//===-- X86InstrFormats.td - X86 Instruction Formats -------*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // X86 Instruction Format Definitions. // // Format specifies the encoding used by the instruction. This is part of the // ad-hoc solution used to emit machine instruction encodings by our machine // code emitter. class Format val> { bits<7> Value = val; } def Pseudo : Format<0>; def RawFrm : Format<1>; def AddRegFrm : Format<2>; def RawFrmMemOffs : Format<3>; def RawFrmSrc : Format<4>; def RawFrmDst : Format<5>; def RawFrmDstSrc : Format<6>; def RawFrmImm8 : Format<7>; def RawFrmImm16 : Format<8>; def AddCCFrm : Format<9>; def PrefixByte : Format<10>; def MRMr0 : Format<21>; def MRMSrcMemFSIB : Format<22>; def MRMDestMemFSIB : Format<23>; def MRMDestMem : Format<24>; def MRMSrcMem : Format<25>; def MRMSrcMem4VOp3 : Format<26>; def MRMSrcMemOp4 : Format<27>; def MRMSrcMemCC : Format<28>; def MRMXmCC: Format<30>; def MRMXm : Format<31>; def MRM0m : Format<32>; def MRM1m : Format<33>; def MRM2m : Format<34>; def MRM3m : Format<35>; def MRM4m : Format<36>; def MRM5m : Format<37>; def MRM6m : Format<38>; def MRM7m : Format<39>; def MRMDestReg : Format<40>; def MRMSrcReg : Format<41>; def MRMSrcReg4VOp3 : Format<42>; def MRMSrcRegOp4 : Format<43>; def MRMSrcRegCC : Format<44>; def MRMXrCC: Format<46>; def MRMXr : Format<47>; def MRM0r : Format<48>; def MRM1r : Format<49>; def MRM2r : Format<50>; def MRM3r : Format<51>; def MRM4r : Format<52>; def MRM5r : Format<53>; def MRM6r : Format<54>; def MRM7r : Format<55>; def MRM0X : Format<56>; def MRM1X : Format<57>; def MRM2X : Format<58>; def MRM3X : Format<59>; def MRM4X : Format<60>; def MRM5X : Format<61>; def MRM6X : Format<62>; def MRM7X : Format<63>; def MRM_C0 : Format<64>; def MRM_C1 : Format<65>; def MRM_C2 : Format<66>; def MRM_C3 : Format<67>; def MRM_C4 : Format<68>; def MRM_C5 : Format<69>; def MRM_C6 : Format<70>; def MRM_C7 : Format<71>; def MRM_C8 : Format<72>; def MRM_C9 : Format<73>; def MRM_CA : Format<74>; def MRM_CB : Format<75>; def MRM_CC : Format<76>; def MRM_CD : Format<77>; def MRM_CE : Format<78>; def MRM_CF : Format<79>; def MRM_D0 : Format<80>; def MRM_D1 : Format<81>; def MRM_D2 : Format<82>; def MRM_D3 : Format<83>; def MRM_D4 : Format<84>; def MRM_D5 : Format<85>; def MRM_D6 : Format<86>; def MRM_D7 : Format<87>; def MRM_D8 : Format<88>; def MRM_D9 : Format<89>; def MRM_DA : Format<90>; def MRM_DB : Format<91>; def MRM_DC : Format<92>; def MRM_DD : Format<93>; def MRM_DE : Format<94>; def MRM_DF : Format<95>; def MRM_E0 : Format<96>; def MRM_E1 : Format<97>; def MRM_E2 : Format<98>; def MRM_E3 : Format<99>; def MRM_E4 : Format<100>; def MRM_E5 : Format<101>; def MRM_E6 : Format<102>; def MRM_E7 : Format<103>; def MRM_E8 : Format<104>; def MRM_E9 : Format<105>; def MRM_EA : Format<106>; def MRM_EB : Format<107>; def MRM_EC : Format<108>; def MRM_ED : Format<109>; def MRM_EE : Format<110>; def MRM_EF : Format<111>; def MRM_F0 : Format<112>; def MRM_F1 : Format<113>; def MRM_F2 : Format<114>; def MRM_F3 : Format<115>; def MRM_F4 : Format<116>; def MRM_F5 : Format<117>; def MRM_F6 : Format<118>; def MRM_F7 : Format<119>; def MRM_F8 : Format<120>; def MRM_F9 : Format<121>; def MRM_FA : Format<122>; def MRM_FB : Format<123>; def MRM_FC : Format<124>; def MRM_FD : Format<125>; def MRM_FE : Format<126>; def MRM_FF : Format<127>; // ImmType - This specifies the immediate type used by an instruction. This is // part of the ad-hoc solution used to emit machine instruction encodings by our // machine code emitter. class ImmType val> { bits<4> Value = val; } def NoImm : ImmType<0>; def Imm8 : ImmType<1>; def Imm8PCRel : ImmType<2>; def Imm8Reg : ImmType<3>; // Register encoded in [7:4]. def Imm16 : ImmType<4>; def Imm16PCRel : ImmType<5>; def Imm32 : ImmType<6>; def Imm32PCRel : ImmType<7>; def Imm32S : ImmType<8>; def Imm64 : ImmType<9>; // FPFormat - This specifies what form this FP instruction has. This is used by // the Floating-Point stackifier pass. class FPFormat val> { bits<3> Value = val; } def NotFP : FPFormat<0>; def ZeroArgFP : FPFormat<1>; def OneArgFP : FPFormat<2>; def OneArgFPRW : FPFormat<3>; def