//===- ComputeDependence.cpp ----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "clang/AST/ComputeDependence.h" #include "clang/AST/Attr.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclarationName.h" #include "clang/AST/DependenceFlags.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprConcepts.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/ExprOpenMP.h" #include "clang/Basic/ExceptionSpecificationType.h" #include "llvm/ADT/ArrayRef.h" using namespace clang; ExprDependence clang::computeDependence(FullExpr *E) { return E->getSubExpr()->getDependence(); } ExprDependence clang::computeDependence(OpaqueValueExpr *E) { auto D = toExprDependenceForImpliedType(E->getType()->getDependence()); if (auto *S = E->getSourceExpr()) D |= S->getDependence(); assert(!(D & ExprDependence::UnexpandedPack)); return D; } ExprDependence clang::computeDependence(ParenExpr *E) { return E->getSubExpr()->getDependence(); } ExprDependence clang::computeDependence(UnaryOperator *E, const ASTContext &Ctx) { ExprDependence Dep = // FIXME: Do we need to look at the type? toExprDependenceForImpliedType(E->getType()->getDependence()) | E->getSubExpr()->getDependence(); // C++ [temp.dep.constexpr]p5: // An expression of the form & qualified-id where the qualified-id names a // dependent member of the current instantiation is value-dependent. An // expression of the form & cast-expression is also value-dependent if // evaluating cast-expression as a core constant expression succeeds and // the result of the evaluation refers to a templated entity that is an // object with static or thread storage duration or a member function. // // What this amounts to is: constant-evaluate the operand and check whether it // refers to a templated entity other than a variable with local storage. if (Ctx.getLangOpts().CPlusPlus && E->getOpcode() == UO_AddrOf && !(Dep & ExprDependence::Value)) { Expr::EvalResult Result; SmallVector Diag; Result.Diag = &Diag; // FIXME: This doesn't enforce the C++98 constant expression rules. if (E->getSubExpr()->EvaluateAsConstantExpr(Result, Ctx) && Diag.empty() && Result.Val.isLValue()) { auto *VD = Result.Val.getLValueBase().dyn_cast(); if (VD && VD->isTemplated()) { auto *VarD = dyn_cast(VD); if (!VarD || !VarD->hasLocalStorage()) Dep |= ExprDependence::Value; } } } return Dep; } ExprDependence clang::computeDependence(UnaryExprOrTypeTraitExpr *E) { // Never type-dependent (C++ [temp.dep.expr]p3). // Value-dependent if the argument is type-dependent. if (E->isArgumentType()) return turnTypeToValueDependence( toExprDependenceAsWritten(E->getArgumentType()->getDependence())); auto ArgDeps = E->getArgumentExpr()->getDependence(); auto Deps = ArgDeps & ~ExprDependence::TypeValue; // Value-dependent if the argument is type-dependent. if (ArgDeps & ExprDependence::Type) Deps |= ExprDependence::Value; // Check to see if we are in the situation where alignof(decl) should be // dependent because decl's alignment is dependent. auto ExprKind = E->getKind(); if (ExprKind != UETT_AlignOf && ExprKind != UETT_PreferredAlignOf) return Deps; if ((Deps & ExprDependence::Value) && (Deps & ExprDependence::Instantiation)) return Deps; auto *NoParens = E->getArgumentExpr()->IgnoreParens(); const ValueDecl *D = nullptr; if (const auto *DRE = dyn_cast(NoParens)) D = DRE->getDecl(); else if (const auto *ME = dyn_cast(NoParens)) D = ME->getMemberDecl(); if (!D) return Deps; for (const auto *I : D->specific_attrs()) { if (I->isAlignmentErrorDependent()) Deps |= ExprDependence::Error; if (I->isAlignmentDependent()) Deps |= ExprDependence::ValueInstantiation; } return Deps; } ExprDependence clang::computeDependence(ArraySubscriptExpr *E) { return E->getLHS()->getDependence() | E->getRHS()->getDependence(); } ExprDependence