//===- ScopHelper.cpp - Some Helper Functions for Scop. ------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Small functions that help with Scop and LLVM-IR. // //===----------------------------------------------------------------------===// #include "polly/Support/ScopHelper.h" #include "polly/Options.h" #include "polly/ScopInfo.h" #include "polly/Support/SCEVValidator.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/RegionInfo.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" #include using namespace llvm; using namespace polly; #define DEBUG_TYPE "polly-scop-helper" static cl::list DebugFunctions( "polly-debug-func", cl::desc("Allow calls to the specified functions in SCoPs even if their " "side-effects are unknown. This can be used to do debug output in " "Polly-transformed code."), cl::Hidden, cl::CommaSeparated, cl::cat(PollyCategory)); // Ensures that there is just one predecessor to the entry node from outside the // region. // The identity of the region entry node is preserved. static void simplifyRegionEntry(Region *R, DominatorTree *DT, LoopInfo *LI, RegionInfo *RI) { BasicBlock *EnteringBB = R->getEnteringBlock(); BasicBlock *Entry = R->getEntry(); // Before (one of): // // \ / // // EnteringBB // // | \------> // // \ / | // // Entry <--\ Entry <--\ // // / \ / / \ / // // .... .... // // Create single entry edge if the region has multiple entry edges. if (!EnteringBB) { SmallVector Preds; for (BasicBlock *P : predecessors(Entry)) if (!R->contains(P)) Preds.push_back(P); BasicBlock *NewEntering = SplitBlockPredecessors(Entry, Preds, ".region_entering", DT, LI); if (RI) { // The exit block of predecessing regions must be changed to NewEntering for (BasicBlock *ExitPred : predecessors(NewEntering)) { Region *RegionOfPred = RI->getRegionFor(ExitPred); if (RegionOfPred->getExit() != Entry) continue; while (!RegionOfPred->isTopLevelRegion() && RegionOfPred->getExit() == Entry) { RegionOfPred->replaceExit(NewEntering); RegionOfPred = RegionOfPred->getParent(); } } // Make all ancestors use EnteringBB as entry; there might be edges to it Region *AncestorR = R->getParent(); RI->setRegionFor(NewEntering, AncestorR); while (!AncestorR->isTopLevelRegion() && AncestorR->getEntry() == Entry) { AncestorR->replaceEntry(NewEntering); AncestorR = AncestorR->getParent(); } } EnteringBB = NewEntering; } assert(R->getEnteringBlock() == EnteringBB); // After: // // \ / // // EnteringBB // // | // // | // // Entry <--\ // // / \ / // // .... // } // Ensure that the region has a single block that branches to the exit node. static void simplifyRegionExit(Region *R, DominatorTree *DT, LoopInfo *LI, RegionInfo *RI) { BasicBlock *ExitBB = R->getExit(); BasicBlock *ExitingBB = R->getExitingBlock(); // Before: // // (Region) ______/ // // \ | / // // ExitBB // // / \ // if (!ExitingBB) { SmallVector Preds; for (BasicBlock *P : predecessors(ExitBB)) if (R->contains(P)) Preds.push_back(P); // Preds[0] Preds[1] otherBB // // \ | ________/ // // \ | / // // BB // ExitingBB = SplitBlockPredecessors(ExitBB, Preds, ".region_exiting", DT, LI); // Preds[0] Preds[1] otherBB // // \ / / // // BB.region_exiting / // // \ / // // BB // if (RI) RI->setRegionFor(ExitingBB, R); // Change the exit of nested regions, but not the region itself, R->replaceExitRecursive(ExitingBB); R->replaceExit(ExitBB); } assert(ExitingBB == R->getExitingBlock()); // After: // // \ / // // ExitingBB _____/ // // \ / // // ExitBB // // / \ // } void polly::simplifyRegion(Region *R, DominatorTree *DT, LoopInfo *LI, RegionInfo *RI) { assert(R && !R->isTopLevelRegion()); assert(!RI || RI == R->getRegionInfo()); assert((!RI || DT) && "RegionInfo