TwoArgFP : FPFormat<4>; def CompareFP : FPFormat<5>; def CondMovFP : FPFormat<6>; def SpecialFP : FPFormat<7>; // Class specifying the SSE execution domain, used by the SSEDomainFix pass. // Keep in sync with tables in X86InstrInfo.cpp. class Domain val> { bits<2> Value = val; } def GenericDomain : Domain<0>; def SSEPackedSingle : Domain<1>; def SSEPackedDouble : Domain<2>; def SSEPackedInt : Domain<3>; // Class specifying the vector form of the decompressed // displacement of 8-bit. class CD8VForm val> { bits<3> Value = val; } def CD8VF : CD8VForm<0>; // v := VL def CD8VH : CD8VForm<1>; // v := VL/2 def CD8VQ : CD8VForm<2>; // v := VL/4 def CD8VO : CD8VForm<3>; // v := VL/8 // The tuple (subvector) forms. def CD8VT1 : CD8VForm<4>; // v := 1 def CD8VT2 : CD8VForm<5>; // v := 2 def CD8VT4 : CD8VForm<6>; // v := 4 def CD8VT8 : CD8VForm<7>; // v := 8 // Class specifying the prefix used an opcode extension. class Prefix val> { bits<3> Value = val; } def NoPrfx : Prefix<0>; def PD : Prefix<1>; def XS : Prefix<2>; def XD : Prefix<3>; def PS : Prefix<4>; // Similar to NoPrfx, but disassembler uses this to know // that other instructions with this opcode use PD/XS/XD // and if any of those is not supported they shouldn't // decode to this instruction. e.g. ANDSS/ANDSD don't // exist, but the 0xf2/0xf3 encoding shouldn't // disable to ANDPS. // Class specifying the opcode map. class Map val> { bits<4> Value = val; } def OB : Map<0>; def TB : Map<1>; def T8 : Map<2>; def TA : Map<3>; def XOP8 : Map<4>; def XOP9 : Map<5>; def XOPA : Map<6>; def ThreeDNow : Map<7>; def T_MAP5 : Map<8>; def T_MAP6 : Map<9>; // Class specifying the encoding class Encoding val> { bits<2> Value = val; } def EncNormal : Encoding<0>; def EncVEX : Encoding<1>; def EncXOP : Encoding<2>; def EncEVEX : Encoding<3>; // Operand size for encodings that change based on mode. class OperandSize val> { bits<2> Value = val; } def OpSizeFixed : OperandSize<0>; // Never needs a 0x66 prefix. def OpSize16 : OperandSize<1>; // Needs 0x66 prefix in 32-bit mode. def OpSize32 : OperandSize<2>; // Needs 0x66 prefix in 16-bit mode. // Address size for encodings that change based on mode. class AddressSize val> { bits<2> Value = val; } def AdSizeX : AddressSize<0>; // Address size determined using addr operand. def AdSize16 : AddressSize<1>; // Encodes a 16-bit address. def AdSize32 : AddressSize<2>; // Encodes a 32-bit address. def AdSize64 : AddressSize<3>; // Encodes a 64-bit address. // Prefix byte classes which are used to indicate to the ad-hoc machine code // emitter that various prefix bytes are required. class OpSize16 { OperandSize OpSize = OpSize16; } class OpSize32 { OperandSize OpSize = OpSize32; } class AdSize16 { AddressSize AdSize = AdSize16; } class AdSize32 { AddressSize AdSize = AdSize32; } class AdSize64 { AddressSize AdSize = AdSize64; } class REX_W { bit hasREX_WPrefix = 1; } class LOCK { bit hasLockPrefix = 1; } class REP { bit hasREPPrefix = 1; } class TB { Map OpMap = TB; } class T8 { Map OpMap = T8; } class TA { Map OpMap = TA; } class XOP8 { Map OpMap = XOP8; Prefix OpPrefix = PS; } class XOP9 { Map OpMap = XOP9; Prefix OpPrefix = PS; } class XOPA { Map OpMap = XOPA; Prefix OpPrefix = PS; } class ThreeDNow { Map OpMap = ThreeDNow; } class T_MAP5 { Map OpMap = T_MAP5; } class T_MAP5PS : T_MAP5 { Prefix OpPrefix = PS; } // none class T_MAP5PD : T_MAP5 { Prefix OpPrefix = PD; } // 0x66 class T_MAP5XS : T_MAP5 { Prefix OpPrefix = XS; } // 0xF3 class T_MAP5XD : T_MAP5 { Prefix OpPrefix = XD; } // 0xF2 class T_MAP6 { Map OpMap = T_MAP6; } class T_MAP6PS : T_MAP6 { Prefix OpPrefix = PS; } class T_MAP6PD : T_MAP6 { Prefix OpPrefix = PD; } class T_MAP6XS : T_MAP6 { Prefix OpPrefix = XS; } class T_MAP6XD : T_MAP6 { Prefix OpPrefix = XD; } class OBXS { Prefix OpPrefix = XS; } class PS : TB { Prefix OpPrefix = PS; } class PD : TB { Prefix OpPrefix = PD; } class XD : TB { Prefix OpPrefix = XD; } class XS : TB { Prefix OpPrefix = XS; } class T8PS : T8 { Prefix OpPrefix = PS; } class T8PD : T8 { Prefix OpPrefix = PD; } class T8XD : T8 { Prefix OpPrefix = XD; } class T8XS : T8 { Prefix OpPrefix = XS; } class TAPS : TA { Prefix OpPrefix = PS; } class TAPD : TA { Prefix OpPrefix = PD; } class TAXD : TA { Prefix OpPrefix = XD; } class TAXS : TA { Prefix OpPrefix = XS; } class VEX { Encoding OpEnc = EncVEX; } class VEX_W { bit HasVEX_W = 1; } class VEX_WIG { bit IgnoresVEX_W = 1; } // Special version of VEX_W that can be changed to VEX.W==0 for EVEX2VEX. class VEX_W1X { bit HasVEX_W = 1; bit EVEX_W1_VEX_W0 = 1; } class VEX_4V : VEX { bit hasVEX_4V = 1; } class VEX_L { bit hasVEX_L = 1; } class VEX_LIG { bit ignoresVEX_L = 1; } class EVEX { Encoding OpEnc = EncEVEX; } class EVEX_4V : EVEX { bit hasVEX_4V = 1; } class EVEX_K { bit hasEVEX_K = 1; } class EVEX_KZ : EVEX_K { bit hasEVEX_Z = 1; } class EVEX_B { bit hasEVEX_B = 1; } class EVEX_RC { bit hasEVEX_RC = 1; } class EVEX_V512 { bit hasEVEX_L2 = 1; bit hasVEX_L = 0; } class EVEX_V256 { bit hasEVEX_L2 = 0; bit hasVEX_L = 1; } class EVEX_V128 { bit hasEVEX_L2 = 0; bit hasVEX_L = 0; } class NOTRACK { bit hasNoTrackPrefix = 1; } class SIMD_EXC { list Uses = [MXCSR]; bit mayRaiseFPException = 1; } // Specify AVX512 8-bit compressed displacement encoding based on the vector // element size in bits (8, 16, 32, 64) and the CDisp8 form. class EVEX_CD8 { int CD8_EltSize = !srl(esize, 3); bits<3> CD8_Form = form.Value; } class XOP { Encoding OpEnc = EncXOP; } class XOP_4V : XOP { bit hasVEX_4V = 1; } // Specify the alternative register form instruction to replace the current // instruction in case it was picked during generation of memory folding tables class FoldGenData { string FoldGenRegForm = _RegisterForm; } // Provide a specific instruction to be used by the EVEX2VEX conversion. class EVEX2VEXOverride { string EVEX2VEXOverride = VEXInstrName; } // Mark the instruction as "illegal to memory fold/unfold" class NotMemoryFoldable { bit isMemoryFoldable = 0; } // Prevent EVEX->VEX conversion from considering this instruction. class NotEVEX2VEXConvertible { bit notEVEX2VEXConvertible = 1; } // Force the instruction to use VEX encoding. class ExplicitVEXPrefix { bit ExplicitVEXPrefix = 1; } class X86Inst opcod, Format f, ImmType i, dag outs, dag ins, string AsmStr, Domain d = GenericDomain> : Instruction { let Namespace = "X86"; bits<8> Opcode = opcod; Format Form = f; bits<7> FormBits = Form.Value; ImmType ImmT = i; dag OutOperandList = outs; dag InOperandList = ins; string AsmString = AsmStr; // If this is a pseudo instruction, mark it isCodeGenOnly. let isCodeGenOnly = !eq(!cast(f), "Pseudo"); let HasPositionOrder = 1; // // Attributes specific to X86 instructions... // bit ForceDisassemble = 0; // Force instruction to disassemble even though it's // isCodeGenonly. Needed to hide an ambiguous // AsmString from the parser, but still disassemble. OperandSize OpSize = OpSizeFixed; // Does this instruction's encoding change // based on operand size of the mode? bits<2> OpSizeBits = OpSize.Value; AddressSize AdSize = AdSizeX; // Does this instruction's encoding change // based on address size of the mode? bits<2> AdSizeBits = AdSize.Value; Prefix OpPrefix = NoPrfx; // Which prefix byte does this inst have? bits<3> OpPrefixBits = OpPrefix.Value; Map OpMap = OB; // Which opcode map does this inst have? bits<4> OpMapBits = OpMap.Value; bit hasREX_WPrefix = 0; // Does this inst require the REX.W prefix? FPFormat FPForm = NotFP; // What flavor of FP instruction is this? bit hasLockPrefix = 0; // Does this inst have a 0xF0 prefix? Domain ExeDomain = d; bit hasREPPrefix = 0; // Does this inst have a REP prefix? Encoding OpEnc = EncNormal; // Encoding used by this instruction bits<2> OpEncBits = OpEnc.Value; bit HasVEX_W = 0; // Does this inst set the VEX_W field? bit IgnoresVEX_W = 0; // Does this inst ignore VEX_W field? bit EVEX_W1_VEX_W0 = 0; // This EVEX inst with VEX.W==1 can become a VEX // instruction with VEX.W == 0. bit hasVEX_4V = 0; // Does this inst require the VEX.VVVV field? bit hasVEX_L = 0; // Does this inst use large (256-bit) registers? bit ignoresVEX_L = 0; // Does this instruction ignore the L-bit bit hasEVEX_K = 0; // Does this inst require masking? bit hasEVEX_Z = 0; // Does this inst set the EVEX_Z field? bit hasEVEX_L2 = 0; // Does this