clang::computeDependence(MatrixSubscriptExpr *E) { return E->getBase()->getDependence() | E->getRowIdx()->getDependence() | (E->getColumnIdx() ? E->getColumnIdx()->getDependence() : ExprDependence::None); } ExprDependence clang::computeDependence(CompoundLiteralExpr *E) { return toExprDependenceAsWritten( E->getTypeSourceInfo()->getType()->getDependence()) | toExprDependenceForImpliedType(E->getType()->getDependence()) | turnTypeToValueDependence(E->getInitializer()->getDependence()); } ExprDependence clang::computeDependence(ImplicitCastExpr *E) { // We model implicit conversions as combining the dependence of their // subexpression, apart from its type, with the semantic portion of the // target type. ExprDependence D = toExprDependenceForImpliedType(E->getType()->getDependence()); if (auto *S = E->getSubExpr()) D |= S->getDependence() & ~ExprDependence::Type; return D; } ExprDependence clang::computeDependence(ExplicitCastExpr *E) { // Cast expressions are type-dependent if the type is // dependent (C++ [temp.dep.expr]p3). // Cast expressions are value-dependent if the type is // dependent or if the subexpression is value-dependent. // // Note that we also need to consider the dependence of the actual type here, // because when the type as written is a deduced type, that type is not // dependent, but it may be deduced as a dependent type. ExprDependence D = toExprDependenceAsWritten( cast(E)->getTypeAsWritten()->getDependence()) | toExprDependenceForImpliedType(E->getType()->getDependence()); if (auto *S = E->getSubExpr()) D |= S->getDependence() & ~ExprDependence::Type; return D; } ExprDependence clang::computeDependence(BinaryOperator *E) { return E->getLHS()->getDependence() | E->getRHS()->getDependence(); } ExprDependence clang::computeDependence(ConditionalOperator *E) { // The type of the conditional operator depends on the type of the conditional // to support the GCC vector conditional extension. Additionally, // [temp.dep.expr] does specify state that this should be dependent on ALL sub // expressions. return E->getCond()->getDependence() | E->getLHS()->getDependence() | E->getRHS()->getDependence(); } ExprDependence clang::computeDependence(BinaryConditionalOperator *E) { return E->getCommon()->getDependence() | E->getFalseExpr()->getDependence(); } ExprDependence clang::computeDependence(StmtExpr *E, unsigned TemplateDepth) { auto D = toExprDependenceForImpliedType(E->getType()->getDependence()); // Propagate dependence of the result. if (const auto *CompoundExprResult = dyn_cast_or_null(E->getSubStmt()->getStmtExprResult())) if (const Expr *ResultExpr = CompoundExprResult->getExprStmt()) D |= ResultExpr->getDependence(); // Note: we treat a statement-expression in a dependent context as always // being value- and instantiation-dependent. This matches the behavior of // lambda-expressions and GCC. if (TemplateDepth) D |= ExprDependence::ValueInstantiation; // A param pack cannot be expanded over stmtexpr boundaries. return D & ~ExprDependence::UnexpandedPack; } ExprDependence clang::computeDependence(ConvertVectorExpr *E) { auto D = toExprDependenceAsWritten( E->getTypeSourceInfo()->getType()->getDependence()) | E->getSrcExpr()->getDependence(); if (!E->getType()->isDependentType()) D &= ~ExprDependence::Type; return D; } ExprDependence clang::computeDependence(ChooseExpr *E) { if (E->isConditionDependent()) return ExprDependence::TypeValueInstantiation | E->getCond()->getDependence() | E->getLHS()->getDependence() | E->getRHS()->getDependence(); auto Cond = E->getCond()->getDependence(); auto Active = E->getLHS()->getDependence(); auto Inactive = E->getRHS()->getDependence(); if (!E->isConditionTrue()) std::swap(Active, Inactive); // Take type- and value- dependency from the active