requires DominatorTree to be updated as well"); simplifyRegionEntry(R, DT, LI, RI); simplifyRegionExit(R, DT, LI, RI); assert(R->isSimple()); } // Split the block into two successive blocks. // // Like llvm::SplitBlock, but also preserves RegionInfo static BasicBlock *splitBlock(BasicBlock *Old, Instruction *SplitPt, DominatorTree *DT, llvm::LoopInfo *LI, RegionInfo *RI) { assert(Old && SplitPt); // Before: // // \ / // // Old // // / \ // BasicBlock *NewBlock = llvm::SplitBlock(Old, SplitPt, DT, LI); if (RI) { Region *R = RI->getRegionFor(Old); RI->setRegionFor(NewBlock, R); } // After: // // \ / // // Old // // | // // NewBlock // // / \ // return NewBlock; } void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, DominatorTree *DT, LoopInfo *LI, RegionInfo *RI) { // Find first non-alloca instruction. Every basic block has a non-alloca // instruction, as every well formed basic block has a terminator. BasicBlock::iterator I = EntryBlock->begin(); while (isa(I)) ++I; // splitBlock updates DT, LI and RI. splitBlock(EntryBlock, &*I, DT, LI, RI); } void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) { auto *DTWP = P->getAnalysisIfAvailable(); auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; auto *LIWP = P->getAnalysisIfAvailable(); auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; RegionInfoPass *RIP = P->getAnalysisIfAvailable(); RegionInfo *RI = RIP ? &RIP->getRegionInfo() : nullptr; // splitBlock updates DT, LI and RI. polly::splitEntryBlockForAlloca(EntryBlock, DT, LI, RI); } void polly::recordAssumption(polly::RecordedAssumptionsTy *RecordedAssumptions, polly::AssumptionKind Kind, isl::set Set, DebugLoc Loc, polly::AssumptionSign Sign, BasicBlock *BB, bool RTC) { assert((Set.is_params() || BB) && "Assumptions without a basic block must be parameter sets"); if (RecordedAssumptions) RecordedAssumptions->push_back({Kind, Sign, Set, Loc, BB, RTC}); } /// The SCEVExpander will __not__ generate any code for an existing SDiv/SRem /// instruction but just use it, if it is referenced as a SCEVUnknown. We want /// however to generate new code if the instruction is in the analyzed region /// and we generate code outside/in front of that region. Hence, we generate the /// code for the SDiv/SRem operands in front of the analyzed region and then /// create a new SDiv/SRem operation there too. struct ScopExpander final : SCEVVisitor { friend struct SCEVVisitor; explicit ScopExpander(const Region &R, ScalarEvolution &SE, const DataLayout &DL, const char *Name, ValueMapT *VMap, BasicBlock *RTCBB) : Expander(SE, DL, Name, /*PreserveLCSSA=*/false), SE(SE), Name(Name), R(R), VMap(VMap), RTCBB(RTCBB) {} Value *expandCodeFor(const SCEV *E, Type *Ty, Instruction *I) { // If we generate code in the region we will immediately fall back to the // SCEVExpander, otherwise we will stop at all unknowns in the SCEV and if // needed replace them by copies computed in the entering block. if (!R.contains(I)) E = visit(E); return Expander.expandCodeFor(E, Ty, I); } const SCEV *visit(const SCEV *E) { // Cache the expansion results for intermediate SCEV expressions. A SCEV // expression can refer to an operand multiple times (e.g. "x*x), so // a naive visitor takes exponential time. if (SCEVCache.count(E)) return SCEVCache[E]; const SCEV *Result = SCEVVisitor::visit(E); SCEVCache[E] = Result; return Result; } private: SCEVExpander Expander; ScalarEvolution &SE; const char *Name; const Region &R; ValueMapT *VMap; BasicBlock *RTCBB; DenseMap SCEVCache; const SCEV *visitGenericInst(const SCEVUnknown *E, Instruction *Inst, Instruction *IP) { if (!Inst || !R.contains(Inst)) return E; assert(!Inst->mayThrow() && !Inst->mayReadOrWriteMemory() && !isa(Inst)); auto *InstClone = Inst->clone(); for (auto &Op : Inst->operands()) { assert(SE.isSCEVable(Op->getType())); auto *OpSCEV = SE.getSCEV(Op); auto *OpClone = expandCodeFor(OpSCEV, Op->getType(), IP); InstClone->replaceUsesOfWith(Op, OpClone); } InstClone->setName(Name + Inst->getName()); InstClone->insertBefore(IP); return SE.getSCEV(InstClone); } const SCEV *visitUnknown(const SCEVUnknown *E) { // If a value mapping was given try if the underlying value is remapped. Value *NewVal = VMap ? VMap->lookup(E->getValue()) : nullptr; if (NewVal) { auto *NewE = SE.getSCEV(NewVal); // While the mapped value might be different the SCEV representation might // not be. To this end we will check before we go into recursion here. if (E != NewE) return visit(NewE); } Instruction *Inst = dyn_cast(E->getValue()); Instruction *IP; if (Inst && !R.contains(Inst)) IP = Inst; else if (Inst && RTCBB->getParent() == Inst->getFunction()) IP = RTCBB->getTerminator(); else IP = RTCBB->getParent()->getEntryBlock().getTerminator(); if (!Inst || (Inst->getOpcode() != Instruction::SRem && Inst->getOpcode() != Instruction::SDiv)) return visitGenericInst(E, Inst, IP); const SCEV *LHSScev = SE.getSCEV(Inst->getOperand(0)); const SCEV *RHSScev = SE.getSCEV(Inst->getOperand(1)); if (!SE.isKnownNonZero(RHSScev)) RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1)); Value *LHS = expandCodeFor(LHSScev, E->getType(), IP); Value *RHS = expandCodeFor(RHSScev, E->getType(), IP); Inst = BinaryOperator::Create((Instruction::BinaryOps)Inst->getOpcode(), LHS, RHS, Inst->getName() + Name, IP); return SE.getSCEV(Inst); } /// The following functions will just traverse the SCEV and rebuild it with /// the new operands returned by the traversal. /// ///{ const SCEV *visitConstant(const SCEVConstant *E) { return E; } const SCEV *visitPtrToIntExpr(const SCEVPtrToIntExpr *E) { return SE.getPtrToIntExpr(visit(E->getOperand()), E->getType()); } const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) { return SE.getTruncateExpr(visit(E->getOperand()), E->getType()); } const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) { return SE.getZeroExtendExpr(visit(E->getOperand()), E->getType()); } const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) { return SE.getSignExtendExpr(visit(E->getOperand()), E->getType()); } const SCEV *visitUDivExpr(const SCEVUDivExpr *E) { auto *RHSScev = visit(E->getRHS()); if (!SE.isKnownNonZero(RHSScev)) RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1)); return SE.getUDivExpr(visit(E->getLHS()), RHSScev); } const SCEV *visitAddExpr(const SCEVAddExpr *E) { SmallVector NewOps; for (const SCEV *Op : E->operands()) NewOps.push_back(visit(Op)); return SE.getAddExpr(NewOps); } const SCEV *visitMulExpr(const SCEVMulExpr *E) { SmallVector NewOps; for (const SCEV *Op : E->operands()) NewOps.push_back(visit(Op)); return SE.getMulExpr(NewOps); } const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) { SmallVector NewOps; for (const SCEV *Op : E->operands()) NewOps.push_back(visit(Op)); return SE.getUMaxExpr(NewOps); } const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) { SmallVector NewOps; for (const SCEV *Op : E->operands()) NewOps.push_back(visit(Op)); return SE.getSMaxExpr(NewOps); } const SCEV *visitUMinExpr(const SCEVUMinExpr *E) { SmallVector NewOps; for (const SCEV *Op : E->operands()) NewOps.push_back(visit(Op)); return SE.getUMinExpr(NewOps); } const SCEV *visitSMinExpr(const SCEVSMinExpr *E) { SmallVector NewOps; for (const SCEV *Op : E->operands()) NewOps.push_back(visit(Op)); return SE.getSMinExpr(NewOps); } const SCEV *visitSequentialUMinExpr(const SCEVSequentialUMinExpr *E) { SmallVector NewOps; for (const SCEV *Op : E->operands()) NewOps.push_back(visit(Op)); return SE.getUMinExpr(NewOps, /*Sequential=*/true); } const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) { SmallVector NewOps; for (const SCEV *Op : E->operands()) NewOps.push_back(visit(Op)); return SE.getAddRecExpr(NewOps, E->getLoop(), E->getNoWrapFlags()); } ///} }; Value *polly::expandCodeFor(Scop &S, ScalarEvolution &SE, const DataLayout &DL, const char *Name, const SCEV *E, Type *Ty, Instruction *IP, ValueMapT *VMap, BasicBlock *RTCBB) { ScopExpander Expander(S.getRegion(), SE, DL, Name, VMap, RTCBB); return Expander.expandCodeFor(E, Ty, IP); } Value *polly::getConditionFromTerminator(Instruction *TI) { if (BranchInst *BR = dyn_cast(TI)) { if (BR->isUnconditional()) return ConstantInt::getTrue(Type::getInt1Ty(TI->getContext())); return BR->getCondition(); } if (SwitchInst *SI = dyn_cast(TI)) return SI->getCondition(); return nullptr; } Loop *polly::getLoopSurroundingScop(Scop &S, LoopInfo &LI) { // Start with the smallest loop containing the entry and expand that // loop until it contains all blocks in the region. If there is a loop // containing all blocks in the region check if it is itself contained // and if so take the parent loop as it will be the smallest containing // the region but not contained by it. Loop *L = LI.getLoopFor(S.getEntry()); while (L) { bool AllContained = true; for (auto *BB : S.blocks()) AllContained &= L->contains(BB); if (AllContained) break; L = L->getParentLoop(); } return L ? (S.contains(L) ? L->getParentLoop() : L) : nullptr; } unsigned polly::getNumBlocksInLoop(Loop *L) { unsigned NumBlocks = L->getNumBlocks(); SmallVector ExitBlocks; L->getExitBlocks(ExitBlocks); for (auto ExitBlock : ExitBlocks) { if (isa(ExitBlock->getTerminator())) NumBlocks++; } return NumBlocks; } unsigned polly::getNumBlocksInRegionNode(RegionNode *RN) { if (!RN->isSubRegion()) return 1; Region *R = RN->getNodeAs(); return std::distance(R->block_begin(), R->block_end()); } Loop *polly::getRegionNodeLoop(RegionNode *RN, LoopInfo &LI) { if (!RN->isSubRegion()) { BasicBlock *BB = RN->getNodeAs(); Loop *L = LI.getLoopFor(BB); // Unreachable statements are not considered to belong to a LLVM loop, as // they are not part of an actual loop in the control flow graph. // Nevertheless, we handle certain unreachable statements that are common // when modeling run-time bounds checks as being part of the loop to be // able to model them and to later eliminate the run-time bounds checks. // // Specifically, for basic blocks that terminate in an unreachable and // where the immediate predecessor is part of a loop, we assume these // basic blocks belong to the loop the predecessor belongs to. This // allows us to model the following code. // // for (i = 0; i < N; i++) { // if (i > 1024) // abort(); <- this abort might be translated to an // unreachable // // A[i] = ... // } if (!L && isa(BB->getTerminator()) && BB->getPrevNode()) L = LI.getLoopFor(BB->getPrevNode()); return L; } Region *NonAffineSubRegion = RN->getNodeAs(); Loop *L = LI.getLoopFor(NonAffineSubRegion->getEntry()); while (L && NonAffineSubRegion->contains(L)) L = L->getParentLoop(); return L; } static bool hasVariantIndex(GetElementPtrInst *Gep, Loop *L, Region &R, ScalarEvolution &SE) { for (const Use &Val : llvm::drop_begin(Gep->operands(), 1)) { const SCEV *PtrSCEV = SE.getSCEVAtScope(Val, L); Loop *OuterLoop = R.outermostLoopInRegion(L); if (!SE.isLoopInvariant(PtrSCEV, OuterLoop)) return true; } return false; } bool polly::isHoistableLoad(LoadInst *LInst, Region &R, LoopInfo &LI, ScalarEvolution &SE, const DominatorTree &DT, const