inst set the EVEX_L2 field? bit hasEVEX_B = 0; // Does this inst set the EVEX_B field? bits<3> CD8_Form = 0; // Compressed disp8 form - vector-width. // Declare it int rather than bits<4> so that all bits are defined when // assigning to bits<7>. int CD8_EltSize = 0; // Compressed disp8 form - element-size in bytes. bit hasEVEX_RC = 0; // Explicitly specified rounding control in FP instruction. bit hasNoTrackPrefix = 0; // Does this inst has 0x3E (NoTrack) prefix? // Vector size in bytes. bits<7> VectSize = !if(hasEVEX_L2, 64, !if(hasVEX_L, 32, 16)); // The scaling factor for AVX512's compressed displacement is either // - the size of a power-of-two number of elements or // - the size of a single element for broadcasts or // - the total vector size divided by a power-of-two number. // Possible values are: 0 (non-AVX512 inst), 1, 2, 4, 8, 16, 32 and 64. bits<7> CD8_Scale = !if (!eq (OpEnc.Value, EncEVEX.Value), !if (CD8_Form{2}, !shl(CD8_EltSize, CD8_Form{1-0}), !if (hasEVEX_B, CD8_EltSize, !srl(VectSize, CD8_Form{1-0}))), 0); // Used in the memory folding generation (TableGen backend) to point to an alternative // instruction to replace the current one in case it got picked during generation. string FoldGenRegForm = ?; // Used to prevent an explicit EVEX2VEX override for this instruction. string EVEX2VEXOverride = ?; bit isMemoryFoldable = 1; // Is it allowed to memory fold/unfold this instruction? bit notEVEX2VEXConvertible = 0; // Prevent EVEX->VEX conversion. bit ExplicitVEXPrefix = 0; // Force the instruction to use VEX encoding. // Force to check predicate before compress EVEX to VEX encoding. bit checkVEXPredicate = 0; // TSFlags layout should be kept in sync with X86BaseInfo.h. let TSFlags{6-0} = FormBits; let TSFlags{8-7} = OpSizeBits; let TSFlags{10-9} = AdSizeBits; // No need for 3rd bit, we don't need to distinguish NoPrfx from PS. let TSFlags{12-11} = OpPrefixBits{1-0}; let TSFlags{16-13} = OpMapBits; let TSFlags{17} = hasREX_WPrefix; let TSFlags{21-18} = ImmT.Value; let TSFlags{24-22} = FPForm.Value; let TSFlags{25} = hasLockPrefix; let TSFlags{26} = hasREPPrefix; let TSFlags{28-27} = ExeDomain.Value; let TSFlags{30-29} = OpEncBits; let TSFlags{38-31} = Opcode; // Currently no need for second bit in TSFlags - W Ignore is equivalent to 0. let TSFlags{39} = HasVEX_W; let TSFlags{40} = hasVEX_4V; let TSFlags{41} = hasVEX_L; let TSFlags{42} = hasEVEX_K; let TSFlags{43} = hasEVEX_Z; let TSFlags{44} = hasEVEX_L2; let TSFlags{45} = hasEVEX_B; // If we run out of TSFlags bits, it's possible to encode this in 3 bits. let TSFlags{52-46} = CD8_Scale; let TSFlags{53} = hasEVEX_RC; let TSFlags{54} = hasNoTrackPrefix; let TSFlags{55} = ExplicitVEXPrefix; } class PseudoI pattern> : X86Inst<0, Pseudo, NoImm, oops, iops, ""> { let Pattern = pattern; } class I o, Format f, dag outs, dag ins, string asm, list pattern, Domain d = GenericDomain> : X86Inst { let Pattern = pattern; let CodeSize = 3; } class Ii8 o, Format f, dag outs, dag ins, string asm, list pattern, Domain d = GenericDomain> : X86Inst { let Pattern = pattern; let CodeSize = 3; } class Ii8Reg o, Format f, dag outs, dag ins, string asm, list pattern, Domain d = GenericDomain> : X86Inst { let Pattern = pattern; let CodeSize = 3; } class Ii8PCRel o, Format f, dag outs, dag ins, string asm, list pattern> : X86Inst { let Pattern = pattern; let CodeSize = 3; } class Ii16 o, Format f, dag outs, dag ins, string asm, list pattern> : X86Inst { let Pattern = pattern; let CodeSize = 3; } class Ii32 o, Format f, dag outs, dag ins, string asm, list pattern> : X86Inst { let Pattern = pattern; let CodeSize = 3; } class Ii32S o, Format f, dag outs, dag ins, string asm, list pattern> : X86Inst { let Pattern = pattern; let CodeSize = 3; } class Ii64 o, Format f, dag outs, dag ins, string asm, list pattern> : X86Inst { let Pattern = pattern; let CodeSize = 3; } class Ii16PCRel o, Format f, dag outs, dag ins, string asm, list pattern> : X86Inst { let Pattern = pattern; let CodeSize = 3; } class Ii32PCRel o, Format f, dag outs, dag ins, string asm, list pattern> : X86Inst { let Pattern = pattern; let CodeSize = 3; } // FPStack Instruction