Actions.ActOnTranslationUnitScope(getCurScope()); // Initialization for Objective-C context sensitive keywords recognition. // Referenced in Parser::ParseObjCTypeQualifierList. if (getLangOpts().ObjC) { ObjCTypeQuals[objc_in] = &PP.getIdentifierTable().get("in"); ObjCTypeQuals[objc_out] = &PP.getIdentifierTable().get("out"); ObjCTypeQuals[objc_inout] = &PP.getIdentifierTable().get("inout"); ObjCTypeQuals[objc_oneway] = &PP.getIdentifierTable().get("oneway"); ObjCTypeQuals[objc_bycopy] = &PP.getIdentifierTable().get("bycopy"); ObjCTypeQuals[objc_byref] = &PP.getIdentifierTable().get("byref"); ObjCTypeQuals[objc_nonnull] = &PP.getIdentifierTable().get("nonnull"); ObjCTypeQuals[objc_nullable] = &PP.getIdentifierTable().get("nullable"); ObjCTypeQuals[objc_null_unspecified] = &PP.getIdentifierTable().get("null_unspecified"); } Ident_instancetype = nullptr; Ident_final = nullptr; Ident_sealed = nullptr; Ident_abstract = nullptr; Ident_override = nullptr; Ident_GNU_final = nullptr; Ident_import = nullptr; Ident_module = nullptr; Ident_super = &PP.getIdentifierTable().get("super"); Ident_vector = nullptr; Ident_bool = nullptr; Ident_Bool = nullptr; Ident_pixel = nullptr; if (getLangOpts().AltiVec || getLangOpts().ZVector) { Ident_vector = &PP.getIdentifierTable().get("vector"); Ident_bool = &PP.getIdentifierTable().get("bool"); Ident_Bool = &PP.getIdentifierTable().get("_Bool"); } if (getLangOpts().AltiVec) Ident_pixel = &PP.getIdentifierTable().get("pixel"); Ident_introduced = nullptr; Ident_deprecated = nullptr; Ident_obsoleted = nullptr; Ident_unavailable = nullptr; Ident_strict = nullptr; Ident_replacement = nullptr; Ident_language = Ident_defined_in = Ident_generated_declaration = nullptr; Ident__except = nullptr; Ident__exception_code = Ident__exception_info = nullptr; Ident__abnormal_termination = Ident___exception_code = nullptr; Ident___exception_info = Ident___abnormal_termination = nullptr; Ident_GetExceptionCode = Ident_GetExceptionInfo = nullptr; Ident_AbnormalTermination = nullptr; if(getLangOpts().Borland) { Ident__exception_info = PP.getIdentifierInfo("_exception_info"); Ident___exception_info = PP.getIdentifierInfo("__exception_info"); Ident_GetExceptionInfo = PP.getIdentifierInfo("GetExceptionInformation"); Ident__exception_code = PP.getIdentifierInfo("_exception_code"); Ident___exception_code = PP.getIdentifierInfo("__exception_code"); Ident_GetExceptionCode = PP.getIdentifierInfo("GetExceptionCode"); Ident__abnormal_termination = PP.getIdentifierInfo("_abnormal_termination"); Ident___abnormal_termination = PP.getIdentifierInfo("__abnormal_termination"); Ident_AbnormalTermination = PP.getIdentifierInfo("AbnormalTermination"); PP.SetPoisonReason(Ident__exception_code,diag::err_seh___except_block); PP.SetPoisonReason(Ident___exception_code,diag::err_seh___except_block); PP.SetPoisonReason(Ident_GetExceptionCode,diag::err_seh___except_block); PP.SetPoisonReason(Ident__exception_info,diag::err_seh___except_filter); PP.SetPoisonReason(Ident___exception_info,diag::err_seh___except_filter); PP.SetPoisonReason(Ident_GetExceptionInfo,diag::err_seh___except_filter); PP.SetPoisonReason(Ident__abnormal_termination,diag::err_seh___finally_block); PP.SetPoisonReason(Ident___abnormal_termination,diag::err_seh___finally_block); PP.SetPoisonReason(Ident_AbnormalTermination,diag::err_seh___finally_block); } if (getLangOpts().CPlusPlusModules) { Ident_import = PP.getIdentifierInfo("import"); Ident_module = PP.getIdentifierInfo("module"); } Actions.Initialize(); // Prime the lexer look-ahead. ConsumeToken(); } void Parser::DestroyTemplateIds() { for (TemplateIdAnnotation *Id : TemplateIds) Id->Destroy(); TemplateIds.clear(); } /// Parse the first top-level declaration in a translation unit. /// /// translation-unit: /// [C] external-declaration /// [C] translation-unit external-declaration /// [C++] top-level-declaration-seq[opt] /// [C++20] global-module-fragment[opt] module-declaration /// top-level-declaration-seq[opt] private-module-fragment[opt] /// /// Note that in C, it is an error if there is no first declaration. bool Parser::ParseFirstTopLevelDecl(DeclGroupPtrTy &Result, Sema::ModuleImportState &ImportState) { Actions.ActOnStartOfTranslationUnit(); // For C++20 modules, a module decl must be the first in the TU. We also // need to track module imports. ImportState = Sema::ModuleImportState::FirstDecl; bool NoTopLevelDecls = ParseTopLevelDecl(Result, ImportState); // C11 6.9p1 says translation units must have at least one top-level // declaration. C++ doesn't have this restriction. We also don't want to // complain if we have a precompiled header, although technically if the PCH // is empty we should still emit the (pedantic) diagnostic. // If the main file is a header, we're only pretending it's a TU; don't warn. if (NoTopLevelDecls && !Actions.getASTContext().getExternalSource() && !getLangOpts().CPlusPlus && !getLangOpts().IsHeaderFile) Diag(diag::ext_empty_translation_unit); return NoTopLevelDecls; } /// ParseTopLevelDecl - Parse one top-level declaration, return whatever the /// action tells us to. This returns true if the EOF was encountered. /// /// top-level-declaration: /// declaration /// [C++20] module-import-declaration bool Parser::ParseTopLevelDecl(DeclGroupPtrTy &Result, Sema::ModuleImportState &ImportState) { DestroyTemplateIdAnnotationsRAIIObj CleanupRAII(*this); // Skip over the EOF token, flagging end of previous input for incremental // processing if (PP.isIncrementalProcessingEnabled() && Tok.is(tok::eof)) ConsumeToken(); Result = nullptr; switch (Tok.getKind()) { case tok::annot_pragma_unused: HandlePragmaUnused(); return false; case tok::kw_export: switch (NextToken().getKind()) { case tok::kw_module: goto module_decl; // Note: no need to handle kw_import here. We only form kw_import under // the Modules TS, and in that case 'export import' is parsed as an // export-declaration containing an import-declaration. // Recognize context-sensitive C++20 'export module' and 'export import' // declarations. case tok::identifier: { IdentifierInfo *II = NextToken().getIdentifierInfo(); if ((II == Ident_module || II == Ident_import) && GetLookAheadToken(2).isNot(tok::coloncolon)) { if (II == Ident_module) goto module_decl; else goto import_decl; } break; } default: break; } break; case tok::kw_module: module_decl: Result = ParseModuleDecl(ImportState); return false; case tok::kw_import: import_decl: { Decl *ImportDecl = ParseModuleImport(SourceLocation(), ImportState); Result = Actions.ConvertDeclToDeclGroup(ImportDecl); return false; } case tok::annot_module_include: { auto Loc = Tok.getLocation(); Module *Mod = reinterpret_cast(Tok.getAnnotationValue()); // FIXME: We need a better way to disambiguate C++ clang modules and // standard C++ modules. if (!getLangOpts().CPlusPlusModules || !Mod->isHeaderUnit()) Actions.ActOnModuleInclude(Loc, Mod); else { DeclResult Import = Actions.ActOnModuleImport(Loc, SourceLocation(), Loc, Mod); Decl *ImportDecl = Import.isInvalid() ? nullptr : Import.get(); Result = Actions.ConvertDeclToDeclGroup(ImportDecl); } ConsumeAnnotationToken(); return false; } case tok::annot_module_begin: Actions.ActOnModuleBegin(Tok.getLocation(), reinterpret_cast( Tok.getAnnotationValue())); ConsumeAnnotationToken(); ImportState = Sema::ModuleImportState::NotACXX20Module; return false; case tok::annot_module_end: Actions.ActOnModuleEnd(Tok.getLocation(), reinterpret_cast( Tok.getAnnotationValue())); ConsumeAnnotationToken(); ImportState = Sema::ModuleImportState::NotACXX20Module; return false; case tok::eof: // Check whether -fmax-tokens= was reached. if (PP.getMaxTokens() != 0 && PP.getTokenCount() > PP.getMaxTokens()) { PP.Diag(Tok.getLocation(), diag::warn_max_tokens_total) << PP.getTokenCount() << PP.getMaxTokens(); SourceLocation OverrideLoc = PP.getMaxTokensOverrideLoc(); if (OverrideLoc.isValid()) { PP.Diag(OverrideLoc, diag::note_max_tokens_total_override); } } // Late template parsing can begin. Actions.SetLateTemplateParser(LateTemplateParserCallback, nullptr, this); Actions.ActOnEndOfTranslationUnit(); //else don't tell Sema that we ended parsing: more input might come. return true; case tok::identifier: // C++2a [basic.link]p3: // A token sequence beginning with 'export[opt] module' or // 'export[opt] import' and not immediately followed by '::' // is never interpreted as the declaration of a top-level-declaration. if ((Tok.getIdentifierInfo() == Ident_module || Tok.getIdentifierInfo() == Ident_import) && NextToken().isNot(tok::coloncolon)) { if (Tok.getIdentifierInfo() == Ident_module) goto module_decl; else goto import_decl; } break; default: break; } ParsedAttributes DeclAttrs(AttrFactory); ParsedAttributes DeclSpecAttrs(AttrFactory); // GNU attributes are applied to the declaration specification while the // standard attributes are applied to the declaration. We parse the two // attribute sets into different containters so we can apply them during // the regular parsing process. while (MaybeParseCXX11Attributes(DeclAttrs) || MaybeParseGNUAttributes(DeclSpecAttrs)) ; Result = ParseExternalDeclaration(DeclAttrs, DeclSpecAttrs); // An