//===-- ARMInstrNEON.td - NEON support for ARM -------------*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file describes the ARM NEON instruction set. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // NEON-specific Operands. //===----------------------------------------------------------------------===// def nModImm : Operand { let PrintMethod = "printVMOVModImmOperand"; } def nImmSplatI8AsmOperand : AsmOperandClass { let Name = "NEONi8splat"; } def nImmSplatI8 : Operand { let PrintMethod = "printVMOVModImmOperand"; let ParserMatchClass = nImmSplatI8AsmOperand; } def nImmSplatI16AsmOperand : AsmOperandClass { let Name = "NEONi16splat"; } def nImmSplatI16 : Operand { let PrintMethod = "printVMOVModImmOperand"; let ParserMatchClass = nImmSplatI16AsmOperand; } def nImmSplatI32AsmOperand : AsmOperandClass { let Name = "NEONi32splat"; } def nImmSplatI32 : Operand { let PrintMethod = "printVMOVModImmOperand"; let ParserMatchClass = nImmSplatI32AsmOperand; } def nImmSplatNotI16AsmOperand : AsmOperandClass { let Name = "NEONi16splatNot"; } def nImmSplatNotI16 : Operand { let ParserMatchClass = nImmSplatNotI16AsmOperand; } def nImmSplatNotI32AsmOperand : AsmOperandClass { let Name = "NEONi32splatNot"; } def nImmSplatNotI32 : Operand { let ParserMatchClass = nImmSplatNotI32AsmOperand; } def nImmVMOVI32AsmOperand : AsmOperandClass { let Name = "NEONi32vmov"; } def nImmVMOVI32 : Operand { let PrintMethod = "printVMOVModImmOperand"; let ParserMatchClass = nImmVMOVI32AsmOperand; } class nImmVMOVIAsmOperandReplicate : AsmOperandClass { let Name = "NEONi" # To.Size # "vmovi" # From.Size # "Replicate"; let PredicateMethod = "isNEONmovReplicate<" # From.Size # ", " # To.Size # ">"; let RenderMethod = "addNEONvmovi" # From.Size # "ReplicateOperands"; } class nImmVINVIAsmOperandReplicate : AsmOperandClass { let Name = "NEONi" # To.Size # "invi" # From.Size # "Replicate"; let PredicateMethod = "isNEONinvReplicate<" # From.Size # ", " # To.Size # ">"; let RenderMethod = "addNEONinvi" # From.Size # "ReplicateOperands"; } class nImmVMOVIReplicate : Operand { let PrintMethod = "printVMOVModImmOperand"; let ParserMatchClass = nImmVMOVIAsmOperandReplicate; } class nImmVINVIReplicate : Operand { let PrintMethod = "printVMOVModImmOperand"; let ParserMatchClass = nImmVINVIAsmOperandReplicate; } def nImmVMOVI32NegAsmOperand : AsmOperandClass { let Name = "NEONi32vmovNeg"; } def nImmVMOVI32Neg : Operand { let PrintMethod = "printVMOVModImmOperand"; let ParserMatchClass = nImmVMOVI32NegAsmOperand; } def nImmVMOVF32 : Operand { let PrintMethod = "printFPImmOperand"; let ParserMatchClass = FPImmOperand; } def nImmSplatI64AsmOperand : AsmOperandClass { let Name = "NEONi64splat"; } def nImmSplatI64 : Operand { let PrintMethod = "printVMOVModImmOperand"; let ParserMatchClass = nImmSplatI64AsmOperand; } def VectorIndex8Operand : AsmOperandClass { let Name = "VectorIndex8"; } def VectorIndex16Operand : AsmOperandClass { let Name = "VectorIndex16"; } def VectorIndex32Operand : AsmOperandClass { let Name = "VectorIndex32"; } def VectorIndex64Operand : AsmOperandClass { let Name = "VectorIndex64"; } def VectorIndex8 : Operand, ImmLeaf { let ParserMatchClass = VectorIndex8Operand; let PrintMethod = "printVectorIndex"; let MIOperandInfo = (ops i32imm); } def VectorIndex16 : Operand, ImmLeaf { let ParserMatchClass = VectorIndex16Operand; let PrintMethod = "printVectorIndex"; let MIOperandInfo = (ops i32imm); } def VectorIndex32 : Operand, ImmLeaf { let ParserMatchClass = VectorIndex32Operand; let PrintMethod = "printVectorIndex"; let MIOperandInfo = (ops i32imm); } def VectorIndex64 : Operand, ImmLeaf { let ParserMatchClass = VectorIndex64Operand; let PrintMethod = "printVectorIndex"; let MIOperandInfo = (ops i32imm); } // Register list of one D register. def VecListOneDAsmOperand : AsmOperandClass { let Name = "VecListOneD"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListOperands"; } def VecListOneD : RegisterOperand { let ParserMatchClass = VecListOneDAsmOperand; } // Register list of two sequential D registers. def VecListDPairAsmOperand : AsmOperandClass { let Name = "VecListDPair"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListOperands"; } def VecListDPair : RegisterOperand { let ParserMatchClass = VecListDPairAsmOperand; } // Register list of three sequential D registers. def VecListThreeDAsmOperand : AsmOperandClass { let Name = "VecListThreeD"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListOperands"; } def VecListThreeD : RegisterOperand { let ParserMatchClass = VecListThreeDAsmOperand; } // Register list of four sequential D registers. def VecListFourDAsmOperand : AsmOperandClass { let Name = "VecListFourD"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListOperands"; } def