Templates: // FPI - Floating Point Instruction template. class FPI o, Format F, dag outs, dag ins, string asm> : I { let Defs = [FPSW]; } // FpI_ - Floating Point Pseudo Instruction template. Not Predicated. class FpI_ pattern> : PseudoI { let FPForm = fp; let Defs = [FPSW]; } // Templates for instructions that use a 16- or 32-bit segmented address as // their only operand: lcall (FAR CALL) and ljmp (FAR JMP) // // Iseg16 - 16-bit segment selector, 16-bit offset // Iseg32 - 16-bit segment selector, 32-bit offset class Iseg16 o, Format f, dag outs, dag ins, string asm, list pattern> : X86Inst { let Pattern = pattern; let CodeSize = 3; } class Iseg32 o, Format f, dag outs, dag ins, string asm, list pattern> : X86Inst { let Pattern = pattern; let CodeSize = 3; } // SI - SSE 1 & 2 scalar instructions class SI o, Format F, dag outs, dag ins, string asm, list pattern, Domain d = GenericDomain> : I { let Predicates = !if(!eq(OpEnc.Value, EncEVEX.Value), [HasAVX512], !if(!eq(OpEnc.Value, EncVEX.Value), [UseAVX], !if(!eq(OpPrefix.Value, XS.Value), [UseSSE1], !if(!eq(OpPrefix.Value, XD.Value), [UseSSE2], !if(!eq(OpPrefix.Value, PD.Value), [UseSSE2], [UseSSE1]))))); // AVX instructions have a 'v' prefix in the mnemonic let AsmString = !if(!eq(OpEnc.Value, EncEVEX.Value), !strconcat("v", asm), !if(!eq(OpEnc.Value, EncVEX.Value), !strconcat("v", asm), asm)); } // SI - SSE 1 & 2 scalar intrinsics - vex form available on AVX512 class SI_Int o, Format F, dag outs, dag ins, string asm, list pattern, Domain d = GenericDomain> : I { let Predicates = !if(!eq(OpEnc.Value, EncEVEX.Value), [HasAVX512], !if(!eq(OpEnc.Value, EncVEX.Value), [UseAVX], !if(!eq(OpPrefix.Value, XS.Value), [UseSSE1], !if(!eq(OpPrefix.Value, XD.Value), [UseSSE2], !if(!eq(OpPrefix.Value, PD.Value), [UseSSE2], [UseSSE1]))))); // AVX instructions have a 'v' prefix in the mnemonic let AsmString = !if(!eq(OpEnc.Value, EncEVEX.Value), !strconcat("v", asm), !if(!eq(OpEnc.Value, EncVEX.Value), !strconcat("v", asm), asm)); } // SIi8 - SSE 1 & 2 scalar instructions - vex form available on AVX512 class SIi8 o, Format F, dag outs, dag ins, string asm, list pattern> : Ii8 { let Predicates = !if(!eq(OpEnc.Value, EncEVEX.Value), [HasAVX512], !if(!eq(OpEnc.Value, EncVEX.Value), [HasAVX], !if(!eq(OpPrefix.Value, XS.Value), [UseSSE1], [UseSSE2]))); // AVX instructions have a 'v' prefix in the mnemonic let AsmString = !if(!eq(OpEnc.Value, EncEVEX.Value), !strconcat("v", asm), !if(!eq(OpEnc.Value, EncVEX.Value), !strconcat("v", asm), asm)); } // PI - SSE 1 & 2 packed instructions class PI o, Format F, dag outs, dag ins, string asm, list pattern, Domain d> : I { let Predicates = !if(!eq(OpEnc.Value, EncEVEX.Value), [HasAVX512], !if(!eq(OpEnc.Value, EncVEX.Value), [HasAVX], !if(!eq(OpPrefix.Value, PD.Value), [UseSSE2], [UseSSE1]))); // AVX instructions have a 'v' prefix in the mnemonic let AsmString = !if(!eq(OpEnc.Value, EncEVEX.Value), !strconcat("v", asm), !if(!eq(OpEnc.Value, EncVEX.Value), !strconcat("v", asm), asm)); } // MMXPI - SSE 1 & 2 packed instructions with MMX operands class MMXPI o, Format F, dag outs, dag ins, string asm, list pattern, Domain d> : I { let Predicates = !if(!eq(OpPrefix.Value, PD.Value), [HasMMX, HasSSE2], [HasMMX, HasSSE1]); } // PIi8 - SSE 1 & 2 packed instructions with immediate class PIi8 o, Format F, dag outs, dag ins, string asm, list pattern, Domain d> : Ii8 { let Predicates = !if(!eq(OpEnc.Value, EncEVEX.Value), [HasAVX512], !if(!eq(OpEnc.Value, EncVEX.Value), [HasAVX], !if(!eq(OpPrefix.Value, PD.Value), [UseSSE2], [UseSSE1]))); // AVX instructions have a 'v' prefix in the mnemonic let AsmString = !if(!eq(OpEnc.Value, EncEVEX.Value), !strconcat("v", asm), !if(!eq(OpEnc.Value, EncVEX.Value), !strconcat("v", asm), asm)); } // SSE1 Instruction Templates: // // SSI - SSE1 instructions with XS prefix. // PSI - SSE1 instructions with PS prefix. // PSIi8 - SSE1 instructions with ImmT == Imm8 and PS prefix. // VSSI - SSE1 instructions with XS prefix in AVX form. // VPSI - SSE1 instructions with PS prefix in AVX form, packed single. class SSI o, Format F, dag outs, dag ins, string asm, list pattern> : I, XS, Requires<[UseSSE1]>; class