empty Result might mean a line with ';' or some parsing error, ignore // it. if (Result) { if (ImportState == Sema::ModuleImportState::FirstDecl) // First decl was not modular. ImportState = Sema::ModuleImportState::NotACXX20Module; else if (ImportState == Sema::ModuleImportState::ImportAllowed) // Non-imports disallow further imports. ImportState = Sema::ModuleImportState::ImportFinished; else if (ImportState == Sema::ModuleImportState::PrivateFragmentImportAllowed) // Non-imports disallow further imports. ImportState = Sema::ModuleImportState::PrivateFragmentImportFinished; } return false; } /// ParseExternalDeclaration: /// /// The `Attrs` that are passed in are C++11 attributes and appertain to the /// declaration. /// /// external-declaration: [C99 6.9], declaration: [C++ dcl.dcl] /// function-definition /// declaration /// [GNU] asm-definition /// [GNU] __extension__ external-declaration /// [OBJC] objc-class-definition /// [OBJC] objc-class-declaration /// [OBJC] objc-alias-declaration /// [OBJC] objc-protocol-definition /// [OBJC] objc-method-definition /// [OBJC] @end /// [C++] linkage-specification /// [GNU] asm-definition: /// simple-asm-expr ';' /// [C++11] empty-declaration /// [C++11] attribute-declaration /// /// [C++11] empty-declaration: /// ';' /// /// [C++0x/GNU] 'extern' 'template' declaration /// /// [Modules-TS] module-import-declaration /// Parser::DeclGroupPtrTy Parser::ParseExternalDeclaration(ParsedAttributes &Attrs, ParsedAttributes &DeclSpecAttrs, ParsingDeclSpec *DS) { DestroyTemplateIdAnnotationsRAIIObj CleanupRAII(*this); ParenBraceBracketBalancer BalancerRAIIObj(*this); if (PP.isCodeCompletionReached()) { cutOffParsing(); return nullptr; } Decl *SingleDecl = nullptr; switch (Tok.getKind()) { case tok::annot_pragma_vis: HandlePragmaVisibility(); return nullptr; case tok::annot_pragma_pack: HandlePragmaPack(); return nullptr; case tok::annot_pragma_msstruct: HandlePragmaMSStruct(); return nullptr; case tok::annot_pragma_align: HandlePragmaAlign(); return nullptr; case tok::annot_pragma_weak: HandlePragmaWeak(); return nullptr; case tok::annot_pragma_weakalias: HandlePragmaWeakAlias(); return nullptr; case tok::annot_pragma_redefine_extname: HandlePragmaRedefineExtname(); return nullptr; case tok::annot_pragma_fp_contract: HandlePragmaFPContract(); return nullptr; case tok::annot_pragma_fenv_access: case tok::annot_pragma_fenv_access_ms: HandlePragmaFEnvAccess(); return nullptr; case tok::annot_pragma_fenv_round: HandlePragmaFEnvRound(); return nullptr; case tok::annot_pragma_float_control: HandlePragmaFloatControl(); return nullptr; case tok::annot_pragma_fp: HandlePragmaFP(); break; case tok::annot_pragma_opencl_extension: HandlePragmaOpenCLExtension(); return nullptr; case tok::annot_attr_openmp: case tok::annot_pragma_openmp: { AccessSpecifier AS = AS_none; return ParseOpenMPDeclarativeDirectiveWithExtDecl(AS, Attrs); } case tok::annot_pragma_ms_pointers_to_members: HandlePragmaMSPointersToMembers(); return nullptr; case tok::annot_pragma_ms_vtordisp: HandlePragmaMSVtorDisp(); return nullptr; case tok::annot_pragma_ms_pragma: HandlePragmaMSPragma(); return nullptr; case tok::annot_pragma_dump: HandlePragmaDump(); return nullptr; case tok::annot_pragma_attribute: HandlePragmaAttribute(); return nullptr; case tok::semi: // Either a C++11 empty-declaration or attribute-declaration. SingleDecl = Actions.ActOnEmptyDeclaration(getCurScope(), Attrs, Tok.getLocation()); ConsumeExtraSemi(OutsideFunction); break; case tok::r_brace: Diag(Tok, diag::err_extraneous_closing_brace); ConsumeBrace(); return nullptr; case tok::eof: Diag(Tok, diag::err_expected_external_declaration); return nullptr; case tok::kw___extension__: { // __extension__ silences extension warnings in the subexpression. ExtensionRAIIObject O(Diags); // Use RAII to do this. ConsumeToken(); return ParseExternalDeclaration(Attrs, DeclSpecAttrs); } case tok::kw_asm: { ProhibitAttributes(Attrs); SourceLocation StartLoc = Tok.getLocation(); SourceLocation EndLoc; ExprResult Result(ParseSimpleAsm(/*ForAsmLabel*/ false, &EndLoc)); // Check if GNU-style InlineAsm is disabled. // Empty asm string is allowed because it will not introduce // any assembly code. if (!(getLangOpts().GNUAsm || Result.isInvalid())) { const auto *SL = cast(Result.get()); if (!SL->getString().trim().empty()) Diag(StartLoc, diag::err_gnu_inline_asm_disabled); } ExpectAndConsume(tok::semi, diag::err_expected_after, "top-level asm block"); if (Result.isInvalid()) return nullptr; SingleDecl = Actions.ActOnFileScopeAsmDecl(Result.get(), StartLoc, EndLoc); break; } case tok::at: return ParseObjCAtDirectives(Attrs, DeclSpecAttrs); case tok::minus: case tok::plus: if (!getLangOpts().ObjC) { Diag(Tok, diag::err_expected_external_declaration); ConsumeToken(); return nullptr; } SingleDecl = ParseObjCMethodDefinition(); break; case tok::code_completion: cutOffParsing(); if (CurParsedObjCImpl) { // Code-complete Objective-C methods even without leading '-'/'+' prefix. Actions.CodeCompleteObjCMethodDecl(getCurScope(), /*IsInstanceMethod=*/std::nullopt, /*ReturnType=*/nullptr); } Actions.CodeCompleteOrdinaryName( getCurScope(), CurParsedObjCImpl ? Sema::PCC_ObjCImplementation : Sema::PCC_Namespace); return nullptr; case tok::kw_import: { Sema::ModuleImportState IS = Sema::ModuleImportState::NotACXX20Module; if (getLangOpts().CPlusPlusModules) { llvm_unreachable("not expecting a c++20 import here"); ProhibitAttributes(Attrs); } SingleDecl = ParseModuleImport(SourceLocation(), IS); } break; case tok::kw_export: if (getLangOpts().CPlusPlusModules || getLangOpts().ModulesTS) { ProhibitAttributes(Attrs); SingleDecl = ParseExportDeclaration(); break; } // This must be 'export template'. Parse it so we can diagnose our lack // of support. [[fallthrough]]; case tok::kw_using: case tok::kw_namespace: case tok::kw_typedef: case tok::kw_template: case tok::kw_static_assert: case tok::kw__Static_assert: // A function definition cannot start with any of these keywords. { SourceLocation DeclEnd; return ParseDeclaration(DeclaratorContext::File, DeclEnd, Attrs, DeclSpecAttrs); } case tok::kw_cbuffer: case tok::kw_tbuffer: if (getLangOpts().HLSL) { SourceLocation DeclEnd; return ParseDeclaration(DeclaratorContext::File, DeclEnd, Attrs, DeclSpecAttrs); } goto dont_know; case tok::kw_static: // Parse (then ignore) 'static' prior to a template instantiation. This is // a GCC extension that we intentionally do not support. if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_template)) { Diag(ConsumeToken(), diag::warn_static_inline_explicit_inst_ignored) << 0; SourceLocation DeclEnd; return ParseDeclaration(DeclaratorContext::File, DeclEnd, Attrs, DeclSpecAttrs); } goto dont_know; case tok::kw_inline: if (getLangOpts().CPlusPlus) { tok::TokenKind NextKind = NextToken().getKind(); // Inline namespaces. Allowed as an extension even in C++03. if (NextKind == tok::kw_namespace) { SourceLocation DeclEnd; return ParseDeclaration(DeclaratorContext::File, DeclEnd, Attrs, DeclSpecAttrs); } // Parse (then ignore) 'inline' prior to a template instantiation. This is // a GCC extension that we intentionally do not support. if (NextKind == tok::kw_template) { Diag(ConsumeToken(), diag::warn_static_inline_explicit_inst_ignored) << 1; SourceLocation DeclEnd; return ParseDeclaration(DeclaratorContext::File, DeclEnd, Attrs, DeclSpecAttrs); } } goto dont_know; case tok::kw_extern: if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_template)) { // Extern templates SourceLocation ExternLoc = ConsumeToken(); SourceLocation TemplateLoc = ConsumeToken(); Diag(ExternLoc, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_extern_template : diag::ext_extern_template) << SourceRange(ExternLoc, TemplateLoc); SourceLocation DeclEnd; return Actions.ConvertDeclToDeclGroup(ParseExplicitInstantiation( DeclaratorContext::File, ExternLoc, TemplateLoc, DeclEnd, Attrs)); } goto dont_know; case tok::kw___if_exists: case tok::kw___if_not_exists: ParseMicrosoftIfExistsExternalDeclaration(); return nullptr; case tok::kw_module: Diag(Tok, diag::err_unexpected_module_decl); SkipUntil(tok::semi); return nullptr; default: dont_know: if (Tok.isEditorPlaceholder()) { ConsumeToken(); return nullptr; } if (PP.isIncrementalProcessingEnabled() && !isDeclarationStatement(/*DisambiguatingWithExpression=*/true)) return ParseTopLevelStmtDecl(); // We can't tell whether this is a function-definition or declaration yet. if (!SingleDecl) return ParseDeclarationOrFunctionDefinition(Attrs, DeclSpecAttrs, DS); } // This routine returns a DeclGroup, if the thing we parsed only contains a // single decl, convert it now. return Actions.ConvertDeclToDeclGroup(SingleDecl); } /// Determine whether the current token, if it occurs after a /// declarator, continues a declaration or declaration list. bool Parser::isDeclarationAfterDeclarator() { // Check for '= delete' or '= default' if (getLangOpts().CPlusPlus && Tok.is(tok::equal)) { const Token &KW = NextToken(); if (KW.is(tok::kw_default) || KW.is(tok::kw_delete)) return false; } return Tok.is(tok::equal) || // int X()= -> not a function def Tok.is(tok::comma) || // int