VecListFourD : RegisterOperand { let ParserMatchClass = VecListFourDAsmOperand; } // Register list of two D registers spaced by 2 (two sequential Q registers). def VecListDPairSpacedAsmOperand : AsmOperandClass { let Name = "VecListDPairSpaced"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListOperands"; } def VecListDPairSpaced : RegisterOperand { let ParserMatchClass = VecListDPairSpacedAsmOperand; } // Register list of three D registers spaced by 2 (three Q registers). def VecListThreeQAsmOperand : AsmOperandClass { let Name = "VecListThreeQ"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListOperands"; } def VecListThreeQ : RegisterOperand { let ParserMatchClass = VecListThreeQAsmOperand; } // Register list of three D registers spaced by 2 (three Q registers). def VecListFourQAsmOperand : AsmOperandClass { let Name = "VecListFourQ"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListOperands"; } def VecListFourQ : RegisterOperand { let ParserMatchClass = VecListFourQAsmOperand; } // Register list of one D register, with "all lanes" subscripting. def VecListOneDAllLanesAsmOperand : AsmOperandClass { let Name = "VecListOneDAllLanes"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListOperands"; } def VecListOneDAllLanes : RegisterOperand { let ParserMatchClass = VecListOneDAllLanesAsmOperand; } // Register list of two D registers, with "all lanes" subscripting. def VecListDPairAllLanesAsmOperand : AsmOperandClass { let Name = "VecListDPairAllLanes"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListOperands"; } def VecListDPairAllLanes : RegisterOperand { let ParserMatchClass = VecListDPairAllLanesAsmOperand; } // Register list of two D registers spaced by 2 (two sequential Q registers). def VecListDPairSpacedAllLanesAsmOperand : AsmOperandClass { let Name = "VecListDPairSpacedAllLanes"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListOperands"; } def VecListDPairSpacedAllLanes : RegisterOperand { let ParserMatchClass = VecListDPairSpacedAllLanesAsmOperand; } // Register list of three D registers, with "all lanes" subscripting. def VecListThreeDAllLanesAsmOperand : AsmOperandClass { let Name = "VecListThreeDAllLanes"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListOperands"; } def VecListThreeDAllLanes : RegisterOperand { let ParserMatchClass = VecListThreeDAllLanesAsmOperand; } // Register list of three D registers spaced by 2 (three sequential Q regs). def VecListThreeQAllLanesAsmOperand : AsmOperandClass { let Name = "VecListThreeQAllLanes"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListOperands"; } def VecListThreeQAllLanes : RegisterOperand { let ParserMatchClass = VecListThreeQAllLanesAsmOperand; } // Register list of four D registers, with "all lanes" subscripting. def VecListFourDAllLanesAsmOperand : AsmOperandClass { let Name = "VecListFourDAllLanes"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListOperands"; } def VecListFourDAllLanes : RegisterOperand { let ParserMatchClass = VecListFourDAllLanesAsmOperand; } // Register list of four D registers spaced by 2 (four sequential Q regs). def VecListFourQAllLanesAsmOperand : AsmOperandClass { let Name = "VecListFourQAllLanes"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListOperands"; } def VecListFourQAllLanes : RegisterOperand { let ParserMatchClass = VecListFourQAllLanesAsmOperand; } // Register list of one D register, with byte lane subscripting. def VecListOneDByteIndexAsmOperand : AsmOperandClass { let Name = "VecListOneDByteIndexed"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListIndexedOperands"; } def VecListOneDByteIndexed : Operand { let ParserMatchClass = VecListOneDByteIndexAsmOperand; let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx); } // ...with half-word lane subscripting. def VecListOneDHWordIndexAsmOperand : AsmOperandClass { let Name = "VecListOneDHWordIndexed"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListIndexedOperands"; } def VecListOneDHWordIndexed : Operand { let ParserMatchClass = VecListOneDHWordIndexAsmOperand; let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx); } // ...with word lane subscripting. def VecListOneDWordIndexAsmOperand : AsmOperandClass { let Name = "VecListOneDWordIndexed"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListIndexedOperands"; } def VecListOneDWordIndexed : Operand { let ParserMatchClass = VecListOneDWordIndexAsmOperand; let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx); } // Register list of two D registers with byte lane subscripting. def VecListTwoDByteIndexAsmOperand : AsmOperandClass { let Name = "VecListTwoDByteIndexed"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListIndexedOperands"; } def VecListTwoDByteIndexed : Operand { let ParserMatchClass = VecListTwoDByteIndexAsmOperand; let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx); } // ...with half-word lane subscripting. def VecListTwoDHWordIndexAsmOperand : AsmOperandClass { let Name = "VecListTwoDHWordIndexed"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListIndexedOperands"; } def VecListTwoDHWordIndexed : Operand { let ParserMatchClass = VecListTwoDHWordIndexAsmOperand; let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx); } // ...with word lane subscripting. def VecListTwoDWordIndexAsmOperand : AsmOperandClass { let Name = "VecListTwoDWordIndexed"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListIndexedOperands"; } def VecListTwoDWordIndexed : Operand { let ParserMatchClass = VecListTwoDWordIndexAsmOperand; let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx); } // Register list of two Q registers with half-word lane subscripting. def VecListTwoQHWordIndexAsmOperand : AsmOperandClass { let Name = "VecListTwoQHWordIndexed"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListIndexedOperands"; } def VecListTwoQHWordIndexed : Operand { let ParserMatchClass = VecListTwoQHWordIndexAsmOperand; let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx); } // ...with word lane subscripting. def VecListTwoQWordIndexAsmOperand : AsmOperandClass { let Name = "VecListTwoQWordIndexed"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListIndexedOperands"; } def VecListTwoQWordIndexed : Operand { let ParserMatchClass = VecListTwoQWordIndexAsmOperand; let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx); } // Register list of three D registers with byte lane subscripting. def VecListThreeDByteIndexAsmOperand : AsmOperandClass { let Name = "VecListThreeDByteIndexed"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListIndexedOperands"; } def VecListThreeDByteIndexed : Operand { let ParserMatchClass = VecListThreeDByteIndexAsmOperand; let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx); } // ...with half-word lane subscripting. def VecListThreeDHWordIndexAsmOperand : AsmOperandClass { let Name = "VecListThreeDHWordIndexed"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListIndexedOperands"; } def VecListThreeDHWordIndexed : Operand { let ParserMatchClass = VecListThreeDHWordIndexAsmOperand; let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx); } // ...with word lane subscripting. def VecListThreeDWordIndexAsmOperand : AsmOperandClass { let Name = "VecListThreeDWordIndexed"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListIndexedOperands"; } def VecListThreeDWordIndexed : Operand { let ParserMatchClass = VecListThreeDWordIndexAsmOperand; let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx); } // Register list of three Q registers with half-word lane subscripting. def VecListThreeQHWordIndexAsmOperand : AsmOperandClass { let Name = "VecListThreeQHWordIndexed"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListIndexedOperands"; } def VecListThreeQHWordIndexed : Operand { let ParserMatchClass = VecListThreeQHWordIndexAsmOperand; let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx); } // ...with word lane subscripting. def VecListThreeQWordIndexAsmOperand : AsmOperandClass { let Name = "VecListThreeQWordIndexed"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListIndexedOperands"; } def VecListThreeQWordIndexed : Operand { let ParserMatchClass = VecListThreeQWordIndexAsmOperand; let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx); } // Register list of four D registers with byte lane subscripting. def VecListFourDByteIndexAsmOperand : AsmOperandClass { let Name = "VecListFourDByteIndexed"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListIndexedOperands"; } def VecListFourDByteIndexed : Operand { let ParserMatchClass = VecListFourDByteIndexAsmOperand; let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx); } // ...with half-word lane subscripting. def VecListFourDHWordIndexAsmOperand : AsmOperandClass { let Name = "VecListFourDHWordIndexed"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListIndexedOperands"; } def VecListFourDHWordIndexed : Operand { let ParserMatchClass = VecListFourDHWordIndexAsmOperand; let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx); } // ...with word lane subscripting. def VecListFourDWordIndexAsmOperand : AsmOperandClass { let Name = "VecListFourDWordIndexed"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListIndexedOperands"; } def VecListFourDWordIndexed : Operand { let ParserMatchClass = VecListFourDWordIndexAsmOperand; let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx); } // Register list of four Q registers with half-word lane subscripting. def VecListFourQHWordIndexAsmOperand : AsmOperandClass { let Name = "VecListFourQHWordIndexed"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListIndexedOperands"; } def VecListFourQHWordIndexed : Operand { let ParserMatchClass = VecListFourQHWordIndexAsmOperand; let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx); } // ...with word lane subscripting. def VecListFourQWordIndexAsmOperand : AsmOperandClass { let Name = "VecListFourQWordIndexed"; let ParserMethod = "parseVectorList"; let RenderMethod = "addVecListIndexedOperands"; } def VecListFourQWordIndexed : Operand { let ParserMatchClass = VecListFourQWordIndexAsmOperand; let MIOperandInfo = (ops DPR:$Vd, i32imm:$idx); } def dword_alignedload : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return cast(N)->getAlignment() >= 8; }]>; def dword_alignedstore : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return cast(N)->getAlignment() >= 8; }]>; def word_alignedload : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return cast(N)->getAlignment() == 4; }]>; def word_alignedstore : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return cast(N)->getAlignment() == 4; }]>; def hword_alignedload : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return cast(N)->getAlignment() == 2; }]>; def hword_alignedstore : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return cast(N)->getAlignment() == 2; }]>; def byte_alignedload : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return cast(N)->getAlignment() == 1; }]>; def byte_alignedstore : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return cast(N)->getAlignment() == 1; }]>; def non_word_alignedload : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return cast(N)->getAlignment() < 4; }]>; def non_word_alignedstore : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return cast(N)->getAlignment() < 4; }]>; //===----------------------------------------------------------------------===// // NEON-specific DAG Nodes. //===----------------------------------------------------------------------===// def SDTARMVTST : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<1, 2>]>; def NEONvtst : SDNode<"ARMISD::VTST", SDTARMVTST>; // Types for vector shift by immediates. The "SHX" version is for long and // narrow operations where the source and destination vectors have different // types. The "SHINS" version is for shift and insert operations. def SDTARMVSHXIMM : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>, SDTCisVT<2, i32>]>; def SDTARMVSHINSIMM : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisVT<3, i32>]>; def NEONvshrnImm : SDNode<"ARMISD::VSHRNIMM", SDTARMVSHXIMM>; def NEONvrshrsImm : SDNode<"ARMISD::VRSHRsIMM", SDTARMVSHIMM>; def NEONvrshruImm : SDNode<"ARMISD::VRSHRuIMM", SDTARMVSHIMM>; def NEONvrshrnImm : SDNode<"ARMISD::VRSHRNIMM", SDTARMVSHXIMM>; def NEONvqshlsImm : SDNode<"ARMISD::VQSHLsIMM", SDTARMVSHIMM>; def NEONvqshluImm : SDNode<"ARMISD::VQSHLuIMM", SDTARMVSHIMM>; def NEONvqshlsuImm : SDNode<"ARMISD::VQSHLsuIMM", SDTARMVSHIMM>; def NEONvqshrnsImm : SDNode<"ARMISD::VQSHRNsIMM", SDTARMVSHXIMM>; def NEONvqshrnuImm : SDNode<"ARMISD::VQSHRNuIMM", SDTARMVSHXIMM>; def NEONvqshrnsuImm : SDNode<"ARMISD::VQSHRNsuIMM", SDTARMVSHXIMM>; def NEONvqrshrnsImm : SDNode<"ARMISD::VQRSHRNsIMM", SDTARMVSHXIMM>; def NEONvqrshrnuImm : SDNode<"ARMISD::VQRSHRNuIMM", SDTARMVSHXIMM>; def NEONvqrshrnsuImm : SDNode<"ARMISD::VQRSHRNsuIMM", SDTARMVSHXIMM>; def NEONvsliImm : SDNode<"ARMISD::VSLIIMM", SDTARMVSHINSIMM>; def NEONvsriImm : SDNode<"ARMISD::VSRIIMM", SDTARMVSHINSIMM>; def NEONvbsp : SDNode<"ARMISD::VBSP", SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>]>>; def SDTARMVEXT : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisVT<3, i32>]>; def NEONvext : SDNode<"ARMISD::VEXT", SDTARMVEXT>; def SDTARMVSHUF2 : SDTypeProfile<2, 2, [SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>]>; def NEONzip : SDNode<"ARMISD::VZIP", SDTARMVSHUF2>; def NEONuzp : SDNode<"ARMISD::VUZP", SDTARMVSHUF2>; def NEONtrn : SDNode<"ARMISD::VTRN", SDTARMVSHUF2>; def SDTARMVTBL1 : SDTypeProfile<1, 2, [SDTCisVT<0, v8i8>, SDTCisVT<1, v8i8>, SDTCisVT<2, v8i8>]>; def SDTARMVTBL2 : SDTypeProfile<1, 3, [SDTCisVT<0, v8i8>, SDTCisVT<1, v8i8>, SDTCisVT<2, v8i8>, SDTCisVT<3, v8i8>]>; def NEONvtbl1 : SDNode<"ARMISD::VTBL1", SDTARMVTBL1>; def NEONvtbl2 : SDNode<"ARMISD::VTBL2", SDTARMVTBL2>; //===----------------------------------------------------------------------===// // NEON load / store instructions //===----------------------------------------------------------------------===// // Use VLDM to load a Q register as a D register pair. // This is a pseudo instruction that is expanded to VLDMD after reg alloc. def VLDMQIA : PseudoVFPLdStM<(outs DPair:$dst), (ins GPR:$Rn), IIC_fpLoad_m, "", [(set