branch. Propagate all // other flags from all branches. return (Active & ExprDependence::TypeValue) | ((Cond | Active | Inactive) & ~ExprDependence::TypeValue); } ExprDependence clang::computeDependence(ParenListExpr *P) { auto D = ExprDependence::None; for (auto *E : P->exprs()) D |= E->getDependence(); return D; } ExprDependence clang::computeDependence(VAArgExpr *E) { auto D = toExprDependenceAsWritten( E->getWrittenTypeInfo()->getType()->getDependence()) | (E->getSubExpr()->getDependence() & ~ExprDependence::Type); return D & ~ExprDependence::Value; } ExprDependence clang::computeDependence(NoInitExpr *E) { return toExprDependenceForImpliedType(E->getType()->getDependence()) & (ExprDependence::Instantiation | ExprDependence::Error); } ExprDependence clang::computeDependence(ArrayInitLoopExpr *E) { auto D = E->getCommonExpr()->getDependence() | E->getSubExpr()->getDependence() | ExprDependence::Instantiation; if (!E->getType()->isInstantiationDependentType()) D &= ~ExprDependence::Instantiation; return turnTypeToValueDependence(D); } ExprDependence clang::computeDependence(ImplicitValueInitExpr *E) { return toExprDependenceForImpliedType(E->getType()->getDependence()) & ExprDependence::Instantiation; } ExprDependence clang::computeDependence(ExtVectorElementExpr *E) { return E->getBase()->getDependence(); } ExprDependence clang::computeDependence(BlockExpr *E) { auto D = toExprDependenceForImpliedType(E->getType()->getDependence()); if (E->getBlockDecl()->isDependentContext()) D |= ExprDependence::Instantiation; return D; } ExprDependence clang::computeDependence(AsTypeExpr *E) { // FIXME: AsTypeExpr doesn't store the type as written. Assume the expression // type has identical sugar for now, so is a type-as-written. auto D = toExprDependenceAsWritten(E->getType()->getDependence()) | E->getSrcExpr()->getDependence(); if (!E->getType()->isDependentType()) D &= ~ExprDependence::Type; return D; } ExprDependence clang::computeDependence(CXXRewrittenBinaryOperator *E) { return E->getSemanticForm()->getDependence(); } ExprDependence clang::computeDependence(CXXStdInitializerListExpr *E) { auto D = turnTypeToValueDependence(E->getSubExpr()->getDependence()); D |= toExprDependenceForImpliedType(E->getType()->getDependence()); return D; } ExprDependence clang::computeDependence(CXXTypeidExpr *E) { auto D = ExprDependence::None; if (E->isTypeOperand()) D = toExprDependenceAsWritten( E->getTypeOperandSourceInfo()->getType()->getDependence()); else D = turnTypeToValueDependence(E->getExprOperand()->getDependence()); // typeid is never type-dependent (C++ [temp.dep.expr]p4) return D & ~ExprDependence::Type; } ExprDependence clang::computeDependence(MSPropertyRefExpr *E) { return E->getBaseExpr()->getDependence() & ~ExprDependence::Type; } ExprDependence clang::computeDependence(MSPropertySubscriptExpr *E) { return E->getIdx()->getDependence(); } ExprDependence clang::computeDependence(CXXUuidofExpr *E) { if (E->isTypeOperand()) return turnTypeToValueDependence(toExprDependenceAsWritten( E->getTypeOperandSourceInfo()->getType()->getDependence())); return turnTypeToValueDependence(E->getExprOperand()->getDependence()); } ExprDependence clang::computeDependence(CXXThisExpr *E) { // 'this' is type-dependent if the class type of the enclosing // member function is dependent (C++ [temp.dep.expr]p2) auto D = toExprDependenceForImpliedType(E->getType()->getDependence()); assert(!