X(), -> not a function def Tok.is(tok::semi) || // int X(); -> not a function def Tok.is(tok::kw_asm) || // int X() __asm__ -> not a function def Tok.is(tok::kw___attribute) || // int X() __attr__ -> not a function def (getLangOpts().CPlusPlus && Tok.is(tok::l_paren)); // int X(0) -> not a function def [C++] } /// Determine whether the current token, if it occurs after a /// declarator, indicates the start of a function definition. bool Parser::isStartOfFunctionDefinition(const ParsingDeclarator &Declarator) { assert(Declarator.isFunctionDeclarator() && "Isn't a function declarator"); if (Tok.is(tok::l_brace)) // int X() {} return true; // Handle K&R C argument lists: int X(f) int f; {} if (!getLangOpts().CPlusPlus && Declarator.getFunctionTypeInfo().isKNRPrototype()) return isDeclarationSpecifier(ImplicitTypenameContext::No); if (getLangOpts().CPlusPlus && Tok.is(tok::equal)) { const Token &KW = NextToken(); return KW.is(tok::kw_default) || KW.is(tok::kw_delete); } return Tok.is(tok::colon) || // X() : Base() {} (used for ctors) Tok.is(tok::kw_try); // X() try { ... } } /// Parse either a function-definition or a declaration. We can't tell which /// we have until we read up to the compound-statement in function-definition. /// TemplateParams, if non-NULL, provides the template parameters when we're /// parsing a C++ template-declaration. /// /// function-definition: [C99 6.9.1] /// decl-specs declarator declaration-list[opt] compound-statement /// [C90] function-definition: [C99 6.7.1] - implicit int result /// [C90] decl-specs[opt] declarator declaration-list[opt] compound-statement /// /// declaration: [C99 6.7] /// declaration-specifiers init-declarator-list[opt] ';' /// [!C99] init-declarator-list ';' [TODO: warn in c99 mode] /// [OMP] threadprivate-directive /// [OMP] allocate-directive [TODO] /// Parser::DeclGroupPtrTy Parser::ParseDeclOrFunctionDefInternal( ParsedAttributes &Attrs, ParsedAttributes &DeclSpecAttrs, ParsingDeclSpec &DS, AccessSpecifier AS) { // Because we assume that the DeclSpec has not yet been initialised, we simply // overwrite the source range and attribute the provided leading declspec // attributes. assert(DS.getSourceRange().isInvalid() && "expected uninitialised source range"); DS.SetRangeStart(DeclSpecAttrs.Range.getBegin()); DS.SetRangeEnd(DeclSpecAttrs.Range.getEnd()); DS.takeAttributesFrom(DeclSpecAttrs); MaybeParseMicrosoftAttributes(DS.getAttributes()); // Parse the common declaration-specifiers piece. ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DeclSpecContext::DSC_top_level); // If we had a free-standing type definition with a missing semicolon, we // may get this far before the problem becomes obvious. if (DS.hasTagDefinition() && DiagnoseMissingSemiAfterTagDefinition( DS, AS, DeclSpecContext::DSC_top_level)) return nullptr; // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };" // declaration-specifiers init-declarator-list[opt] ';' if (Tok.is(tok::semi)) { auto LengthOfTSTToken = [](DeclSpec::TST TKind) { assert(DeclSpec::isDeclRep(TKind)); switch(TKind) { case DeclSpec::TST_class: return 5; case DeclSpec::TST_struct: return 6; case DeclSpec::TST_union: return 5; case DeclSpec::TST_enum: return 4; case DeclSpec::TST_interface: return 9; default: llvm_unreachable("we only expect to get the length of the class/struct/union/enum"); } }; // Suggest correct location to fix '[[attrib]] struct' to 'struct [[attrib]]' SourceLocation CorrectLocationForAttributes = DeclSpec::isDeclRep(DS.getTypeSpecType()) ? DS.getTypeSpecTypeLoc().getLocWithOffset( LengthOfTSTToken(DS.getTypeSpecType())) : SourceLocation(); ProhibitAttributes(Attrs, CorrectLocationForAttributes); ConsumeToken(); RecordDecl *AnonRecord = nullptr; Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec( getCurScope(), AS_none, DS, ParsedAttributesView::none(), AnonRecord); DS.complete(TheDecl); if (AnonRecord) { Decl* decls[] = {AnonRecord, TheDecl}; return Actions.BuildDeclaratorGroup(decls); } return Actions.ConvertDeclToDeclGroup(TheDecl); } // ObjC2 allows prefix attributes on class interfaces and protocols. // FIXME: This still needs better diagnostics. We should only accept // attributes here, no types, etc. if (getLangOpts().ObjC && Tok.is(tok::at)) { SourceLocation AtLoc = ConsumeToken(); // the "@" if (!Tok.isObjCAtKeyword(tok::objc_interface) && !Tok.isObjCAtKeyword(tok::objc_protocol) && !Tok.isObjCAtKeyword(tok::objc_implementation)) { Diag(Tok, diag::err_objc_unexpected_attr); SkipUntil(tok::semi); return nullptr; } DS.abort(); DS.takeAttributesFrom(Attrs); const char *PrevSpec = nullptr; unsigned DiagID; if (DS.SetTypeSpecType(DeclSpec::TST_unspecified, AtLoc, PrevSpec, DiagID, Actions.getASTContext().getPrintingPolicy())) Diag(AtLoc, DiagID) << PrevSpec; if (Tok.isObjCAtKeyword(tok::objc_protocol)) return ParseObjCAtProtocolDeclaration(AtLoc, DS.getAttributes()); if (Tok.isObjCAtKeyword(tok::objc_implementation)) return ParseObjCAtImplementationDeclaration(AtLoc, DS.getAttributes()); return Actions.ConvertDeclToDeclGroup( ParseObjCAtInterfaceDeclaration(AtLoc, DS.getAttributes())); } // If the declspec consisted only of 'extern' and we have a string // literal following it, this must be a C++ linkage specifier like // 'extern "C"'. if (getLangOpts().CPlusPlus && isTokenStringLiteral() && DS.getStorageClassSpec() == DeclSpec::SCS_extern && DS.getParsedSpecifiers() == DeclSpec::PQ_StorageClassSpecifier) { ProhibitAttributes(Attrs); Decl *TheDecl = ParseLinkage(DS, DeclaratorContext::File); return Actions.ConvertDeclToDeclGroup(TheDecl); } return ParseDeclGroup(DS, DeclaratorContext::File, Attrs); } Parser::DeclGroupPtrTy Parser::ParseDeclarationOrFunctionDefinition( ParsedAttributes &Attrs, ParsedAttributes &DeclSpecAttrs, ParsingDeclSpec *DS, AccessSpecifier AS) { if (DS) { return ParseDeclOrFunctionDefInternal(Attrs, DeclSpecAttrs, *DS, AS); } else { ParsingDeclSpec PDS(*this); // Must temporarily exit the objective-c container scope for // parsing c constructs and re-enter objc container scope // afterwards. ObjCDeclContextSwitch ObjCDC(*this); return ParseDeclOrFunctionDefInternal(Attrs, DeclSpecAttrs, PDS, AS); } } /// ParseFunctionDefinition - We parsed and verified that the specified /// Declarator is well formed. If this is a K&R-style function, read the /// parameters declaration-list, then start the compound-statement. /// /// function-definition: [C99 6.9.1] /// decl-specs declarator declaration-list[opt] compound-statement /// [C90] function-definition: [C99 6.7.1] - implicit int result /// [C90] decl-specs[opt] declarator declaration-list[opt] compound-statement /// [C++] function-definition: [C++ 8.4] /// decl-specifier-seq[opt] declarator ctor-initializer[opt] /// function-body /// [C++] function-definition: [C++ 8.4] /// decl-specifier-seq[opt] declarator function-try-block /// Decl *Parser::ParseFunctionDefinition(ParsingDeclarator &D, const ParsedTemplateInfo &TemplateInfo, LateParsedAttrList *LateParsedAttrs) { // Poison SEH identifiers so they are flagged as illegal in function bodies. PoisonSEHIdentifiersRAIIObject PoisonSEHIdentifiers(*this, true); const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth); // If this is C89 and the declspecs were completely missing, fudge in an // implicit int. We do this here because this is the only place where // declaration-specifiers are completely optional in the grammar. if (getLangOpts().isImplicitIntRequired() && D.getDeclSpec().isEmpty()) { Diag(D.getIdentifierLoc(), diag::warn_missing_type_specifier) << D.getDeclSpec().getSourceRange(); const char *PrevSpec; unsigned DiagID; const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy(); D.getMutableDeclSpec().SetTypeSpecType(DeclSpec::TST_int, D.getIdentifierLoc(), PrevSpec, DiagID, Policy); D.SetRangeBegin(D.getDeclSpec().getSourceRange().getBegin()); } // If this declaration was formed with a K&R-style identifier list for the // arguments, parse declarations for all of the args next. // int foo(a,b) int a; float b; {} if (FTI.isKNRPrototype()) ParseKNRParamDeclarations(D); // We should have either an opening brace or, in a C++ constructor, // we may have a colon. if (Tok.isNot(tok::l_brace) && (!getLangOpts().CPlusPlus || (Tok.isNot(tok::colon) && Tok.isNot(tok::kw_try) && Tok.isNot(tok::equal)))) { Diag(Tok, diag::err_expected_fn_body); // Skip over garbage, until we get to '{'. Don't eat the '{'. SkipUntil(tok::l_brace, StopAtSemi | StopBeforeMatch); // If we didn't find the '{', bail out. if (Tok.isNot(tok::l_brace)) return nullptr; } // Check to make sure that any normal attributes are allowed to be on // a definition. Late parsed attributes are checked at the end. if (Tok.isNot(tok::equal)) { for (const ParsedAttr &AL : D.getAttributes()) if (AL.isKnownToGCC() && !AL.isStandardAttributeSyntax()) Diag(AL.getLoc(), diag::warn_attribute_on_function_definition) << AL; } // In delayed template parsing mode, for function template we consume the // tokens and store them for late parsing at the end of the translation unit. if (getLangOpts().DelayedTemplateParsing && Tok.isNot(tok::equal) && TemplateInfo.Kind == ParsedTemplateInfo::Template && Actions.canDelayFunctionBody(D)) { MultiTemplateParamsArg TemplateParameterLists(*TemplateInfo.TemplateParams); ParseScope BodyScope(this, Scope::FnScope | Scope::DeclScope | Scope::CompoundStmtScope); Scope *ParentScope = getCurScope()->getParent(); D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition); Decl *DP = Actions.HandleDeclarator(ParentScope, D, TemplateParameterLists); D.complete(DP); D.getMutableDeclSpec().abort(); if (SkipFunctionBodies && (!DP || Actions.canSkipFunctionBody(DP)) && trySkippingFunctionBody()) { BodyScope.Exit(); return Actions.ActOnSkippedFunctionBody(DP); } CachedTokens Toks; LexTemplateFunctionForLateParsing(Toks); if (DP) { FunctionDecl *FnD = DP->getAsFunction(); Actions.CheckForFunctionRedefinition(FnD); Actions.MarkAsLateParsedTemplate(FnD, DP, Toks); } return DP; } else if (CurParsedObjCImpl && !TemplateInfo.TemplateParams && (Tok.is(tok::l_brace) || Tok.is(tok::kw_try) || Tok.is(tok::colon)) && Actions.CurContext->isTranslationUnit()) { ParseScope BodyScope(this, Scope::FnScope | Scope::DeclScope | Scope::CompoundStmtScope); Scope *ParentScope = getCurScope()->getParent(); D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition); Decl *FuncDecl = Actions.HandleDeclarator(ParentScope, D, MultiTemplateParamsArg()); D.complete(FuncDecl); D.getMutableDeclSpec().abort(); if (FuncDecl) { // Consume the tokens and store them for later parsing. StashAwayMethodOrFunctionBodyTokens(FuncDecl); CurParsedObjCImpl->HasCFunction = true; return FuncDecl; } // FIXME: Should we really fall through here? } // Enter a scope for the function body. ParseScope BodyScope(this, Scope::FnScope | Scope::DeclScope | Scope::CompoundStmtScope); // Parse function body eagerly if it is either '= delete;' or '= default;' as // ActOnStartOfFunctionDef needs to know whether the function is deleted. Sema::FnBodyKind BodyKind = Sema::FnBodyKind::Other; SourceLocation KWLoc; if (TryConsumeToken(tok::equal)) { assert(getLangOpts().CPlusPlus && "Only C++ function definitions have '='"); if (TryConsumeToken(tok::kw_delete, KWLoc)) { Diag(KWLoc, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_defaulted_deleted_function : diag::ext_defaulted_deleted_function) << 1 /* deleted */; BodyKind = Sema::FnBodyKind::Delete; } else if (TryConsumeToken(tok::kw_default, KWLoc)) { Diag(KWLoc, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_defaulted_deleted_function : diag::ext_defaulted_deleted_function) << 0 /* defaulted */; BodyKind = Sema::FnBodyKind::Default; } else { llvm_unreachable("function definition after = not 'delete' or 'default'"); } if (Tok.is(tok::comma)) { Diag(KWLoc, diag::err_default_delete_in_multiple_declaration) << (BodyKind == Sema::FnBodyKind::Delete); SkipUntil(tok::semi); } else if (ExpectAndConsume(tok::semi, diag::err_expected_after, BodyKind == Sema::FnBodyKind::Delete ? "delete" : "default")) { SkipUntil(tok::semi); } } // Tell the actions module that we have entered a function definition with the // specified Declarator for the function. Sema::SkipBodyInfo SkipBody; Decl *Res = Actions.ActOnStartOfFunctionDef(getCurScope(), D, TemplateInfo.TemplateParams ? *TemplateInfo.TemplateParams : MultiTemplateParamsArg(), &SkipBody, BodyKind); if (SkipBody.ShouldSkip) { // Do NOT enter SkipFunctionBody if we already consumed the tokens. if (BodyKind == Sema::FnBodyKind::Other) SkipFunctionBody(); return Res; } // Break out of the ParsingDeclarator context before we parse the body. D.complete(Res); // Break out of the ParsingDeclSpec context, too. This const_cast is // safe because we're always the sole owner. D.getMutableDeclSpec().abort(); if (BodyKind != Sema::FnBodyKind::Other) { Actions.SetFunctionBodyKind(Res, KWLoc, BodyKind); Stmt *GeneratedBody = Res ? Res->getBody() : nullptr; Actions.ActOnFinishFunctionBody(Res, GeneratedBody, false); return Res; } // With abbreviated function templates - we need to explicitly add depth to // account for the implicit template parameter list induced by the template. if (auto *Template = dyn_cast_or_null(Res)) if (Template->isAbbreviated() && Template->getTemplateParameters()->getParam(0)->isImplicit()) // First template parameter is implicit - meaning no explicit template // parameter list was specified. CurTemplateDepthTracker.addDepth(1); if (SkipFunctionBodies && (!Res || Actions.canSkipFunctionBody(Res)) && trySkippingFunctionBody()) { BodyScope.Exit(); Actions.ActOnSkippedFunctionBody(Res); return Actions.ActOnFinishFunctionBody(Res, nullptr, false); } if (Tok.is(tok::kw_try)) return ParseFunctionTryBlock(Res, BodyScope); // If we have a colon, then we're probably parsing a C++ // ctor-initializer. if (Tok.is(tok::colon)) { ParseConstructorInitializer(Res); // Recover from error. if (!Tok.is(tok::l_brace)) { BodyScope.Exit(); Actions.ActOnFinishFunctionBody(Res, nullptr); return Res; } } else Actions.ActOnDefaultCtorInitializers(Res); // Late attributes are parsed in the same scope as the function body. if (LateParsedAttrs) ParseLexedAttributeList(*LateParsedAttrs, Res, false, true); return ParseFunctionStatementBody(Res, BodyScope); } void Parser::SkipFunctionBody() { if (Tok.is(tok::equal)) { SkipUntil(tok::semi); return; } bool IsFunctionTryBlock = Tok.is(tok::kw_try); if (IsFunctionTryBlock) ConsumeToken(); CachedTokens Skipped; if (ConsumeAndStoreFunctionPrologue(Skipped)) SkipMalformedDecl(); else { SkipUntil(tok::r_brace); while (IsFunctionTryBlock && Tok.is(tok::kw_catch)) { SkipUntil(tok::l_brace); SkipUntil(tok::r_brace); } } } /// ParseKNRParamDeclarations - Parse 'declaration-list[opt]' which provides /// types for a function with a K&R-style identifier list for arguments. void Parser::ParseKNRParamDeclarations(Declarator &D) { // We know that the top-level of this declarator is a function. DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); // Enter function-declaration scope, limiting any declarators to the // function prototype scope, including parameter declarators. ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope | Scope::FunctionDeclarationScope | Scope::DeclScope); // Read all the argument declarations. while (isDeclarationSpecifier(ImplicitTypenameContext::No)) { SourceLocation DSStart = Tok.getLocation(); // Parse the common declaration-specifiers piece. DeclSpec DS(AttrFactory); ParseDeclarationSpecifiers(DS); // C99 6.9.1p6: 'each declaration in the declaration list shall have at // least one declarator'. // NOTE: GCC just makes this an ext-warn. It's not clear what it does with // the declarations though. It's trivial to ignore them, really hard to do // anything else with them. if (TryConsumeToken(tok::semi)) { Diag(DSStart, diag::err_declaration_does_not_declare_param); continue; } // C99 6.9.1p6: Declarations shall contain no storage-class specifiers other // than register. if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && DS.getStorageClassSpec() != DeclSpec::SCS_register) { Diag(DS.getStorageClassSpecLoc(), diag::err_invalid_storage_class_in_func_decl); DS.ClearStorageClassSpecs(); } if (DS.getThreadStorageClassSpec() != DeclSpec::TSCS_unspecified) { Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_storage_class_in_func_decl); DS.ClearStorageClassSpecs(); } // Parse the first declarator attached to this declspec. Declarator ParmDeclarator(DS, ParsedAttributesView::none(), DeclaratorContext::KNRTypeList); ParseDeclarator(ParmDeclarator); // Handle the full declarator list. while (true) { // If attributes are present, parse them. MaybeParseGNUAttributes(ParmDeclarator); // Ask the actions module to compute the type for this declarator. Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator); if (Param && // A missing identifier has already been diagnosed. ParmDeclarator.getIdentifier()) { // Scan the argument list looking for the correct param to apply this // type. for (unsigned i = 0; ; ++i) { // C99 6.9.1p6: those declarators shall declare only identifiers from // the identifier list. if (i == FTI.NumParams) { Diag(ParmDeclarator.getIdentifierLoc(), diag::err_no_matching_param) << ParmDeclarator.getIdentifier(); break; } if (FTI.Params[i].Ident == ParmDeclarator.getIdentifier()) { // Reject redefinitions of parameters. if (FTI.Params[i].Param) { Diag(ParmDeclarator.getIdentifierLoc(), diag::err_param_redefinition) << ParmDeclarator.getIdentifier(); } else { FTI.Params[i].Param = Param; } break; } } } // If we don't have a comma, it is either the end of the list (a ';') or // an error, bail out. if (Tok.isNot(tok::comma)) break; ParmDeclarator.clear(); // Consume the comma. ParmDeclarator.setCommaLoc(ConsumeToken()); // Parse the next declarator. ParseDeclarator(ParmDeclarator); } // Consume ';' and continue parsing. if (!ExpectAndConsumeSemi(diag::err_expected_semi_declaration)) continue; // Otherwise recover by skipping to next semi or mandatory function body. if (SkipUntil(tok::l_brace, StopAtSemi | StopBeforeMatch)) break; TryConsumeToken(tok::semi); } // The actions module must verify that all arguments were declared. Actions.ActOnFinishKNRParamDeclarations(getCurScope(), D, Tok.getLocation()); } /// ParseAsmStringLiteral - This is just a normal string-literal, but is not /// allowed to be a wide string, and is not subject to character translation. /// Unlike GCC, we also diagnose an empty string literal when parsing for an /// asm label as opposed to an asm statement, because such a construct does not /// behave well. /// /// [GNU] asm-string-literal: /// string-literal /// ExprResult Parser::ParseAsmStringLiteral(bool ForAsmLabel) { if (!isTokenStringLiteral()) { Diag(Tok, diag::err_expected_string_literal) << /*Source='in...'