DPair:$dst, (v2f64 (word_alignedload GPR:$Rn)))]>; // Use VSTM to store a Q register as a D register pair. // This is a pseudo instruction that is expanded to VSTMD after reg alloc. def VSTMQIA : PseudoVFPLdStM<(outs), (ins DPair:$src, GPR:$Rn), IIC_fpStore_m, "", [(word_alignedstore (v2f64 DPair:$src), GPR:$Rn)]>; // Classes for VLD* pseudo-instructions with multi-register operands. // These are expanded to real instructions after register allocation. class VLDQPseudo : PseudoNLdSt<(outs QPR:$dst), (ins addrmode6:$addr), itin, "">; class VLDQWBPseudo : PseudoNLdSt<(outs QPR:$dst, GPR:$wb), (ins addrmode6:$addr, am6offset:$offset), itin, "$addr.addr = $wb">; class VLDQWBfixedPseudo : PseudoNLdSt<(outs QPR:$dst, GPR:$wb), (ins addrmode6:$addr), itin, "$addr.addr = $wb">; class VLDQWBregisterPseudo : PseudoNLdSt<(outs QPR:$dst, GPR:$wb), (ins addrmode6:$addr, rGPR:$offset), itin, "$addr.addr = $wb">; class VLDQQPseudo : PseudoNLdSt<(outs QQPR:$dst), (ins addrmode6:$addr), itin, "">; class VLDQQWBPseudo : PseudoNLdSt<(outs QQPR:$dst, GPR:$wb), (ins addrmode6:$addr, am6offset:$offset), itin, "$addr.addr = $wb">; class VLDQQWBfixedPseudo : PseudoNLdSt<(outs QQPR:$dst, GPR:$wb), (ins addrmode6:$addr), itin, "$addr.addr = $wb">; class VLDQQWBregisterPseudo : PseudoNLdSt<(outs QQPR:$dst, GPR:$wb), (ins addrmode6:$addr, rGPR:$offset), itin, "$addr.addr = $wb">; class VLDQQQQPseudo : PseudoNLdSt<(outs QQQQPR:$dst), (ins addrmode6:$addr, QQQQPR:$src),itin, "$src = $dst">; class VLDQQQQWBPseudo : PseudoNLdSt<(outs QQQQPR:$dst, GPR:$wb), (ins addrmode6:$addr, am6offset:$offset, QQQQPR:$src), itin, "$addr.addr = $wb, $src = $dst">; let mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1 in { // VLD1 : Vector Load (multiple single elements) class VLD1D op7_4, string Dt, Operand AddrMode> : NLdSt<0,0b10,0b0111,op7_4, (outs VecListOneD:$Vd), (ins AddrMode:$Rn), IIC_VLD1, "vld1", Dt, "$Vd, $Rn", "", []>, Sched<[WriteVLD1]> { let Rm = 0b1111; let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLDST1Instruction"; } class VLD1Q op7_4, string Dt, Operand AddrMode> : NLdSt<0,0b10,0b1010,op7_4, (outs VecListDPair:$Vd), (ins AddrMode:$Rn), IIC_VLD1x2, "vld1", Dt, "$Vd, $Rn", "", []>, Sched<[WriteVLD2]> { let Rm = 0b1111; let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST1Instruction"; } def VLD1d8 : VLD1D<{0,0,0,?}, "8", addrmode6align64>; def VLD1d16 : VLD1D<{0,1,0,?}, "16", addrmode6align64>; def VLD1d32 : VLD1D<{1,0,0,?}, "32", addrmode6align64>; def VLD1d64 : VLD1D<{1,1,0,?}, "64", addrmode6align64>; def VLD1q8 : VLD1Q<{0,0,?,?}, "8", addrmode6align64or128>; def VLD1q16 : VLD1Q<{0,1,?,?}, "16", addrmode6align64or128>; def VLD1q32 : VLD1Q<{1,0,?,?}, "32", addrmode6align64or128>; def VLD1q64 : VLD1Q<{1,1,?,?}, "64", addrmode6align64or128>; // ...with address register writeback: multiclass VLD1DWB op7_4, string Dt, Operand AddrMode> { def _fixed : NLdSt<0,0b10, 0b0111,op7_4, (outs VecListOneD:$Vd, GPR:$wb), (ins AddrMode:$Rn), IIC_VLD1u, "vld1", Dt, "$Vd, $Rn!", "$Rn.addr = $wb", []>, Sched<[WriteVLD1]> { let Rm = 0b1101; // NLdSt will assign to the right encoding bits. let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLDST1Instruction"; } def _register : NLdSt<0,0b10,0b0111,op7_4, (outs VecListOneD:$Vd, GPR:$wb), (ins AddrMode:$Rn, rGPR:$Rm), IIC_VLD1u, "vld1", Dt, "$Vd, $Rn, $Rm", "$Rn.addr = $wb", []>, Sched<[WriteVLD1]> { let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLDST1Instruction"; } } multiclass VLD1QWB op7_4, string Dt, Operand AddrMode> { def _fixed : NLdSt<0,0b10,0b1010,op7_4, (outs VecListDPair:$Vd, GPR:$wb), (ins AddrMode:$Rn), IIC_VLD1x2u, "vld1", Dt, "$Vd, $Rn!", "$Rn.addr = $wb", []>, Sched<[WriteVLD2]> { let Rm = 0b1101; // NLdSt will assign to the right encoding bits. let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST1Instruction"; } def _register : NLdSt<0,0b10,0b1010,op7_4, (outs VecListDPair:$Vd, GPR:$wb), (ins AddrMode:$Rn, rGPR:$Rm), IIC_VLD1x2u, "vld1", Dt, "$Vd, $Rn, $Rm", "$Rn.addr = $wb", []>, Sched<[WriteVLD2]> { let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST1Instruction"; } } defm VLD1d8wb : VLD1DWB<{0,0,0,?}, "8", addrmode6align64>; defm VLD1d16wb : VLD1DWB<{0,1,0,?}, "16", addrmode6align64>; defm VLD1d32wb : VLD1DWB<{1,0,0,?}, "32", addrmode6align64>; defm VLD1d64wb : VLD1DWB<{1,1,0,?}, "64", addrmode6align64>; defm VLD1q8wb : VLD1QWB<{0,0,?,?}, "8", addrmode6align64or128>; defm VLD1q16wb : VLD1QWB<{0,1,?,?}, "16", addrmode6align64or128>; defm VLD1q32wb : VLD1QWB<{1,0,?,?}, "32", addrmode6align64or128>; defm VLD1q64wb : VLD1QWB<{1,1,?,?