SSIi8 o, Format F, dag outs, dag ins, string asm, list pattern> : Ii8, XS, Requires<[UseSSE1]>; class PSI o, Format F, dag outs, dag ins, string asm, list pattern> : I, PS, Requires<[UseSSE1]>; class PSIi8 o, Format F, dag outs, dag ins, string asm, list pattern> : Ii8, PS, Requires<[UseSSE1]>; class VSSI o, Format F, dag outs, dag ins, string asm, list pattern> : I, XS, Requires<[HasAVX]>; class VPSI o, Format F, dag outs, dag ins, string asm, list pattern> : I, PS, Requires<[HasAVX]>; // SSE2 Instruction Templates: // // SDI - SSE2 instructions with XD prefix. // SDIi8 - SSE2 instructions with ImmT == Imm8 and XD prefix. // S2SI - SSE2 instructions with XS prefix. // SSDIi8 - SSE2 instructions with ImmT == Imm8 and XS prefix. // PDI - SSE2 instructions with PD prefix, packed double domain. // PDIi8 - SSE2 instructions with ImmT == Imm8 and PD prefix. // VSDI - SSE2 scalar instructions with XD prefix in AVX form. // VPDI - SSE2 vector instructions with PD prefix in AVX form, // packed double domain. // VS2I - SSE2 scalar instructions with PD prefix in AVX form. // S2I - SSE2 scalar instructions with PD prefix. // MMXSDIi8 - SSE2 instructions with ImmT == Imm8 and XD prefix as well as // MMX operands. // MMXSSDIi8 - SSE2 instructions with ImmT == Imm8 and XS prefix as well as // MMX operands. class SDI o, Format F, dag outs, dag ins, string asm, list pattern> : I, XD, Requires<[UseSSE2]>; class SDIi8 o, Format F, dag outs, dag ins, string asm, list pattern> : Ii8, XD, Requires<[UseSSE2]>; class S2SI o, Format F, dag outs, dag ins, string asm, list pattern> : I, XS, Requires<[UseSSE2]>; class S2SIi8 o, Format F, dag outs, dag ins, string asm, list pattern> : Ii8, XS, Requires<[UseSSE2]>; class PDI o, Format F, dag outs, dag ins, string asm, list pattern> : I, PD, Requires<[UseSSE2]>; class PDIi8 o, Format F, dag outs, dag ins, string asm, list pattern> : Ii8, PD, Requires<[UseSSE2]>; class VSDI o, Format F, dag outs, dag ins, string asm, list pattern> : I, XD, Requires<[UseAVX]>; class VS2SI o, Format F, dag outs, dag ins, string asm, list pattern> : I, XS, Requires<[HasAVX]>; class VPDI o, Format F, dag outs, dag ins, string asm, list pattern> : I, PD, Requires<[HasAVX]>; class VS2I o, Format F, dag outs, dag ins, string asm, list pattern> : I, PD, Requires<[UseAVX]>; class S2I o, Format F, dag outs, dag ins, string asm, list pattern> : I, PD, Requires<[UseSSE2]>; class MMXSDIi8 o, Format F, dag outs, dag ins, string asm, list pattern> : Ii8, XD, Requires<[HasMMX, HasSSE2]>; class MMXS2SIi8 o, Format F, dag outs, dag ins, string asm, list pattern> : Ii8, XS, Requires<[HasMMX, HasSSE2]>; // SSE3 Instruction Templates: // // S3I - SSE3 instructions with PD prefixes. // S3SI - SSE3 instructions with XS prefix. // S3DI - SSE3 instructions with XD prefix. class S3SI o, Format F, dag outs, dag ins, string asm, list pattern> : I, XS, Requires<[UseSSE3]>; class S3DI o, Format F, dag outs, dag ins, string asm, list pattern> : I, XD, Requires<[UseSSE3]>; class S3I o, Format F, dag outs, dag ins, string asm, list pattern> : I, PD, Requires<[UseSSE3]>; // SSSE3 Instruction Templates: // // SS38I - SSSE3 instructions with T8 prefix. // SS3AI - SSSE3 instructions with TA prefix. // MMXSS38I - SSSE3 instructions with T8 prefix and MMX operands. // MMXSS3AI - SSSE3 instructions with TA prefix and MMX operands. // // Note: SSSE3 instructions have 64-bit and 128-bit versions. The 64-bit version // uses the MMX registers. The 64-bit versions are grouped with the MMX // classes. They need to be enabled even if AVX is enabled. class SS38I o, Format F, dag outs, dag ins, string asm, list pattern> : I, T8PD, Requires<[UseSSSE3]>; class SS3AI o, Format F, dag outs, dag ins, string asm, list pattern> : Ii8, TAPD, Requires<[UseSSSE3]>; class MMXSS38I o, Format F, dag outs, dag ins, string asm, list pattern> : I, T8PS, Requires<[HasMMX, HasSSSE3]>; class MMXSS3AI o, Format F, dag outs, dag ins, string asm, list pattern> : Ii8, TAPS, Requires<[HasMMX, HasSSSE3]>; // SSE4.1 Instruction Templates: // // SS48I - SSE 4.1 instructions with T8 prefix. // SS41AIi8 - SSE 4.1 instructions with TA