InvariantLoadsSetTy &KnownInvariantLoads) { Loop *L = LI.getLoopFor(LInst->getParent()); auto *Ptr = LInst->getPointerOperand(); // A LoadInst is hoistable if the address it is loading from is also // invariant; in this case: another invariant load (whether that address // is also not written to has to be checked separately) // TODO: This only checks for a LoadInst->GetElementPtrInst->LoadInst // pattern generated by the Chapel frontend, but generally this applies // for any chain of instruction that does not also depend on any // induction variable if (auto *GepInst = dyn_cast(Ptr)) { if (!hasVariantIndex(GepInst, L, R, SE)) { if (auto *DecidingLoad = dyn_cast(GepInst->getPointerOperand())) { if (KnownInvariantLoads.count(DecidingLoad)) return true; } } } const SCEV *PtrSCEV = SE.getSCEVAtScope(Ptr, L); while (L && R.contains(L)) { if (!SE.isLoopInvariant(PtrSCEV, L)) return false; L = L->getParentLoop(); } for (auto *User : Ptr->users()) { auto *UserI = dyn_cast(User); if (!UserI || !R.contains(UserI)) continue; if (!UserI->mayWriteToMemory()) continue; auto &BB = *UserI->getParent(); if (DT.dominates(&BB, LInst->getParent())) return false; bool DominatesAllPredecessors = true; if (R.isTopLevelRegion()) { for (BasicBlock &I : *R.getEntry()->getParent()) if (isa(I.getTerminator()) && !DT.dominates(&BB, &I)) DominatesAllPredecessors = false; } else { for (auto Pred : predecessors(R.getExit())) if (R.contains(Pred) && !DT.dominates(&BB, Pred)) DominatesAllPredecessors = false; } if (!DominatesAllPredecessors) continue; return false; } return true; } bool polly::isIgnoredIntrinsic(const Value *V) { if (auto *IT = dyn_cast(V)) { switch (IT->getIntrinsicID()) { // Lifetime markers are supported/ignored. case llvm::Intrinsic::lifetime_start: case llvm::Intrinsic::lifetime_end: // Invariant markers are supported/ignored. case llvm::Intrinsic::invariant_start: case llvm::Intrinsic::invariant_end: // Some misc annotations are supported/ignored. case llvm::Intrinsic::var_annotation: case llvm::Intrinsic::ptr_annotation: case llvm::Intrinsic::annotation: case llvm::Intrinsic::donothing: case llvm::Intrinsic::assume: // Some debug info intrinsics are supported/ignored. case llvm::Intrinsic::dbg_value: case llvm::Intrinsic::dbg_declare: return true; default: break; } } return false; } bool polly::canSynthesize(const Value *V, const Scop &S, ScalarEvolution *SE, Loop *Scope) { if (!V || !SE->isSCEVable(V->getType())) return false; const InvariantLoadsSetTy &ILS = S.getRequiredInvariantLoads(); if (const SCEV *Scev = SE->getSCEVAtScope(const_cast(V), Scope)) if (!isa(Scev)) if (!hasScalarDepsInsideRegion(Scev, &S.getRegion(), Scope, false, ILS)) return true; return false; } llvm::BasicBlock *polly::getUseBlock(const llvm::Use &U) { Instruction *UI = dyn_cast(U.getUser()); if (!UI) return nullptr; if (PHINode *PHI = dyn_cast(UI)) return PHI->getIncomingBlock(U); return UI->getParent(); } llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::Loop *L, llvm::LoopInfo &LI, const BoxedLoopsSetTy &BoxedLoops) { while (BoxedLoops.count(L)) L = L->getParentLoop(); return L; } llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::BasicBlock *BB, llvm::LoopInfo &LI, const BoxedLoopsSetTy &BoxedLoops) { Loop *L = LI.getLoopFor(BB); return getFirstNonBoxedLoopFor(L, LI, BoxedLoops); } bool polly::isDebugCall(Instruction *Inst) { auto *CI = dyn_cast(Inst); if (!CI) return false; Function *CF = CI->getCalledFunction(); if (!CF) return false; return std::find(DebugFunctions.begin(), DebugFunctions.end(), CF->getName()) != DebugFunctions.end(); } static bool hasDebugCall(BasicBlock *BB) { for (Instruction &Inst : *BB) { if (isDebugCall(&Inst)) return