}, "64", addrmode6align64or128>; // ...with 3 registers class VLD1D3 op7_4, string Dt, Operand AddrMode> : NLdSt<0,0b10,0b0110,op7_4, (outs VecListThreeD:$Vd), (ins AddrMode:$Rn), IIC_VLD1x3, "vld1", Dt, "$Vd, $Rn", "", []>, Sched<[WriteVLD3]> { let Rm = 0b1111; let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLDST1Instruction"; } multiclass VLD1D3WB op7_4, string Dt, Operand AddrMode> { def _fixed : NLdSt<0,0b10,0b0110, op7_4, (outs VecListThreeD:$Vd, GPR:$wb), (ins AddrMode:$Rn), IIC_VLD1x2u, "vld1", Dt, "$Vd, $Rn!", "$Rn.addr = $wb", []>, Sched<[WriteVLD3]> { let Rm = 0b1101; // NLdSt will assign to the right encoding bits. let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLDST1Instruction"; } def _register : NLdSt<0,0b10,0b0110,op7_4, (outs VecListThreeD:$Vd, GPR:$wb), (ins AddrMode:$Rn, rGPR:$Rm), IIC_VLD1x2u, "vld1", Dt, "$Vd, $Rn, $Rm", "$Rn.addr = $wb", []>, Sched<[WriteVLD3]> { let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLDST1Instruction"; } } def VLD1d8T : VLD1D3<{0,0,0,?}, "8", addrmode6align64>; def VLD1d16T : VLD1D3<{0,1,0,?}, "16", addrmode6align64>; def VLD1d32T : VLD1D3<{1,0,0,?}, "32", addrmode6align64>; def VLD1d64T : VLD1D3<{1,1,0,?}, "64", addrmode6align64>; defm VLD1d8Twb : VLD1D3WB<{0,0,0,?}, "8", addrmode6align64>; defm VLD1d16Twb : VLD1D3WB<{0,1,0,?}, "16", addrmode6align64>; defm VLD1d32Twb : VLD1D3WB<{1,0,0,?}, "32", addrmode6align64>; defm VLD1d64Twb : VLD1D3WB<{1,1,0,?}, "64", addrmode6align64>; def VLD1d8TPseudo : VLDQQPseudo, Sched<[WriteVLD3]>; def VLD1d8TPseudoWB_fixed : VLDQQWBfixedPseudo, Sched<[WriteVLD3]>; def VLD1d8TPseudoWB_register : VLDQQWBregisterPseudo, Sched<[WriteVLD3]>; def VLD1d16TPseudo : VLDQQPseudo, Sched<[WriteVLD3]>; def VLD1d16TPseudoWB_fixed : VLDQQWBfixedPseudo, Sched<[WriteVLD3]>; def VLD1d16TPseudoWB_register : VLDQQWBregisterPseudo, Sched<[WriteVLD3]>; def VLD1d32TPseudo : VLDQQPseudo, Sched<[WriteVLD3]>; def VLD1d32TPseudoWB_fixed : VLDQQWBfixedPseudo, Sched<[WriteVLD3]>; def VLD1d32TPseudoWB_register : VLDQQWBregisterPseudo, Sched<[WriteVLD3]>; def VLD1d64TPseudo : VLDQQPseudo, Sched<[WriteVLD3]>; def VLD1d64TPseudoWB_fixed : VLDQQWBfixedPseudo, Sched<[WriteVLD3]>; def VLD1d64TPseudoWB_register : VLDQQWBregisterPseudo, Sched<[WriteVLD3]>; def VLD1q8HighTPseudo : VLDQQQQPseudo, Sched<[WriteVLD3]>; def VLD1q8HighTPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD3]>; def VLD1q8LowTPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD3]>; def VLD1q16HighTPseudo : VLDQQQQPseudo, Sched<[WriteVLD3]>; def VLD1q16HighTPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD3]>; def VLD1q16LowTPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD3]>; def VLD1q32HighTPseudo : VLDQQQQPseudo, Sched<[WriteVLD3]>; def VLD1q32HighTPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD3]>; def VLD1q32LowTPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD3]>; def VLD1q64HighTPseudo : VLDQQQQPseudo, Sched<[WriteVLD3]>; def VLD1q64HighTPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD3]>; def VLD1q64LowTPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD3]>; // ...with 4 registers class VLD1D4 op7_4, string Dt, Operand AddrMode> : NLdSt<0, 0b10, 0b0010, op7_4, (outs VecListFourD:$Vd), (ins AddrMode:$Rn), IIC_VLD1x4, "vld1", Dt, "$Vd, $Rn", "", []>, Sched<[WriteVLD4]> { let Rm = 0b1111; let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST1Instruction"; } multiclass VLD1D4WB op7_4, string Dt, Operand AddrMode> { def _fixed : NLdSt<0,0b10,0b0010, op7_4, (outs VecListFourD:$Vd, GPR:$wb), (ins AddrMode:$Rn), IIC_VLD1x2u, "vld1", Dt, "$Vd, $Rn!", "$Rn.addr = $wb", []>, Sched<[WriteVLD4]> { let Rm = 0b1101; // NLdSt will assign to the right encoding bits. let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST1Instruction"; } def _register : NLdSt<0,0b10,0b0010,op7_4, (outs VecListFourD:$Vd, GPR:$wb), (ins AddrMode:$Rn, rGPR:$Rm), IIC_VLD1x2u, "vld1", Dt, "$Vd, $Rn, $Rm", "$Rn.addr = $wb", []>, Sched<[WriteVLD4]> { let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST1Instruction"; } } def VLD1d8Q : VLD1D4<{0,0,?,?}, "8", addrmode6align64or128or256>; def VLD1d16Q : VLD1D4<{0,1,?,?}, "16", addrmode6align64or128or256>; def VLD1d32Q : VLD1D4<{1,0,?,?}, "32", addrmode6align64or128or256>; def VLD1d64Q : VLD1D4<{1,1,?,?}, "64", addrmode6align64or128or256>; defm VLD1d8Qwb : VLD1D4WB<{0,0,?,?}, "8", addrmode6align64or128or256>; defm VLD1d16Qwb : VLD1D4WB<{0,1,?,?}, "16", addrmode6align64or128or256>; defm VLD1d32Qwb : VLD1D4WB<{1,0,?,?}, "32", addrmode6align64or128or256>; defm VLD1d64Qwb : VLD1D4WB<{1,1,?,?