prefix and ImmT == Imm8. // class SS48I o, Format F, dag outs, dag ins, string asm, list pattern> : I, T8PD, Requires<[UseSSE41]>; class SS4AIi8 o, Format F, dag outs, dag ins, string asm, list pattern> : Ii8, TAPD, Requires<[UseSSE41]>; // SSE4.2 Instruction Templates: // // SS428I - SSE 4.2 instructions with T8 prefix. class SS428I o, Format F, dag outs, dag ins, string asm, list pattern> : I, T8PD, Requires<[UseSSE42]>; // SS42AI = SSE 4.2 instructions with TA prefix class SS42AI o, Format F, dag outs, dag ins, string asm, list pattern> : Ii8, TAPD, Requires<[UseSSE42]>; // CRC32I - SSE 4.2 CRC32 instructions. // NOTE: 'HasCRC32' is used as CRC32 instructions are GPR only and not directly // controlled by the SSE42 flag. class CRC32I o, Format F, dag outs, dag ins, string asm, list pattern> : I, T8XD, Requires<[HasCRC32]>; // AVX Instruction Templates: // Instructions introduced in AVX (no SSE equivalent forms) // // AVX8I - AVX instructions with T8PD prefix. // AVXAIi8 - AVX instructions with TAPD prefix and ImmT = Imm8. class AVX8I o, Format F, dag outs, dag ins, string asm, list pattern> : I, T8PD, Requires<[HasAVX]>; class AVXAIi8 o, Format F, dag outs, dag ins, string asm, list pattern> : Ii8, TAPD, Requires<[HasAVX]>; // AVX2 Instruction Templates: // Instructions introduced in AVX2 (no SSE equivalent forms) // // AVX28I - AVX2 instructions with T8PD prefix. // AVX2AIi8 - AVX2 instructions with TAPD prefix and ImmT = Imm8. class AVX28I o, Format F, dag outs, dag ins, string asm, list pattern> : I, T8PD, Requires<[HasAVX2]>; class AVX2AIi8 o, Format F, dag outs, dag ins, string asm, list pattern> : Ii8, TAPD, Requires<[HasAVX2]>; // AVX-512 Instruction Templates: // Instructions introduced in AVX-512 (no SSE equivalent forms) // // AVX5128I - AVX-512 instructions with T8PD prefix. // AVX512AIi8 - AVX-512 instructions with TAPD prefix and ImmT = Imm8. // AVX512PDI - AVX-512 instructions with PD, double packed. // AVX512PSI - AVX-512 instructions with PS, single packed. // AVX512XS8I - AVX-512 instructions with T8 and XS prefixes. // AVX512XSI - AVX-512 instructions with XS prefix, generic domain. // AVX512BI - AVX-512 instructions with PD, int packed domain. // AVX512SI - AVX-512 scalar instructions with PD prefix. class AVX5128I o, Format F, dag outs, dag ins, string asm, list pattern> : I, T8PD, Requires<[HasAVX512]>; class AVX5128IBase : T8PD { Domain ExeDomain = SSEPackedInt; } class AVX512XS8I o, Format F, dag outs, dag ins, string asm, list pattern> : I, T8XS, Requires<[HasAVX512]>; class AVX512XSI o, Format F, dag outs, dag ins, string asm, list pattern> : I, XS, Requires<[HasAVX512]>; class AVX512XDI o, Format F, dag outs, dag ins, string asm, list pattern> : I, XD, Requires<[HasAVX512]>; class AVX512BI o, Format F, dag outs, dag ins, string asm, list pattern> : I, PD, Requires<[HasAVX512]>; class AVX512BIBase : PD { Domain ExeDomain = SSEPackedInt; } class AVX512BIi8 o, Format F, dag outs, dag ins, string asm, list pattern> : Ii8, PD, Requires<[HasAVX512]>; class AVX512BIi8Base : PD { Domain ExeDomain = SSEPackedInt; ImmType ImmT = Imm8; } class AVX512XSIi8Base : XS { Domain ExeDomain = SSEPackedInt; ImmType ImmT = Imm8; } class AVX512XDIi8Base : XD { Domain ExeDomain = SSEPackedInt; ImmType ImmT = Imm8; } class AVX512PSIi8Base : PS { Domain ExeDomain = SSEPackedSingle; ImmType ImmT = Imm8; } class AVX512PDIi8Base : PD { Domain ExeDomain = SSEPackedDouble; ImmType ImmT = Imm8; } class AVX512AIi8 o, Format F, dag outs, dag ins, string asm, list pattern> : Ii8, TAPD, Requires<[HasAVX512]>; class AVX512AIi8Base : TAPD { ImmType ImmT = Imm8; } class AVX512Ii8 o, Format F, dag outs, dag ins, string asm, list pattern> : Ii8, Requires<[HasAVX512]>; class AVX512PDI o, Format F, dag outs, dag ins, string asm, list pattern> : I, PD, Requires<[HasAVX512]>; class AVX512PSI o, Format F, dag outs, dag ins, string asm, list pattern> : I, PS, Requires<[HasAVX512]>; class AVX512PIi8 o, Format F, dag outs, dag ins, string asm, list pattern, Domain d> : Ii8, Requires<[HasAVX512]>; class AVX512PI o, Format F, dag outs, dag ins, string asm, list pattern, Domain d> : I, Requires<[HasAVX512]>; class