*/0 << "'asm'"; return ExprError(); } ExprResult AsmString(ParseStringLiteralExpression()); if (!AsmString.isInvalid()) { const auto *SL = cast(AsmString.get()); if (!SL->isOrdinary()) { Diag(Tok, diag::err_asm_operand_wide_string_literal) << SL->isWide() << SL->getSourceRange(); return ExprError(); } if (ForAsmLabel && SL->getString().empty()) { Diag(Tok, diag::err_asm_operand_wide_string_literal) << 2 /* an empty */ << SL->getSourceRange(); return ExprError(); } } return AsmString; } /// ParseSimpleAsm /// /// [GNU] simple-asm-expr: /// 'asm' '(' asm-string-literal ')' /// ExprResult Parser::ParseSimpleAsm(bool ForAsmLabel, SourceLocation *EndLoc) { assert(Tok.is(tok::kw_asm) && "Not an asm!"); SourceLocation Loc = ConsumeToken(); if (isGNUAsmQualifier(Tok)) { // Remove from the end of 'asm' to the end of the asm qualifier. SourceRange RemovalRange(PP.getLocForEndOfToken(Loc), PP.getLocForEndOfToken(Tok.getLocation())); Diag(Tok, diag::err_global_asm_qualifier_ignored) << GNUAsmQualifiers::getQualifierName(getGNUAsmQualifier(Tok)) << FixItHint::CreateRemoval(RemovalRange); ConsumeToken(); } BalancedDelimiterTracker T(*this, tok::l_paren); if (T.consumeOpen()) { Diag(Tok, diag::err_expected_lparen_after) << "asm"; return ExprError(); } ExprResult Result(ParseAsmStringLiteral(ForAsmLabel)); if (!Result.isInvalid()) { // Close the paren and get the location of the end bracket T.consumeClose(); if (EndLoc) *EndLoc = T.getCloseLocation(); } else if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch)) { if (EndLoc) *EndLoc = Tok.getLocation(); ConsumeParen(); } return Result; } /// Get the TemplateIdAnnotation from the token and put it in the /// cleanup pool so that it gets destroyed when parsing the current top level /// declaration is finished. TemplateIdAnnotation *Parser::takeTemplateIdAnnotation(const Token &tok) { assert(tok.is(tok::annot_template_id) && "Expected template-id token"); TemplateIdAnnotation * Id = static_cast(tok.getAnnotationValue()); return Id; } void Parser::AnnotateScopeToken(CXXScopeSpec &SS, bool IsNewAnnotation) { // Push the current token back into the token stream (or revert it if it is // cached) and use an annotation scope token for current token. if (PP.isBacktrackEnabled()) PP.RevertCachedTokens(1); else PP.EnterToken(Tok, /*IsReinject=*/true); Tok.setKind(tok::annot_cxxscope); Tok.setAnnotationValue(Actions.SaveNestedNameSpecifierAnnotation(SS)); Tok.setAnnotationRange(SS.getRange()); // In case the tokens were cached, have Preprocessor replace them // with the annotation token. We don't need to do this if we've // just reverted back to a prior state. if (IsNewAnnotation) PP.AnnotateCachedTokens(Tok); } /// Attempt to classify the name at the current token position. This may /// form a type, scope or primary expression annotation, or replace the token /// with a typo-corrected keyword. This is only appropriate when the current /// name must refer to an entity which has already been declared. /// /// \param CCC Indicates how to perform typo-correction for this name. If NULL, /// no typo correction will be performed. /// \param AllowImplicitTypename Whether we are in a context where a dependent /// nested-name-specifier without typename is treated as a type (e.g. /// T::type). Parser::AnnotatedNameKind Parser::TryAnnotateName(CorrectionCandidateCallback *CCC, ImplicitTypenameContext AllowImplicitTypename) { assert(Tok.is(tok::identifier) || Tok.is(tok::annot_cxxscope)); const bool EnteringContext = false; const bool WasScopeAnnotation = Tok.is(tok::annot_cxxscope); CXXScopeSpec SS; if (getLangOpts().CPlusPlus && ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr, /*ObjectHasErrors=*/false, EnteringContext)) return ANK_Error; if (Tok.isNot(tok::identifier) || SS.isInvalid()) { if (TryAnnotateTypeOrScopeTokenAfterScopeSpec(SS, !WasScopeAnnotation, AllowImplicitTypename)) return ANK_Error; return ANK_Unresolved; } IdentifierInfo *Name = Tok.getIdentifierInfo(); SourceLocation NameLoc = Tok.getLocation(); // FIXME: Move the tentative declaration logic into ClassifyName so we can // typo-correct to tentatively-declared identifiers. if (isTentativelyDeclared(Name) && SS.isEmpty()) { // Identifier has been tentatively declared, and thus cannot be resolved as // an expression. Fall back to annotating it as a type. if (TryAnnotateTypeOrScopeTokenAfterScopeSpec(SS, !WasScopeAnnotation, AllowImplicitTypename)) return ANK_Error; return Tok.is(tok::annot_typename) ? ANK_Success : ANK_TentativeDecl; } Token Next = NextToken(); // Look up and classify the identifier. We don't perform any typo-correction // after a scope specifier, because in general we can't recover from typos // there (eg, after correcting 'A::template B::C' [sic], we would need to // jump back into scope specifier parsing). Sema::NameClassification Classification = Actions.ClassifyName( getCurScope(), SS, Name, NameLoc, Next, SS.isEmpty() ? CCC : nullptr); // If name lookup found nothing and we guessed that this was a template name, // double-check before committing to that interpretation. C++20 requires that // we interpret this as a template-id if it can be, but if it can't be, then // this is an error recovery case. if (Classification.getKind() == Sema::NC_UndeclaredTemplate && isTemplateArgumentList(1) == TPResult::False) { // It's not a template-id; re-classify without the '<' as a hint. Token FakeNext = Next; FakeNext.setKind(tok::unknown); Classification = Actions.ClassifyName(getCurScope(), SS, Name, NameLoc, FakeNext, SS.isEmpty() ? CCC : nullptr); } switch (Classification.getKind()) { case Sema::NC_Error: return ANK_Error; case Sema::NC_Keyword: // The identifier was typo-corrected to a keyword. Tok.setIdentifierInfo(Name); Tok.setKind(Name->getTokenID()); PP.TypoCorrectToken(Tok); if (SS.isNotEmpty()) AnnotateScopeToken(SS, !WasScopeAnnotation); // We've "annotated" this as a keyword. return ANK_Success; case Sema::NC_Unknown: // It's not something we know about. Leave it unannotated. break; case Sema::NC_Type: { if (TryAltiVecVectorToken()) // vector has been found as a type id when altivec is enabled but // this is followed by a declaration specifier so this is really the // altivec vector token. Leave it unannotated. break; SourceLocation BeginLoc = NameLoc; if (SS.isNotEmpty()) BeginLoc = SS.getBeginLoc(); /// An Objective-C object type followed by '<' is a specialization of /// a parameterized class type or a protocol-qualified type. ParsedType Ty = Classification.getType(); if (getLangOpts().ObjC && NextToken().is(tok::less) && (Ty.get()->isObjCObjectType() || Ty.get()->isObjCObjectPointerType())) { // Consume the name. SourceLocation IdentifierLoc = ConsumeToken(); SourceLocation NewEndLoc; TypeResult NewType = parseObjCTypeArgsAndProtocolQualifiers(IdentifierLoc, Ty, /*consumeLastToken=*/false, NewEndLoc); if (NewType.isUsable()) Ty = NewType.get(); else if (Tok.is(tok::eof)) // Nothing to do here, bail out... return ANK_Error; } Tok.setKind(tok::annot_typename); setTypeAnnotation(Tok, Ty); Tok.setAnnotationEndLoc(Tok.getLocation()); Tok.setLocation(BeginLoc); PP.AnnotateCachedTokens(Tok); return ANK_Success; } case Sema::NC_OverloadSet: Tok.setKind(tok::annot_overload_set); setExprAnnotation(Tok, Classification.getExpression()); Tok.setAnnotationEndLoc(NameLoc); if (SS.isNotEmpty()) Tok.setLocation(SS.getBeginLoc()); PP.AnnotateCachedTokens(Tok); return ANK_Success; case Sema::NC_NonType: if (TryAltiVecVectorToken()) // vector has been found as a non-type id when altivec is enabled but // this is followed by a declaration specifier so this is really the // altivec vector token. Leave it unannotated. break; Tok.setKind(tok::annot_non_type); setNonTypeAnnotation(Tok, Classification.getNonTypeDecl()); Tok.setLocation(NameLoc); Tok.setAnnotationEndLoc(NameLoc); PP.AnnotateCachedTokens(Tok); if (SS.isNotEmpty()) AnnotateScopeToken(SS, !WasScopeAnnotation); return ANK_Success; case Sema::NC_UndeclaredNonType: case Sema::NC_DependentNonType: Tok.setKind(Classification.getKind() == Sema::NC_UndeclaredNonType ? tok::annot_non_type_undeclared : tok::annot_non_type_dependent); setIdentifierAnnotation(Tok, Name); Tok.setLocation(NameLoc); Tok.setAnnotationEndLoc(NameLoc); PP.AnnotateCachedTokens(Tok); if (SS.isNotEmpty()) AnnotateScopeToken(SS, !WasScopeAnnotation); return ANK_Success; case Sema::NC_TypeTemplate: if (Next.isNot(tok::less)) { // This may be a type template being used as a template template argument. if (SS.isNotEmpty()) AnnotateScopeToken(SS, !WasScopeAnnotation); return ANK_TemplateName; } [[fallthrough]]; case Sema::NC_VarTemplate: case Sema::NC_FunctionTemplate: case