}, "64", addrmode6align64or128or256>; def VLD1d8QPseudo : VLDQQPseudo, Sched<[WriteVLD4]>; def VLD1d8QPseudoWB_fixed : VLDQQWBfixedPseudo, Sched<[WriteVLD4]>; def VLD1d8QPseudoWB_register : VLDQQWBregisterPseudo, Sched<[WriteVLD4]>; def VLD1d16QPseudo : VLDQQPseudo, Sched<[WriteVLD4]>; def VLD1d16QPseudoWB_fixed : VLDQQWBfixedPseudo, Sched<[WriteVLD4]>; def VLD1d16QPseudoWB_register : VLDQQWBregisterPseudo, Sched<[WriteVLD4]>; def VLD1d32QPseudo : VLDQQPseudo, Sched<[WriteVLD4]>; def VLD1d32QPseudoWB_fixed : VLDQQWBfixedPseudo, Sched<[WriteVLD4]>; def VLD1d32QPseudoWB_register : VLDQQWBregisterPseudo, Sched<[WriteVLD4]>; def VLD1d64QPseudo : VLDQQPseudo, Sched<[WriteVLD4]>; def VLD1d64QPseudoWB_fixed : VLDQQWBfixedPseudo, Sched<[WriteVLD4]>; def VLD1d64QPseudoWB_register : VLDQQWBregisterPseudo, Sched<[WriteVLD4]>; def VLD1q8LowQPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD4]>; def VLD1q8HighQPseudo : VLDQQQQPseudo, Sched<[WriteVLD4]>; def VLD1q8HighQPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD4]>; def VLD1q16LowQPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD4]>; def VLD1q16HighQPseudo : VLDQQQQPseudo, Sched<[WriteVLD4]>; def VLD1q16HighQPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD4]>; def VLD1q32LowQPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD4]>; def VLD1q32HighQPseudo : VLDQQQQPseudo, Sched<[WriteVLD4]>; def VLD1q32HighQPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD4]>; def VLD1q64LowQPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD4]>; def VLD1q64HighQPseudo : VLDQQQQPseudo, Sched<[WriteVLD4]>; def VLD1q64HighQPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD4]>; // VLD2 : Vector Load (multiple 2-element structures) class VLD2 op11_8, bits<4> op7_4, string Dt, RegisterOperand VdTy, InstrItinClass itin, Operand AddrMode> : NLdSt<0, 0b10, op11_8, op7_4, (outs VdTy:$Vd), (ins AddrMode:$Rn), itin, "vld2", Dt, "$Vd, $Rn", "", []> { let Rm = 0b1111; let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST2Instruction"; } def VLD2d8 : VLD2<0b1000, {0,0,?,?}, "8", VecListDPair, IIC_VLD2, addrmode6align64or128>, Sched<[WriteVLD2]>; def VLD2d16 : VLD2<0b1000, {0,1,?,?}, "16", VecListDPair, IIC_VLD2, addrmode6align64or128>, Sched<[WriteVLD2]>; def VLD2d32 : VLD2<0b1000, {1,0,?,?}, "32", VecListDPair, IIC_VLD2, addrmode6align64or128>, Sched<[WriteVLD2]>; def VLD2q8 : VLD2<0b0011, {0,0,?,?}, "8", VecListFourD, IIC_VLD2x2, addrmode6align64or128or256>, Sched<[WriteVLD4]>; def VLD2q16 : VLD2<0b0011, {0,1,?,?}, "16", VecListFourD, IIC_VLD2x2, addrmode6align64or128or256>, Sched<[WriteVLD4]>; def VLD2q32 : VLD2<0b0011, {1,0,?,?}, "32", VecListFourD, IIC_VLD2x2, addrmode6align64or128or256>, Sched<[WriteVLD4]>; def VLD2q8Pseudo : VLDQQPseudo, Sched<[WriteVLD4]>; def VLD2q16Pseudo : VLDQQPseudo, Sched<[WriteVLD4]>; def VLD2q32Pseudo : VLDQQPseudo, Sched<[WriteVLD4]>; // ...with address register writeback: multiclass VLD2WB op11_8, bits<4> op7_4, string Dt, RegisterOperand VdTy, InstrItinClass itin, Operand AddrMode> { def _fixed : NLdSt<0, 0b10, op11_8, op7_4, (outs VdTy:$Vd, GPR:$wb), (ins AddrMode:$Rn), itin, "vld2", Dt, "$Vd, $Rn!", "$Rn.addr = $wb", []> { let Rm = 0b1101; // NLdSt will assign to the right encoding bits. let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST2Instruction"; } def _register : NLdSt<0, 0b10, op11_8, op7_4, (outs VdTy:$Vd, GPR:$wb), (ins AddrMode:$Rn, rGPR:$Rm), itin, "vld2", Dt, "$Vd, $Rn, $Rm", "$Rn.addr = $wb", []> { let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST2Instruction"; } } defm VLD2d8wb : VLD2WB<0b1000, {0,0,?,?}, "8", VecListDPair, IIC_VLD2u, addrmode6align64or128>, Sched<[WriteVLD2]>; defm VLD2d16wb : VLD2WB<0b1000, {0,1,?,?}, "16", VecListDPair, IIC_VLD2u, addrmode6align64or128>, Sched<[WriteVLD2]>; defm VLD2d32wb : VLD2WB<0b1000, {1,0,?,?}, "32", VecListDPair, IIC_VLD2u, addrmode6align64or128>, Sched<[WriteVLD2]>; defm VLD2q8wb : VLD2WB<0b0011, {0,0,?,?}, "8", VecListFourD, IIC_VLD2x2u, addrmode6align64or128or256>, Sched<[WriteVLD4]>; defm VLD2q16wb : VLD2WB<0b0011, {0,1,?,?}, "16", VecListFourD, IIC_VLD2x2u, addrmode6align64or128or256>, Sched<[WriteVLD4]>; defm VLD2q32wb : VLD2WB<0b0011, {1,0,?,?}, "32", VecListFourD, IIC_VLD2x2u, addrmode6align64or128or256>, Sched<[WriteVLD4]>; def VLD2q8PseudoWB_fixed : VLDQQWBfixedPseudo, Sched<[WriteVLD4]>; def VLD2q16PseudoWB_fixed : VLDQQWBfixedPseudo, Sched<[WriteVLD4]>; def VLD2q32PseudoWB_fixed : VLDQQWBfixedPseudo, Sched<[WriteVLD4]>; def VLD2q8PseudoWB_register : VLDQQWBregisterPseudo, Sched<[WriteVLD4]>; def VLD2q16PseudoWB_register : VLDQQWBregisterPseudo, Sched<[WriteVLD4]>; def VLD2q32PseudoWB_register : VLDQQWBregisterPseudo, Sched<[WriteVLD4]>; // ...with double-spaced registers def VLD2b8 : VLD2<0b1001, {0,0,?,?}, "8", VecListDPairSpaced, IIC_VLD2, addrmode6align64or128>, Sched<[WriteVLD2]>; def VLD2b16 : VLD2<0b1001, {0,1,?,?}, "16", VecListDPairSpaced, IIC_VLD2, addrmode6align64or128>, Sched<[WriteVLD2]>; def VLD2b32 : VLD2<0b1001, {1,0,?,?}, "32", VecListDPairSpaced, IIC_VLD2, addrmode6align64or128>, Sched<[WriteVLD2]>; defm VLD2b8wb : VLD2WB<0b1001, {0,0,?,?