true; } return false; } bool polly::hasDebugCall(ScopStmt *Stmt) { // Quick skip if no debug functions have been defined. if (DebugFunctions.empty()) return false; if (!Stmt) return false; for (Instruction *Inst : Stmt->getInstructions()) if (isDebugCall(Inst)) return true; if (Stmt->isRegionStmt()) { for (BasicBlock *RBB : Stmt->getRegion()->blocks()) if (RBB != Stmt->getEntryBlock() && ::hasDebugCall(RBB)) return true; } return false; } /// Find a property in a LoopID. static MDNode *findNamedMetadataNode(MDNode *LoopMD, StringRef Name) { if (!LoopMD) return nullptr; for (const MDOperand &X : drop_begin(LoopMD->operands(), 1)) { auto *OpNode = dyn_cast(X.get()); if (!OpNode) continue; auto *OpName = dyn_cast(OpNode->getOperand(0)); if (!OpName) continue; if (OpName->getString() == Name) return OpNode; } return nullptr; } static std::optional findNamedMetadataArg(MDNode *LoopID, StringRef Name) { MDNode *MD = findNamedMetadataNode(LoopID, Name); if (!MD) return std::nullopt; switch (MD->getNumOperands()) { case 1: return nullptr; case 2: return &MD->getOperand(1); default: llvm_unreachable("loop metadata has 0 or 1 operand"); } } std::optional polly::findMetadataOperand(MDNode *LoopMD, StringRef Name) { MDNode *MD = findNamedMetadataNode(LoopMD, Name); if (!MD) return std::nullopt; switch (MD->getNumOperands()) { case 1: return nullptr; case 2: return MD->getOperand(1).get(); default: llvm_unreachable("loop metadata must have 0 or 1 operands"); } } static std::optional getOptionalBoolLoopAttribute(MDNode *LoopID, StringRef Name) { MDNode *MD = findNamedMetadataNode(LoopID, Name); if (!MD) return std::nullopt; switch (MD->getNumOperands()) { case 1: return true; case 2: if (ConstantInt *IntMD = mdconst::extract_or_null(MD->getOperand(1).get())) return IntMD->getZExtValue(); return true; } llvm_unreachable("unexpected number of options"); } bool polly::getBooleanLoopAttribute(MDNode *LoopID, StringRef Name) { return getOptionalBoolLoopAttribute(LoopID, Name).value_or(false); } std::optional polly::getOptionalIntLoopAttribute(MDNode *LoopID, StringRef Name) { const MDOperand *AttrMD = findNamedMetadataArg(LoopID, Name).value_or(nullptr); if (!AttrMD) return std::nullopt; ConstantInt *IntMD = mdconst::extract_or_null(AttrMD->get()); if (!IntMD) return std::nullopt; return IntMD->getSExtValue(); } bool polly::hasDisableAllTransformsHint(Loop *L) { return llvm::hasDisableAllTransformsHint(L); } bool polly::hasDisableAllTransformsHint(llvm::MDNode *LoopID) { return getBooleanLoopAttribute(LoopID, "llvm.loop.disable_nonforced"); } isl::id polly::getIslLoopAttr(isl::ctx Ctx, BandAttr *Attr) { assert(Attr && "Must be a valid BandAttr"); // The name "Loop" signals that this id contains a pointer to a BandAttr. // The ScheduleOptimizer also uses the string "Inter iteration alias-free" in // markers, but it's user pointer is an llvm::Value. isl::id Result = isl::id::alloc(Ctx, "Loop with Metadata", Attr); Result = isl::manage(isl_id_set_free_user(Result.release(), [](void *Ptr) { BandAttr *Attr = reinterpret_cast(Ptr); delete Attr; })); return Result; } isl::id polly::createIslLoopAttr(isl::ctx Ctx, Loop *L) { if (!L) return {}; // A loop without metadata does not need to be annotated. MDNode *LoopID = L->getLoopID(); if (!LoopID) return {}; BandAttr *Attr = new BandAttr(); Attr->OriginalLoop = L; Attr->Metadata = L->getLoopID(); return getIslLoopAttr(Ctx, Attr); } bool polly::isLoopAttr(const isl::id &Id) { if (Id.is_null()) return false; return Id.get_name() == "Loop with Metadata"; } BandAttr *polly::getLoopAttr(const isl::id &Id) { if (!isLoopAttr(Id)) return nullptr; return reinterpret_cast(Id.get_user()); }