Sema::NC_UndeclaredTemplate: { // We have a type, variable or function template followed by '<'. ConsumeToken(); UnqualifiedId Id; Id.setIdentifier(Name, NameLoc); if (AnnotateTemplateIdToken( TemplateTy::make(Classification.getTemplateName()), Classification.getTemplateNameKind(), SS, SourceLocation(), Id)) return ANK_Error; return ANK_Success; } case Sema::NC_Concept: { UnqualifiedId Id; Id.setIdentifier(Name, NameLoc); if (Next.is(tok::less)) // We have a concept name followed by '<'. Consume the identifier token so // we reach the '<' and annotate it. ConsumeToken(); if (AnnotateTemplateIdToken( TemplateTy::make(Classification.getTemplateName()), Classification.getTemplateNameKind(), SS, SourceLocation(), Id, /*AllowTypeAnnotation=*/false, /*TypeConstraint=*/true)) return ANK_Error; return ANK_Success; } } // Unable to classify the name, but maybe we can annotate a scope specifier. if (SS.isNotEmpty()) AnnotateScopeToken(SS, !WasScopeAnnotation); return ANK_Unresolved; } bool Parser::TryKeywordIdentFallback(bool DisableKeyword) { assert(Tok.isNot(tok::identifier)); Diag(Tok, diag::ext_keyword_as_ident) << PP.getSpelling(Tok) << DisableKeyword; if (DisableKeyword) Tok.getIdentifierInfo()->revertTokenIDToIdentifier(); Tok.setKind(tok::identifier); return true; } /// TryAnnotateTypeOrScopeToken - If the current token position is on a /// typename (possibly qualified in C++) or a C++ scope specifier not followed /// by a typename, TryAnnotateTypeOrScopeToken will replace one or more tokens /// with a single annotation token representing the typename or C++ scope /// respectively. /// This simplifies handling of C++ scope specifiers and allows efficient /// backtracking without the need to re-parse and resolve nested-names and /// typenames. /// It will mainly be called when we expect to treat identifiers as typenames /// (if they are typenames). For example, in C we do not expect identifiers /// inside expressions to be treated as typenames so it will not be called /// for expressions in C. /// The benefit for C/ObjC is that a typename will be annotated and /// Actions.getTypeName will not be needed to be called again (e.g. getTypeName /// will not be called twice, once to check whether we have a declaration /// specifier, and another one to get the actual type inside /// ParseDeclarationSpecifiers). /// /// This returns true if an error occurred. /// /// Note that this routine emits an error if you call it with ::new or ::delete /// as the current tokens, so only call it in contexts where these are invalid. bool Parser::TryAnnotateTypeOrScopeToken( ImplicitTypenameContext AllowImplicitTypename) { assert((Tok.is(tok::identifier) || Tok.is(tok::coloncolon) || Tok.is(tok::kw_typename) || Tok.is(tok::annot_cxxscope) || Tok.is(tok::kw_decltype) || Tok.is(tok::annot_template_id) || Tok.is(tok::kw___super)) && "Cannot be a type or scope token!"); if (Tok.is(tok::kw_typename)) { // MSVC lets you do stuff like: // typename typedef T_::D D; // // We will consume the typedef token here and put it back after we have // parsed the first identifier, transforming it into something more like: // typename T_::D typedef D; if (getLangOpts().MSVCCompat && NextToken().is(tok::kw_typedef)) { Token TypedefToken; PP.Lex(TypedefToken); bool Result = TryAnnotateTypeOrScopeToken(AllowImplicitTypename); PP.EnterToken(Tok, /*IsReinject=*/true); Tok = TypedefToken; if (!Result) Diag(Tok.getLocation(), diag::warn_expected_qualified_after_typename); return Result; } // Parse a C++ typename-specifier, e.g., "typename T::type". // // typename-specifier: // 'typename' '::' [opt] nested-name-specifier identifier // 'typename' '::' [opt] nested-name-specifier template [opt] // simple-template-id SourceLocation TypenameLoc = ConsumeToken(); CXXScopeSpec SS; if (ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr, /*ObjectHasErrors=*/false, /*EnteringContext=*/false, nullptr, /*IsTypename*/ true)) return true; if (SS.isEmpty()) { if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id) || Tok.is(tok::annot_decltype)) { // Attempt to recover by skipping the invalid 'typename' if (Tok.is(tok::annot_decltype) || (!TryAnnotateTypeOrScopeToken(AllowImplicitTypename) && Tok.isAnnotation())) { unsigned DiagID = diag::err_expected_qualified_after_typename; // MS compatibility: MSVC permits using known types with typename. // e.g. "typedef typename T* pointer_type" if (getLangOpts().MicrosoftExt) DiagID = diag::warn_expected_qualified_after_typename; Diag(Tok.getLocation(), DiagID); return false; } } if (Tok.isEditorPlaceholder()) return true; Diag(Tok.getLocation(), diag::err_expected_qualified_after_typename); return true; } TypeResult Ty; if (Tok.is(tok::identifier)) { // FIXME: check whether the next token is '<', first! Ty = Actions.ActOnTypenameType(getCurScope(), TypenameLoc, SS, *Tok.getIdentifierInfo(), Tok.getLocation()); } else if (Tok.is(tok::annot_template_id)) { TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); if (!TemplateId->mightBeType()) { Diag(Tok, diag::err_typename_refers_to_non_type_template) << Tok.getAnnotationRange(); return true; } ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), TemplateId->NumArgs); Ty = TemplateId->isInvalid() ? TypeError() : Actions.ActOnTypenameType( getCurScope(), TypenameLoc, SS, TemplateId->TemplateKWLoc, TemplateId->Template, TemplateId->Name, TemplateId->TemplateNameLoc, TemplateId->LAngleLoc, TemplateArgsPtr, TemplateId->RAngleLoc); } else { Diag(Tok, diag::err_expected_type_name_after_typename) << SS.getRange(); return true; } SourceLocation EndLoc = Tok.getLastLoc(); Tok.setKind(tok::annot_typename); setTypeAnnotation(Tok, Ty); Tok.setAnnotationEndLoc(EndLoc); Tok.setLocation(TypenameLoc); PP.AnnotateCachedTokens(Tok); return false; } // Remembers whether the token was originally a scope annotation. bool WasScopeAnnotation = Tok.is(tok::annot_cxxscope); CXXScopeSpec SS; if (getLangOpts().CPlusPlus) if (ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr, /*ObjectHasErrors=*/false, /*EnteringContext*/ false)) return true; return TryAnnotateTypeOrScopeTokenAfterScopeSpec(SS, !WasScopeAnnotation, AllowImplicitTypename); } /// Try to annotate a type or scope token, having already parsed an /// optional scope specifier. \p IsNewScope should be \c true unless the scope /// specifier was extracted from an existing tok::annot_cxxscope annotation. bool Parser::TryAnnotateTypeOrScopeTokenAfterScopeSpec( CXXScopeSpec &SS, bool IsNewScope, ImplicitTypenameContext AllowImplicitTypename) { if (Tok.is(tok::identifier)) { // Determine whether the identifier is a type name. if (ParsedType Ty = Actions.getTypeName( *Tok.getIdentifierInfo(), Tok.getLocation(), getCurScope(), &SS, false, NextToken().is(tok::period), nullptr, /*IsCtorOrDtorName=*/false, /*NonTrivialTypeSourceInfo=*/true, /*IsClassTemplateDeductionContext=*/true, AllowImplicitTypename)) { SourceLocation BeginLoc = Tok.getLocation(); if (SS.isNotEmpty()) // it was a C++ qualified type name. BeginLoc = SS.getBeginLoc(); /// An Objective-C object type followed by '<' is a specialization of /// a parameterized class type or a protocol-qualified type. if (getLangOpts().ObjC && NextToken().is(tok::less) && (Ty.get()->isObjCObjectType() || Ty.get()->isObjCObjectPointerType())) { // Consume the name. SourceLocation IdentifierLoc = ConsumeToken(); SourceLocation NewEndLoc; TypeResult NewType = parseObjCTypeArgsAndProtocolQualifiers(IdentifierLoc, Ty, /*consumeLastToken=*/false, NewEndLoc); if (NewType.isUsable()) Ty = NewType.get(); else if (Tok.is(tok::eof)) // Nothing to do here, bail out... return false; } // This is a typename. Replace the current token in-place with an // annotation type token. Tok.setKind(tok::annot_typename); setTypeAnnotation(Tok, Ty); Tok.setAnnotationEndLoc(Tok.getLocation()); Tok.setLocation(BeginLoc); // In case the tokens were cached, have Preprocessor replace // them with the annotation token. PP.AnnotateCachedTokens(Tok); return false; } if (!getLangOpts().CPlusPlus) { // If we're in C, the only place we can have :: tokens is C2x // attribute which is parsed elsewhere. If the identifier is not a type, // then it can't be scope either, just early exit. return false; } // If this is a template-id, annotate with a template-id or type token. // FIXME: This appears to be dead code. We already have formed template-id // tokens when parsing the scope specifier; this can never form a new one. if (NextToken().is(tok::less)) { TemplateTy Template; UnqualifiedId TemplateName; TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); bool MemberOfUnknownSpecialization; if (TemplateNameKind TNK = Actions.isTemplateName( getCurScope(), SS, /*hasTemplateKeyword=*/false, TemplateName, /*ObjectType=*/nullptr, /*EnteringContext*/false, Template, MemberOfUnknownSpecialization)) { // Only annotate an undeclared template name as a template-id if the // following tokens have the form of a template argument list. if (TNK != TNK_Undeclared_template || isTemplateArgumentList(1) != TPResult::False) { // Consume the identifier. ConsumeToken(); if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(), TemplateName)) { // If