(D & ExprDependence::UnexpandedPack)); return D; } ExprDependence clang::computeDependence(CXXThrowExpr *E) { auto *Op = E->getSubExpr(); if (!Op) return ExprDependence::None; return Op->getDependence() & ~ExprDependence::TypeValue; } ExprDependence clang::computeDependence(CXXBindTemporaryExpr *E) { return E->getSubExpr()->getDependence(); } ExprDependence clang::computeDependence(CXXScalarValueInitExpr *E) { auto D = toExprDependenceForImpliedType(E->getType()->getDependence()); if (auto *TSI = E->getTypeSourceInfo()) D |= toExprDependenceAsWritten(TSI->getType()->getDependence()); return D; } ExprDependence clang::computeDependence(CXXDeleteExpr *E) { return turnTypeToValueDependence(E->getArgument()->getDependence()); } ExprDependence clang::computeDependence(ArrayTypeTraitExpr *E) { auto D = toExprDependenceAsWritten(E->getQueriedType()->getDependence()); if (auto *Dim = E->getDimensionExpression()) D |= Dim->getDependence(); return turnTypeToValueDependence(D); } ExprDependence clang::computeDependence(ExpressionTraitExpr *E) { // Never type-dependent. auto D = E->getQueriedExpression()->getDependence() & ~ExprDependence::Type; // Value-dependent if the argument is type-dependent. if (E->getQueriedExpression()->isTypeDependent()) D |= ExprDependence::Value; return D; } ExprDependence clang::computeDependence(CXXNoexceptExpr *E, CanThrowResult CT) { auto D = E->getOperand()->getDependence() & ~ExprDependence::TypeValue; if (CT == CT_Dependent) D |= ExprDependence::ValueInstantiation; return D; } ExprDependence clang::computeDependence(PackExpansionExpr *E) { return (E->getPattern()->getDependence() & ~ExprDependence::UnexpandedPack) | ExprDependence::TypeValueInstantiation; } ExprDependence clang::computeDependence(SubstNonTypeTemplateParmExpr *E) { return E->getReplacement()->getDependence(); } ExprDependence clang::computeDependence(CoroutineSuspendExpr *E) { if (auto *Resume = E->getResumeExpr()) return (Resume->getDependence() & (ExprDependence::TypeValue | ExprDependence::Error)) | (E->getCommonExpr()->getDependence() & ~ExprDependence::TypeValue); return E->getCommonExpr()->getDependence() | ExprDependence::TypeValueInstantiation; } ExprDependence clang::computeDependence(DependentCoawaitExpr *E) { return E->getOperand()->getDependence() | ExprDependence::TypeValueInstantiation; } ExprDependence clang::computeDependence(ObjCBoxedExpr *E) { return E->getSubExpr()->getDependence(); } ExprDependence clang::computeDependence(ObjCEncodeExpr *E) { return toExprDependenceAsWritten(E->getEncodedType()->getDependence()); } ExprDependence clang::computeDependence(ObjCIvarRefExpr *E) { return turnTypeToValueDependence(E->getBase()->getDependence()); } ExprDependence clang::computeDependence(ObjCPropertyRefExpr *E) { if (E->isObjectReceiver()) return E->getBase()->getDependence() & ~ExprDependence::Type; if (E->isSuperReceiver()) return toExprDependenceForImpliedType( E->getSuperReceiverType()->getDependence()) & ~ExprDependence::TypeValue; assert(E->isClassReceiver()); return ExprDependence::None; } ExprDependence clang::computeDependence(ObjCSubscriptRefExpr *E) { return E->getBaseExpr()->getDependence() | E->getKeyExpr()->getDependence(); } ExprDependence clang::computeDependence(ObjCIsaExpr *E) { return E->getBase()->getDependence() & ~ExprDependence::Type & ~ExprDependence::UnexpandedPack; } ExprDependence clang::computeDependence(ObjCIndirectCopyRestoreExpr *E) { return E->getSubExpr()->getDependence(); } ExprDependence clang::computeDependence(OMPArraySectionExpr *E) { auto D = E->getBase()->getDependence(); if (auto *LB = E->getLowerBound()) D |= LB->getDependence(); if (auto *Len = E->getLength()) D |= Len->getDependence(); return D; } ExprDependence clang::computeDependence(OMPArrayShapingExpr *E) { auto D = E->getBase()->getDependence(); for (Expr *Dim: E->getDimensions()) if (Dim) D |= turnValueToTypeDependence(Dim->getDependence()); return D; } ExprDependence clang::computeDependence(OMPIteratorExpr *E) { auto D = toExprDependenceForImpliedType(E->getType()->getDependence()); for (unsigned I = 0, End = E->numOfIterators(); I < End; ++I) { if (auto *DD = cast_or_null(E->getIteratorDecl(I))) { // If the type is omitted, it's 'int', and is not dependent in any way. if (auto *TSI = DD->getTypeSourceInfo()) { D |= toExprDependenceAsWritten(TSI->getType()->getDependence()); } } OMPIteratorExpr::IteratorRange IR = E->getIteratorRange(I); if (Expr *BE = IR.Begin) D |= BE->getDependence(); if (Expr *EE = IR.End) D |= EE->getDependence(); if (Expr *SE = IR.Step) D |= SE->getDependence(); } return D; } /// Compute the type-, value-, and instantiation-dependence of a /// declaration reference /// based on the declaration being referenced. ExprDependence clang::computeDependence(DeclRefExpr *E, const ASTContext &Ctx) { auto Deps = ExprDependence::None; if (auto *NNS = E->getQualifier()) Deps |= toExprDependence(NNS->getDependence() & ~NestedNameSpecifierDependence::Dependent); if (auto *FirstArg = E->getTemplateArgs()) { unsigned NumArgs = E->getNumTemplateArgs(); for (auto *Arg = FirstArg, *End = FirstArg + NumArgs; Arg < End; ++Arg) Deps |= toExprDependence(Arg->getArgument().getDependence()); } auto *Decl = E->getDecl(); auto Type = E->getType(); if (Decl->isParameterPack()) Deps |= ExprDependence::UnexpandedPack; Deps |= toExprDependenceForImpliedType(Type->getDependence()) & ExprDependence::Error; // C++ [temp.dep.expr]p3: // An id-expression is type-dependent if it contains: // - an identifier associated by name lookup with one or more declarations // declared with a dependent type // // [The "or more" case is not modeled as a DeclRefExpr. There are a bunch // more bullets here that we handle by treating the declaration as having a // dependent type if they involve a placeholder type that can't be deduced.] if (Type->isDependentType()) return Deps | ExprDependence::TypeValueInstantiation; else if (Type->isInstantiationDependentType()) Deps |= ExprDependence::Instantiation; // - a conversion-function-id that specifies a dependent type if (Decl->getDeclName().getNameKind() == DeclarationName::CXXConversionFunctionName) { QualType T = Decl->getDeclName().getCXXNameType(); if (T->isDependentType()) return Deps | ExprDependence::TypeValueInstantiation; if (T->isInstantiationDependentType()) Deps |= ExprDependence::Instantiation; } // - a template-id that is dependent, // - a nested-name-specifier or a qualified-id that names a member of an // unknown specialization // [These are not modeled as DeclRefExprs.] // or if it names a dependent member of the current instantiation that is a // static data member of type "array of unknown bound of T" for some T // [handled below]. // C++ [temp.dep.constexpr]p2: // An id-expression is value-dependent if: // - it is type-dependent [handled above] // - it is the name of a non-type template parameter, if (isa(Decl)) return Deps | ExprDependence::ValueInstantiation; // - it names a potentially-constant variable that is initialized with an // expression that is value-dependent if (const auto *Var = dyn_cast(Decl)) { if (Var->mightBeUsableInConstantExpressions(Ctx)) { if (const Expr *Init = Var->getAnyInitializer()) { if (Init->isValueDependent()) Deps |= ExprDependence::ValueInstantiation; if (Init->containsErrors()) Deps |= ExprDependence::Error; } } // - it names a static data member that is a dependent member of the // current instantiation and is not initialized in a member-declarator, if (Var->isStaticDataMember() && Var->getDeclContext()->isDependentContext() && !Var->getFirstDecl()->hasInit()) { const VarDecl *First = Var->getFirstDecl(); TypeSourceInfo *TInfo = First->getTypeSourceInfo(); if (TInfo->getType()->isIncompleteArrayType()) { Deps |= ExprDependence::TypeValueInstantiation; } else if (!First->hasInit()) { Deps |= ExprDependence::ValueInstantiation; } } return Deps; } // - it names a static