AVX512FMA3S o, Format F, dag outs, dag ins, string asm, listpattern> : I, T8PD, EVEX_4V, Requires<[HasAVX512]>; class AVX512 o, Format F, dag outs, dag ins, string asm, listpattern> : I, Requires<[HasAVX512]>; // AES Instruction Templates: // // AES8I // These use the same encoding as the SSE4.2 T8 and TA encodings. class AES8I o, Format F, dag outs, dag ins, string asm, listpattern> : I, T8PD, Requires<[NoAVX, HasAES]>; class AESAI o, Format F, dag outs, dag ins, string asm, list pattern> : Ii8, TAPD, Requires<[NoAVX, HasAES]>; // PCLMUL Instruction Templates class PCLMULIi8 o, Format F, dag outs, dag ins, string asm, listpattern> : Ii8, TAPD; // FMA3 Instruction Templates class FMA3 o, Format F, dag outs, dag ins, string asm, listpattern> : I, T8PD, VEX_4V, FMASC, Requires<[HasFMA, NoFMA4, NoVLX]>; class FMA3S o, Format F, dag outs, dag ins, string asm, listpattern> : I, T8PD, VEX_4V, FMASC, Requires<[HasFMA, NoFMA4, NoAVX512]>; class FMA3S_Int o, Format F, dag outs, dag ins, string asm, listpattern> : I, T8PD, VEX_4V, FMASC, Requires<[HasFMA, NoAVX512]>; // FMA4 Instruction Templates class FMA4 o, Format F, dag outs, dag ins, string asm, listpattern> : Ii8Reg, TAPD, VEX_4V, FMASC, Requires<[HasFMA4, NoVLX]>; class FMA4S o, Format F, dag outs, dag ins, string asm, listpattern> : Ii8Reg, TAPD, VEX_4V, FMASC, Requires<[HasFMA4, NoAVX512]>; class FMA4S_Int o, Format F, dag outs, dag ins, string asm, listpattern> : Ii8Reg, TAPD, VEX_4V, FMASC, Requires<[HasFMA4]>; // XOP 2, 3 and 4 Operand Instruction Template class IXOP o, Format F, dag outs, dag ins, string asm, list pattern> : I, XOP9, Requires<[HasXOP]>; // XOP 2 and 3 Operand Instruction Templates with imm byte class IXOPi8 o, Format F, dag outs, dag ins, string asm, list pattern> : Ii8, XOP8, Requires<[HasXOP]>; // XOP 4 Operand Instruction Templates with imm byte class IXOPi8Reg o, Format F, dag outs, dag ins, string asm, list pattern> : Ii8Reg, XOP8, Requires<[HasXOP]>; // XOP 5 operand instruction (VEX encoding!) class IXOP5 o, Format F, dag outs, dag ins, string asm, listpattern> : Ii8Reg, TAPD, VEX_4V, Requires<[HasXOP]>; // X86-64 Instruction templates... // class RI o, Format F, dag outs, dag ins, string asm, list pattern> : I, REX_W; class RIi8 o, Format F, dag outs, dag ins, string asm, list pattern> : Ii8, REX_W; class RIi16 o, Format F, dag outs, dag ins, string asm, list pattern> : Ii16, REX_W; class RIi32 o, Format F, dag outs, dag ins, string asm, list pattern> : Ii32, REX_W; class RIi32S o, Format F, dag outs, dag ins, string asm, list pattern> : Ii32S, REX_W; class RIi64 o, Format F, dag outs, dag ins, string asm, list pattern> : Ii64, REX_W; class RS2I o, Format F, dag outs, dag ins, string asm, list pattern> : S2I, REX_W; class VRS2I o, Format F, dag outs, dag ins, string asm, list pattern> : VS2I, VEX_W; // MMX Instruction templates // // MMXI - MMX instructions with TB prefix. // MMXI32 - MMX instructions with TB prefix valid only in 32 bit mode. // MMXI64 - MMX instructions with TB prefix valid only in 64 bit mode. // MMX2I - MMX / SSE2 instructions with PD prefix. // MMXIi8 - MMX instructions with ImmT == Imm8 and PS prefix. // MMXIi8 - MMX instructions with ImmT == Imm8 and PS prefix. // MMXID - MMX instructions with XD prefix. // MMXIS - MMX instructions with XS prefix. class MMXI o, Format F, dag outs, dag ins, string asm, list pattern> : I, PS, Requires<[HasMMX]>; class MMXI32 o, Format F, dag outs, dag ins, string asm, list pattern> : I, PS, Requires<[HasMMX,Not64BitMode]>; class MMXI64 o, Format F, dag outs, dag ins, string asm, list pattern> : I, PS, Requires<[HasMMX,In64BitMode]>; class MMXRI o, Format F, dag outs, dag ins, string asm, list pattern> : I, PS, REX_W, Requires<[HasMMX]>; class MMX2I o, Format F, dag outs, dag ins, string asm, list pattern> : I, PD, Requires<[HasMMX]>; class MMXIi8 o, Format F, dag outs, dag ins, string asm, list pattern> : Ii8, PS, Requires<[HasMMX]>; class MMXID o, Format F, dag outs, dag ins, string asm, list pattern> : Ii8, XD, Requires<[HasMMX]>; class MMXIS o, Format F, dag outs, dag ins, string asm, list pattern> : Ii8, XS, Requires<[HasMMX]>;