an unrecoverable error occurred, we need to return true here, // because the token stream is in a damaged state. We may not // return a valid identifier. return true; } } } } // The current token, which is either an identifier or a // template-id, is not part of the annotation. Fall through to // push that token back into the stream and complete the C++ scope // specifier annotation. } if (Tok.is(tok::annot_template_id)) { TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); if (TemplateId->Kind == TNK_Type_template) { // A template-id that refers to a type was parsed into a // template-id annotation in a context where we weren't allowed // to produce a type annotation token. Update the template-id // annotation token to a type annotation token now. AnnotateTemplateIdTokenAsType(SS, AllowImplicitTypename); return false; } } if (SS.isEmpty()) return false; // A C++ scope specifier that isn't followed by a typename. AnnotateScopeToken(SS, IsNewScope); return false; } /// TryAnnotateScopeToken - Like TryAnnotateTypeOrScopeToken but only /// annotates C++ scope specifiers and template-ids. This returns /// true if there was an error that could not be recovered from. /// /// Note that this routine emits an error if you call it with ::new or ::delete /// as the current tokens, so only call it in contexts where these are invalid. bool Parser::TryAnnotateCXXScopeToken(bool EnteringContext) { assert(getLangOpts().CPlusPlus && "Call sites of this function should be guarded by checking for C++"); assert(MightBeCXXScopeToken() && "Cannot be a type or scope token!"); CXXScopeSpec SS; if (ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr, /*ObjectHasErrors=*/false, EnteringContext)) return true; if (SS.isEmpty()) return false; AnnotateScopeToken(SS, true); return false; } bool Parser::isTokenEqualOrEqualTypo() { tok::TokenKind Kind = Tok.getKind(); switch (Kind) { default: return false; case tok::ampequal: // &= case tok::starequal: // *= case tok::plusequal: // += case tok::minusequal: // -= case tok::exclaimequal: // != case tok::slashequal: // /= case tok::percentequal: // %= case tok::lessequal: // <= case tok::lesslessequal: // <<= case tok::greaterequal: // >= case tok::greatergreaterequal: // >>= case tok::caretequal: // ^= case tok::pipeequal: // |= case tok::equalequal: // == Diag(Tok, diag::err_invalid_token_after_declarator_suggest_equal) << Kind << FixItHint::CreateReplacement(SourceRange(Tok.getLocation()), "="); [[fallthrough]]; case tok::equal: return true; } } SourceLocation Parser::handleUnexpectedCodeCompletionToken() { assert(Tok.is(tok::code_completion)); PrevTokLocation = Tok.getLocation(); for (Scope *S = getCurScope(); S; S = S->getParent()) { if (S->isFunctionScope()) { cutOffParsing(); Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_RecoveryInFunction); return PrevTokLocation; } if (S->isClassScope()) { cutOffParsing(); Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Class); return PrevTokLocation; } } cutOffParsing(); Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Namespace); return PrevTokLocation; } // Code-completion pass-through functions void Parser::CodeCompleteDirective(bool InConditional) { Actions.CodeCompletePreprocessorDirective(InConditional); } void Parser::CodeCompleteInConditionalExclusion() { Actions.CodeCompleteInPreprocessorConditionalExclusion(getCurScope()); } void Parser::CodeCompleteMacroName(bool IsDefinition) { Actions.CodeCompletePreprocessorMacroName(IsDefinition); } void Parser::CodeCompletePreprocessorExpression() { Actions.CodeCompletePreprocessorExpression(); } void Parser::CodeCompleteMacroArgument(IdentifierInfo *Macro, MacroInfo *MacroInfo, unsigned ArgumentIndex) { Actions.CodeCompletePreprocessorMacroArgument(getCurScope(), Macro, MacroInfo, ArgumentIndex); } void Parser::CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled) { Actions.CodeCompleteIncludedFile(Dir, IsAngled); } void Parser::CodeCompleteNaturalLanguage() { Actions.CodeCompleteNaturalLanguage(); } bool Parser::ParseMicrosoftIfExistsCondition(IfExistsCondition& Result) { assert((Tok.is(tok::kw___if_exists) || Tok.is(tok::kw___if_not_exists)) && "Expected '__if_exists' or '__if_not_exists'"); Result.IsIfExists = Tok.is(tok::kw___if_exists); Result.KeywordLoc = ConsumeToken(); BalancedDelimiterTracker T(*this, tok::l_paren); if (T.consumeOpen()) { Diag(Tok, diag::err_expected_lparen_after) << (Result.IsIfExists? "__if_exists" : "__if_not_exists"); return true; } // Parse nested-name-specifier. if (getLangOpts().CPlusPlus) ParseOptionalCXXScopeSpecifier(Result.SS, /*ObjectType=*/nullptr, /*ObjectHasErrors=*/false, /*EnteringContext=*/false); // Check nested-name specifier. if (Result.SS.isInvalid()) { T.skipToEnd(); return true; } // Parse the unqualified-id. SourceLocation TemplateKWLoc; // FIXME: parsed, but unused. if (ParseUnqualifiedId(Result.SS, /*ObjectType=*/nullptr, /*ObjectHadErrors=*/false, /*EnteringContext*/ false, /*AllowDestructorName*/ true, /*AllowConstructorName*/ true, /*AllowDeductionGuide*/ false, &TemplateKWLoc, Result.Name)) { T.skipToEnd(); return true; } if (T.consumeClose()) return true; // Check if the symbol exists. switch (Actions.CheckMicrosoftIfExistsSymbol(getCurScope(), Result.KeywordLoc, Result.IsIfExists, Result.SS, Result.Name)) { case Sema::IER_Exists: Result.Behavior = Result.IsIfExists ? IEB_Parse : IEB_Skip; break; case Sema::IER_DoesNotExist: Result.Behavior = !Result.IsIfExists ? IEB_Parse : IEB_Skip; break; case Sema::IER_Dependent: Result.Behavior = IEB_Dependent; break; case Sema::IER_Error: return true; } return false; } void Parser::ParseMicrosoftIfExistsExternalDeclaration() { IfExistsCondition Result; if (ParseMicrosoftIfExistsCondition(Result)) return; BalancedDelimiterTracker Braces(*this, tok::l_brace); if (Braces.consumeOpen()) { Diag(Tok, diag::err_expected) << tok::l_brace; return; } switch (Result.Behavior) { case IEB_Parse: // Parse declarations below. break; case IEB_Dependent: llvm_unreachable("Cannot have a dependent external declaration"); case IEB_Skip: Braces.skipToEnd(); return; } // Parse the declarations. // FIXME: Support module import within __if_exists? while (Tok.isNot(tok::r_brace) && !isEofOrEom()) { ParsedAttributes Attrs(AttrFactory); MaybeParseCXX11Attributes(Attrs); ParsedAttributes EmptyDeclSpecAttrs(AttrFactory); DeclGroupPtrTy Result = ParseExternalDeclaration(Attrs, EmptyDeclSpecAttrs); if (Result && !getCurScope()->getParent()) Actions.getASTConsumer().HandleTopLevelDecl(Result.get()); } Braces.consumeClose(); } /// Parse a declaration beginning with the 'module' keyword or C++20 /// context-sensitive keyword (optionally preceded by 'export'). /// /// module-declaration: [Modules TS + P0629R0] /// 'export'[opt] 'module' module-name attribute-specifier-seq[opt] ';' /// /// global-module-fragment: [C++2a] /// 'module' ';' top-level-declaration-seq[opt] /// module-declaration: [C++2a] /// 'export'[opt] 'module' module-name module-partition[opt] /// attribute-specifier-seq[opt] ';' /// private-module-fragment: [C++2a] /// 'module' ':' 'private' ';' top-level-declaration-seq[opt] Parser::DeclGroupPtrTy Parser::ParseModuleDecl(Sema::ModuleImportState &ImportState) { SourceLocation StartLoc = Tok.getLocation(); Sema::ModuleDeclKind MDK = TryConsumeToken(tok::kw_export) ? Sema::ModuleDeclKind::Interface : Sema::ModuleDeclKind::Implementation; assert( (Tok.is(tok::kw_module) || (Tok.is(tok::identifier) && Tok.getIdentifierInfo() == Ident_module)) && "not a module declaration"); SourceLocation ModuleLoc = ConsumeToken(); // Attributes appear after the module name, not before. // FIXME: Suggest moving the attributes later with a fixit. DiagnoseAndSkipCXX11Attributes(); // Parse a global-module-fragment, if present. if (getLangOpts().CPlusPlusModules && Tok.is(tok::semi)) { SourceLocation SemiLoc = ConsumeToken(); if (ImportState != Sema::ModuleImportState::FirstDecl) { Diag(StartLoc, diag::err_global_module_introducer_not_at_start) << SourceRange(StartLoc, SemiLoc); return nullptr; } if (MDK == Sema::ModuleDeclKind::Interface) { Diag(StartLoc, diag::err_module_fragment_exported) << /*global*/0 << FixItHint::CreateRemoval(StartLoc); } ImportState = Sema::ModuleImportState::GlobalFragment; return Actions.ActOnGlobalModuleFragmentDecl(ModuleLoc); } // Parse a private-module-fragment, if present. if (getLangOpts().CPlusPlusModules && Tok.is(tok::colon) && NextToken().is(tok::kw_private)) { if (MDK == Sema::ModuleDeclKind::Interface) { Diag(StartLoc, diag::err_module_fragment_exported) << /*private*/1 << FixItHint::CreateRemoval(StartLoc); } ConsumeToken(); SourceLocation PrivateLoc = ConsumeToken(); DiagnoseAndSkipCXX11Attributes(); ExpectAndConsumeSemi(diag::err_private_module_fragment_expected_semi); ImportState = ImportState == Sema::ModuleImportState::ImportAllowed ? Sema::ModuleImportState::PrivateFragmentImportAllowed : Sema::ModuleImportState::PrivateFragmentImportFinished; return Actions.ActOnPrivateModuleFragmentDecl(ModuleLoc, PrivateLoc); } SmallVector, 2> Path; if (ParseModuleName(ModuleLoc, Path, /*IsImport*/ false)) return nullptr; // Parse the