member function that is a dependent member of the // current instantiation // // FIXME: It's unclear that the restriction to static members here has any // effect: any use of a non-static member function name requires either // forming a pointer-to-member or providing an object parameter, either of // which makes the overall expression value-dependent. if (auto *MD = dyn_cast(Decl)) { if (MD->isStatic() && Decl->getDeclContext()->isDependentContext()) Deps |= ExprDependence::ValueInstantiation; } return Deps; } ExprDependence clang::computeDependence(RecoveryExpr *E) { // RecoveryExpr is // - always value-dependent, and therefore instantiation dependent // - contains errors (ExprDependence::Error), by definition // - type-dependent if we don't know the type (fallback to an opaque // dependent type), or the type is known and dependent, or it has // type-dependent subexpressions. auto D = toExprDependenceAsWritten(E->getType()->getDependence()) | ExprDependence::ErrorDependent; // FIXME: remove the type-dependent bit from subexpressions, if the // RecoveryExpr has a non-dependent type. for (auto *S : E->subExpressions()) D |= S->getDependence(); return D; } ExprDependence clang::computeDependence(SYCLUniqueStableNameExpr *E) { return toExprDependenceAsWritten( E->getTypeSourceInfo()->getType()->getDependence()); } ExprDependence clang::computeDependence(PredefinedExpr *E) { return toExprDependenceForImpliedType(E->getType()->getDependence()); } ExprDependence clang::computeDependence(CallExpr *E, llvm::ArrayRef PreArgs) { auto D = E->getCallee()->getDependence(); for (auto *A : llvm::ArrayRef(E->getArgs(), E->getNumArgs())) { if (A) D |= A->getDependence(); } for (auto *A : PreArgs) D |= A->getDependence(); return D; } ExprDependence clang::computeDependence(OffsetOfExpr *E) { auto D = turnTypeToValueDependence(toExprDependenceAsWritten( E->getTypeSourceInfo()->getType()->getDependence())); for (unsigned I = 0, N = E->getNumExpressions(); I < N; ++I) D |= turnTypeToValueDependence(E->getIndexExpr(I)->getDependence()); return D; } ExprDependence clang::computeDependence(MemberExpr *E) { auto *MemberDecl = E->getMemberDecl(); auto D = E->getBase()->getDependence(); if (FieldDecl *FD = dyn_cast(MemberDecl)) { DeclContext *DC = MemberDecl->getDeclContext(); // dyn_cast_or_null is used to handle objC variables which do not // have a declaration context. CXXRecordDecl *RD = dyn_cast_or_null(DC); if (RD && RD->isDependentContext() && RD->isCurrentInstantiation(DC)) { if (!E->getType()->isDependentType()) D &= ~ExprDependence::Type; } // Bitfield with value-dependent width is type-dependent. if (FD && FD->isBitField() && FD->getBitWidth()->isValueDependent()) { D |= ExprDependence::Type; } } // FIXME: move remaining dependence computation from MemberExpr::Create() return D; } ExprDependence clang::computeDependence(InitListExpr *E) { auto D = ExprDependence::None; for (auto *A : E->inits()) D |= A->getDependence(); return D; } ExprDependence clang::computeDependence(ShuffleVectorExpr *E) { auto D = toExprDependenceForImpliedType(E->getType()->getDependence()); for (auto *C : llvm::ArrayRef(E->getSubExprs(), E->getNumSubExprs())) D |= C->getDependence(); return D; } ExprDependence clang::computeDependence(GenericSelectionExpr *E, bool ContainsUnexpandedPack) { auto D = ContainsUnexpandedPack ? ExprDependence::UnexpandedPack : ExprDependence::None; for (auto *AE : E->getAssocExprs()) D |= AE->getDependence() & ExprDependence::Error; D |= E->getControllingExpr()->getDependence() & ExprDependence::Error; if (E->isResultDependent()) return D | ExprDependence::TypeValueInstantiation; return D | (E->getResultExpr()->getDependence() & ~ExprDependence::UnexpandedPack); } ExprDependence clang::computeDependence(DesignatedInitExpr *E) { auto Deps = E->getInit()->getDependence(); for (auto D : E->designators()) { auto DesignatorDeps = ExprDependence::None; if (D.isArrayDesignator()) DesignatorDeps |= E->getArrayIndex(D)->getDependence(); else if (D.isArrayRangeDesignator()) DesignatorDeps |= E->getArrayRangeStart(D)->getDependence() | E->getArrayRangeEnd(D)->getDependence(); Deps |= DesignatorDeps; if (DesignatorDeps & ExprDependence::TypeValue) Deps |= ExprDependence::TypeValueInstantiation; } return Deps; } ExprDependence clang::computeDependence(PseudoObjectExpr *O) { auto D = O->getSyntacticForm()->getDependence(); for (auto *E : O->semantics()) D |= E->getDependence(); return D; } ExprDependence clang::computeDependence(AtomicExpr *A) { auto D = ExprDependence::None; for (auto *E : llvm::ArrayRef(A->getSubExprs(), A->getNumSubExprs())) D |= E->getDependence(); return D; } ExprDependence clang::computeDependence(CXXNewExpr *E) { auto D = toExprDependenceAsWritten( E->getAllocatedTypeSourceInfo()->getType()->getDependence()); D |= toExprDependenceForImpliedType(E->getAllocatedType()->getDependence()); auto Size = E->getArraySize(); if (Size && *Size) D |= turnTypeToValueDependence((*Size)->getDependence()); if (auto *I = E->getInitializer()) D |= turnTypeToValueDependence(I->getDependence()); for (auto *A : E->placement_arguments()) D |= turnTypeToValueDependence(A->getDependence()); return D; } ExprDependence clang::computeDependence(CXXPseudoDestructorExpr *E) { auto D = E->getBase()->getDependence(); if (auto *TSI = E->getDestroyedTypeInfo()) D |= toExprDependenceAsWritten(TSI->getType()->getDependence()); if (auto *ST = E->getScopeTypeInfo()) D |= turnTypeToValueDependence( toExprDependenceAsWritten(ST->getType()->getDependence())); if (auto *Q = E->getQualifier()) D |= toExprDependence(Q->getDependence() & ~NestedNameSpecifierDependence::Dependent); return D; } static inline ExprDependence getDependenceInExpr(DeclarationNameInfo Name) { auto D = ExprDependence::None; if (Name.isInstantiationDependent()) D |= ExprDependence::Instantiation; if (Name.containsUnexpandedParameterPack()) D |= ExprDependence::UnexpandedPack; return D; } ExprDependence clang::computeDependence(OverloadExpr *E, bool KnownDependent, bool KnownInstantiationDependent, bool KnownContainsUnexpandedParameterPack) { auto Deps = ExprDependence::None; if (KnownDependent) Deps |= ExprDependence::TypeValue; if (KnownInstantiationDependent) Deps |= ExprDependence::Instantiation; if (KnownContainsUnexpandedParameterPack) Deps |= ExprDependence::UnexpandedPack; Deps |= getDependenceInExpr(E->getNameInfo()); if (auto *Q = E->getQualifier()) Deps |= toExprDependence(Q->getDependence() & ~NestedNameSpecifierDependence::Dependent); for (auto *D : E->decls()) { if (D->getDeclContext()->isDependentContext() || isa(D)) Deps |= ExprDependence::TypeValueInstantiation; } // If we have explicit template arguments, check for dependent // template arguments and whether they contain any unexpanded pack // expansions. for (auto A : E->template_arguments()) Deps |= toExprDependence(A.getArgument().getDependence()); return Deps; } ExprDependence clang::computeDependence(DependentScopeDeclRefExpr *E) { auto D = ExprDependence::TypeValue; D |= getDependenceInExpr(E->getNameInfo()); if (auto *Q = E->getQualifier()) D |= toExprDependence(Q->getDependence()); for (auto A : E->template_arguments()) D |= toExprDependence(A.getArgument().getDependence()); return D; } ExprDependence clang::computeDependence(CXXConstructExpr *E) { ExprDependence D = toExprDependenceForImpliedType(E->getType()->getDependence()); for (auto *A : E->arguments()) D |= A->getDependence() & ~ExprDependence::Type; return D; } ExprDependence clang::computeDependence(CXXTemporaryObjectExpr *E) { CXXConstructExpr *BaseE = E; return toExprDependenceAsWritten( E->getTypeSourceInfo()->getType()->getDependence()) | computeDependence(BaseE); } ExprDependence clang::computeDependence(CXXDefaultInitExpr *E) { return E->getExpr()->getDependence(); } ExprDependence clang::computeDependence(CXXDefaultArgExpr *E) { return E->getExpr()->getDependence(); } ExprDependence clang::computeDependence(LambdaExpr *E, bool ContainsUnexpandedParameterPack) { auto D = toExprDependenceForImpliedType(E->getType()->getDependence()); if (ContainsUnexpandedParameterPack) D |= ExprDependence::UnexpandedPack; return D; } ExprDependence clang::computeDependence(CXXUnresolvedConstructExpr *E) { auto D = ExprDependence::ValueInstantiation; D |= toExprDependenceAsWritten(E->getTypeAsWritten()->getDependence()); D |= toExprDependenceForImpliedType(E->getType()->getDependence()); for (auto *A : E->arguments()) D |= A->getDependence() & (ExprDependence::UnexpandedPack | ExprDependence::Error); return D; } ExprDependence clang::computeDependence(CXXDependentScopeMemberExpr *E) { auto D = ExprDependence::TypeValueInstantiation; if (!E->isImplicitAccess()) D |= E->getBase()->getDependence(); if (auto *Q = E->getQualifier()) D |= toExprDependence(Q->getDependence()); D |= getDependenceInExpr(E->getMemberNameInfo()); for (auto A : E->template_arguments()) D |= toExprDependence(A.getArgument().getDependence()); return D; } ExprDependence clang::computeDependence(MaterializeTemporaryExpr *E) { return E->getSubExpr()->getDependence(); } ExprDependence clang::computeDependence(CXXFoldExpr *E) { auto D = ExprDependence::TypeValueInstantiation; for (const auto *C : {E->getLHS(), E->getRHS()}) { if (C) D |= C->getDependence() & ~ExprDependence::UnexpandedPack; } return D; } ExprDependence clang::computeDependence(CXXParenListInitExpr *E) { auto D = ExprDependence::None; for (const auto *A : E->getInitExprs()) D |= A->getDependence(); return D; } ExprDependence clang::computeDependence(TypeTraitExpr *E) { auto D = ExprDependence::None; for (const auto *A : E->getArgs()) D |= toExprDependenceAsWritten(A->getType()->getDependence()) & ~ExprDependence::Type; return D; } ExprDependence clang::computeDependence(ConceptSpecializationExpr *E, bool ValueDependent) { auto TA = TemplateArgumentDependence::None; const auto InterestingDeps = TemplateArgumentDependence::Instantiation | TemplateArgumentDependence::UnexpandedPack; for (const TemplateArgumentLoc &ArgLoc : E->getTemplateArgsAsWritten()->arguments()) { TA |= ArgLoc.getArgument().getDependence() & InterestingDeps; if (TA == InterestingDeps) break; } ExprDependence D = ValueDependent ? ExprDependence::Value : ExprDependence::None; auto Res = D | toExprDependence(TA); if(!ValueDependent && E->getSatisfaction().ContainsErrors) Res |= ExprDependence::Error; return Res; } ExprDependence clang::computeDependence(ObjCArrayLiteral *E) { auto D = ExprDependence::None; Expr **Elements = E->getElements(); for (unsigned I = 0, N = E->getNumElements(); I != N; ++I) D |= turnTypeToValueDependence(Elements[I]->getDependence()); return D; } ExprDependence clang::computeDependence(ObjCDictionaryLiteral *E) { auto Deps = ExprDependence::None; for (unsigned I = 0, N = E->getNumElements(); I < N; ++I) { auto KV = E->getKeyValueElement(I); auto KVDeps = turnTypeToValueDependence(KV.Key->getDependence() | KV.Value->getDependence()); if (KV.EllipsisLoc.isValid()) KVDeps &= ~ExprDependence::UnexpandedPack; Deps |= KVDeps; } return Deps; } ExprDependence clang::computeDependence(ObjCMessageExpr *E) { auto D = ExprDependence::None; if (auto *R = E->getInstanceReceiver()) D |= R->getDependence(); else D |= toExprDependenceForImpliedType(E->getType()->getDependence()); for (auto *A : E->arguments()) D |= A->getDependence(); return D; }