optional module-partition. SmallVector, 2> Partition; if (Tok.is(tok::colon)) { SourceLocation ColonLoc = ConsumeToken(); if (!getLangOpts().CPlusPlusModules) Diag(ColonLoc, diag::err_unsupported_module_partition) << SourceRange(ColonLoc, Partition.back().second); // Recover by ignoring the partition name. else if (ParseModuleName(ModuleLoc, Partition, /*IsImport*/ false)) return nullptr; } // We don't support any module attributes yet; just parse them and diagnose. ParsedAttributes Attrs(AttrFactory); MaybeParseCXX11Attributes(Attrs); ProhibitCXX11Attributes(Attrs, diag::err_attribute_not_module_attr, /*DiagnoseEmptyAttrs=*/false, /*WarnOnUnknownAttrs=*/true); ExpectAndConsumeSemi(diag::err_module_expected_semi); return Actions.ActOnModuleDecl(StartLoc, ModuleLoc, MDK, Path, Partition, ImportState); } /// Parse a module import declaration. This is essentially the same for /// Objective-C and C++20 except for the leading '@' (in ObjC) and the /// trailing optional attributes (in C++). /// /// [ObjC] @import declaration: /// '@' 'import' module-name ';' /// [ModTS] module-import-declaration: /// 'import' module-name attribute-specifier-seq[opt] ';' /// [C++20] module-import-declaration: /// 'export'[opt] 'import' module-name /// attribute-specifier-seq[opt] ';' /// 'export'[opt] 'import' module-partition /// attribute-specifier-seq[opt] ';' /// 'export'[opt] 'import' header-name /// attribute-specifier-seq[opt] ';' Decl *Parser::ParseModuleImport(SourceLocation AtLoc, Sema::ModuleImportState &ImportState) { SourceLocation StartLoc = AtLoc.isInvalid() ? Tok.getLocation() : AtLoc; SourceLocation ExportLoc; TryConsumeToken(tok::kw_export, ExportLoc); assert((AtLoc.isInvalid() ? Tok.isOneOf(tok::kw_import, tok::identifier) : Tok.isObjCAtKeyword(tok::objc_import)) && "Improper start to module import"); bool IsObjCAtImport = Tok.isObjCAtKeyword(tok::objc_import); SourceLocation ImportLoc = ConsumeToken(); // For C++20 modules, we can have "name" or ":Partition name" as valid input. SmallVector, 2> Path; bool IsPartition = false; Module *HeaderUnit = nullptr; if (Tok.is(tok::header_name)) { // This is a header import that the preprocessor decided we should skip // because it was malformed in some way. Parse and ignore it; it's already // been diagnosed. ConsumeToken(); } else if (Tok.is(tok::annot_header_unit)) { // This is a header import that the preprocessor mapped to a module import. HeaderUnit = reinterpret_cast(Tok.getAnnotationValue()); ConsumeAnnotationToken(); } else if (Tok.is(tok::colon)) { SourceLocation ColonLoc = ConsumeToken(); if (!getLangOpts().CPlusPlusModules) Diag(ColonLoc, diag::err_unsupported_module_partition) << SourceRange(ColonLoc, Path.back().second); // Recover by leaving partition empty. else if (ParseModuleName(ColonLoc, Path, /*IsImport*/ true)) return nullptr; else IsPartition = true; } else { if (ParseModuleName(ImportLoc, Path, /*IsImport*/ true)) return nullptr; } ParsedAttributes Attrs(AttrFactory); MaybeParseCXX11Attributes(Attrs); // We don't support any module import attributes yet. ProhibitCXX11Attributes(Attrs, diag::err_attribute_not_import_attr, /*DiagnoseEmptyAttrs=*/false, /*WarnOnUnknownAttrs=*/true); if (PP.hadModuleLoaderFatalFailure()) { // With a fatal failure in the module loader, we abort parsing. cutOffParsing(); return nullptr; } // Diagnose mis-imports. bool SeenError = true; switch (ImportState) { case Sema::ModuleImportState::ImportAllowed: SeenError = false; break; case Sema::ModuleImportState::FirstDecl: case Sema::ModuleImportState::NotACXX20Module: // We can only import a partition within a module purview. if (IsPartition) Diag(ImportLoc, diag::err_partition_import_outside_module); else SeenError = false; break; case Sema::ModuleImportState::GlobalFragment: case Sema::ModuleImportState::PrivateFragmentImportAllowed: // We can only have pre-processor directives in the global module fragment // which allows pp-import, but not of a partition (since the global module // does not have partitions). // We cannot import a partition into a private module fragment, since // [module.private.frag]/1 disallows private module fragments in a multi- // TU module. if (IsPartition || (HeaderUnit && HeaderUnit->Kind != Module::ModuleKind::ModuleHeaderUnit)) Diag(ImportLoc, diag::err_import_in_wrong_fragment) << IsPartition << (ImportState == Sema::ModuleImportState::GlobalFragment ? 0 : 1); else SeenError = false; break; case Sema::ModuleImportState::ImportFinished: case Sema::ModuleImportState::PrivateFragmentImportFinished: if (getLangOpts().CPlusPlusModules) Diag(ImportLoc, diag::err_import_not_allowed_here); else SeenError = false; break; } if (SeenError) { ExpectAndConsumeSemi(diag::err_module_expected_semi); return nullptr; } DeclResult Import; if (HeaderUnit) Import = Actions.ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, HeaderUnit); else if (!Path.empty()) Import = Actions.ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Path, IsPartition); ExpectAndConsumeSemi(diag::err_module_expected_semi); if (Import.isInvalid()) return nullptr; // Using '@import' in framework headers requires modules to be enabled so that // the header is parseable. Emit a warning to make the user aware. if (IsObjCAtImport && AtLoc.isValid()) { auto &SrcMgr = PP.getSourceManager(); auto FE = SrcMgr.getFileEntryRefForID(SrcMgr.getFileID(AtLoc)); if (FE && llvm::sys::path::parent_path(FE->getDir().getName()) .endswith(".framework")) Diags.Report(AtLoc, diag::warn_atimport_in_framework_header); } return Import.get(); } /// Parse a C++ Modules TS / Objective-C module name (both forms use the same /// grammar). /// /// module-name: /// module-name-qualifier[opt] identifier /// module-name-qualifier: /// module-name-qualifier[opt] identifier '.' bool Parser::ParseModuleName( SourceLocation UseLoc, SmallVectorImpl> &Path, bool IsImport) { // Parse the module path. while (true) { if (!Tok.is(tok::identifier)) { if (Tok.is(tok::code_completion)) { cutOffParsing(); Actions.CodeCompleteModuleImport(UseLoc, Path); return true; } Diag(Tok, diag::err_module_expected_ident) << IsImport; SkipUntil(tok::semi); return true; } // Record this part of the module path. Path.push_back(std::make_pair(Tok.getIdentifierInfo(), Tok.getLocation())); ConsumeToken(); if (Tok.isNot(tok::period)) return false; ConsumeToken(); } } /// Try recover parser when module annotation appears where it must not /// be found. /// \returns false if the recover was successful and parsing may be continued, or /// true if parser must bail out to top level and handle the token there. bool Parser::parseMisplacedModuleImport() { while (true) { switch (Tok.getKind()) { case tok::annot_module_end: // If we recovered from a misplaced module begin, we expect to hit a // misplaced module end too. Stay in the current context when this // happens. if (MisplacedModuleBeginCount) { --MisplacedModuleBeginCount; Actions.ActOnModuleEnd(Tok.getLocation(), reinterpret_cast( Tok.getAnnotationValue())); ConsumeAnnotationToken(); continue; } // Inform caller that recovery failed, the error must be handled at upper // level. This will generate the desired "missing '}' at end of module" // diagnostics on the way out. return true; case tok::annot_module_begin: // Recover by entering the module (Sema will diagnose). Actions.ActOnModuleBegin(Tok.getLocation(), reinterpret_cast( Tok.getAnnotationValue())); ConsumeAnnotationToken(); ++MisplacedModuleBeginCount; continue; case tok::annot_module_include: // Module import found where it should not be, for instance, inside a // namespace. Recover by importing the module. Actions.ActOnModuleInclude(Tok.getLocation(), reinterpret_cast( Tok.getAnnotationValue())); ConsumeAnnotationToken(); // If there is another module import, process it. continue; default: return false; } } return false; } bool BalancedDelimiterTracker::diagnoseOverflow() { P.Diag(P.Tok, diag::err_bracket_depth_exceeded) << P.getLangOpts().BracketDepth; P.Diag(P.Tok, diag::note_bracket_depth); P.cutOffParsing(); return true; } bool BalancedDelimiterTracker::expectAndConsume(unsigned DiagID, const char *Msg, tok::TokenKind SkipToTok) { LOpen = P.Tok.getLocation(); if (P.ExpectAndConsume(Kind, DiagID, Msg)) { if (SkipToTok != tok::unknown) P.SkipUntil(SkipToTok, Parser::StopAtSemi); return true; } if (getDepth() < P.getLangOpts().BracketDepth) return false; return diagnoseOverflow(); } bool BalancedDelimiterTracker::diagnoseMissingClose() { assert(!P.Tok.is(Close) && "Should have consumed closing delimiter"); if (P.Tok.is(tok::annot_module_end)) P.Diag(P.Tok, diag::err_missing_before_module_end) << Close; else P.Diag(P.Tok, diag::err_expected) << Close; P.Diag(LOpen, diag::note_matching) << Kind; // If we're not already at some kind of closing bracket, skip to our closing // token. if (P.Tok.isNot(tok::r_paren) && P.Tok.isNot(tok::r_brace) && P.Tok.isNot(tok::r_square) && P.SkipUntil(Close, FinalToken, Parser::StopAtSemi | Parser::StopBeforeMatch) && P.Tok.is(Close)) LClose = P.ConsumeAnyToken(); return true; } void BalancedDelimiterTracker::skipToEnd() { P.SkipUntil(Close, Parser::StopBeforeMatch); consumeClose(); }