}, "8", VecListDPairSpaced, IIC_VLD2u, addrmode6align64or128>, Sched<[WriteVLD2]>; defm VLD2b16wb : VLD2WB<0b1001, {0,1,?,?}, "16", VecListDPairSpaced, IIC_VLD2u, addrmode6align64or128>, Sched<[WriteVLD2]>; defm VLD2b32wb : VLD2WB<0b1001, {1,0,?,?}, "32", VecListDPairSpaced, IIC_VLD2u, addrmode6align64or128>, Sched<[WriteVLD2]>; // VLD3 : Vector Load (multiple 3-element structures) class VLD3D op11_8, bits<4> op7_4, string Dt> : NLdSt<0, 0b10, op11_8, op7_4, (outs DPR:$Vd, DPR:$dst2, DPR:$dst3), (ins addrmode6:$Rn), IIC_VLD3, "vld3", Dt, "\\{$Vd, $dst2, $dst3\\}, $Rn", "", []>, Sched<[WriteVLD3]> { let Rm = 0b1111; let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLDST3Instruction"; } def VLD3d8 : VLD3D<0b0100, {0,0,0,?}, "8">; def VLD3d16 : VLD3D<0b0100, {0,1,0,?}, "16">; def VLD3d32 : VLD3D<0b0100, {1,0,0,?}, "32">; def VLD3d8Pseudo : VLDQQPseudo, Sched<[WriteVLD3]>; def VLD3d16Pseudo : VLDQQPseudo, Sched<[WriteVLD3]>; def VLD3d32Pseudo : VLDQQPseudo, Sched<[WriteVLD3]>; // ...with address register writeback: class VLD3DWB op11_8, bits<4> op7_4, string Dt> : NLdSt<0, 0b10, op11_8, op7_4, (outs DPR:$Vd, DPR:$dst2, DPR:$dst3, GPR:$wb), (ins addrmode6:$Rn, am6offset:$Rm), IIC_VLD3u, "vld3", Dt, "\\{$Vd, $dst2, $dst3\\}, $Rn$Rm", "$Rn.addr = $wb", []>, Sched<[WriteVLD3]> { let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLDST3Instruction"; } def VLD3d8_UPD : VLD3DWB<0b0100, {0,0,0,?}, "8">; def VLD3d16_UPD : VLD3DWB<0b0100, {0,1,0,?}, "16">; def VLD3d32_UPD : VLD3DWB<0b0100, {1,0,0,?}, "32">; def VLD3d8Pseudo_UPD : VLDQQWBPseudo, Sched<[WriteVLD3]>; def VLD3d16Pseudo_UPD : VLDQQWBPseudo, Sched<[WriteVLD3]>; def VLD3d32Pseudo_UPD : VLDQQWBPseudo, Sched<[WriteVLD3]>; // ...with double-spaced registers: def VLD3q8 : VLD3D<0b0101, {0,0,0,?}, "8">; def VLD3q16 : VLD3D<0b0101, {0,1,0,?}, "16">; def VLD3q32 : VLD3D<0b0101, {1,0,0,?}, "32">; def VLD3q8_UPD : VLD3DWB<0b0101, {0,0,0,?}, "8">; def VLD3q16_UPD : VLD3DWB<0b0101, {0,1,0,?}, "16">; def VLD3q32_UPD : VLD3DWB<0b0101, {1,0,0,?}, "32">; def VLD3q8Pseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD3]>; def VLD3q16Pseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD3]>; def VLD3q32Pseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD3]>; // ...alternate versions to be allocated odd register numbers: def VLD3q8oddPseudo : VLDQQQQPseudo, Sched<[WriteVLD3]>; def VLD3q16oddPseudo : VLDQQQQPseudo, Sched<[WriteVLD3]>; def VLD3q32oddPseudo : VLDQQQQPseudo, Sched<[WriteVLD3]>; def VLD3q8oddPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD3]>; def VLD3q16oddPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD3]>; def VLD3q32oddPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD3]>; // VLD4 : Vector Load (multiple 4-element structures) class VLD4D op11_8, bits<4> op7_4, string Dt> : NLdSt<0, 0b10, op11_8, op7_4, (outs DPR:$Vd, DPR:$dst2, DPR:$dst3, DPR:$dst4), (ins addrmode6:$Rn), IIC_VLD4, "vld4", Dt, "\\{$Vd, $dst2, $dst3, $dst4\\}, $Rn", "", []>, Sched<[WriteVLD4]> { let Rm = 0b1111; let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST4Instruction"; } def VLD4d8 : VLD4D<0b0000, {0,0,?,?}, "8">; def VLD4d16 : VLD4D<0b0000, {0,1,?,?}, "16">; def VLD4d32 : VLD4D<0b0000, {1,0,?,?}, "32">; def VLD4d8Pseudo : VLDQQPseudo, Sched<[WriteVLD4]>; def VLD4d16Pseudo : VLDQQPseudo, Sched<[WriteVLD4]>; def VLD4d32Pseudo : VLDQQPseudo, Sched<[WriteVLD4]>; // ...with address register writeback: class VLD4DWB op11_8, bits<4> op7_4, string Dt> : NLdSt<0, 0b10, op11_8, op7_4, (outs DPR:$Vd, DPR:$dst2, DPR:$dst3, DPR:$dst4, GPR:$wb), (ins addrmode6:$Rn, am6offset:$Rm), IIC_VLD4u, "vld4", Dt, "\\{$Vd, $dst2, $dst3, $dst4\\}, $Rn$Rm", "$Rn.addr = $wb", []>, Sched<[WriteVLD4]> { let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST4Instruction"; } def VLD4d8_UPD : VLD4DWB<0b0000, {0,0,?,?}, "8">; def VLD4d16_UPD : VLD4DWB<0b0000, {0,1,?,?}, "16">; def VLD4d32_UPD : VLD4DWB<0b0000, {1,0,?,?}, "32">; def VLD4d8Pseudo_UPD : VLDQQWBPseudo, Sched<[WriteVLD4]>; def VLD4d16Pseudo_UPD : VLDQQWBPseudo, Sched<[WriteVLD4]>; def VLD4d32Pseudo_UPD : VLDQQWBPseudo, Sched<[WriteVLD4]>; // ...with double-spaced registers: def VLD4q8 : VLD4D<0b0001, {0,0,?,?}, "8">; def VLD4q16 : VLD4D<0b0001, {0,1,?,?}, "16">; def VLD4q32 : VLD4D<0b0001, {1,0,?,?}, "32">; def VLD4q8_UPD : VLD4DWB<0b0001, {0,0,?,?}, "8">; def VLD4q16_UPD : VLD4DWB<0b0001, {0,1,?,?}, "16">; def VLD4q32_UPD : VLD4DWB<0b0001, {1,0,?,?}, "32">; def VLD4q8Pseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD4]>; def VLD4q16Pseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD4]>; def VLD4q32Pseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD4]>; // ...alternate versions to be allocated odd register numbers: def VLD4q8oddPseudo : VLDQQQQPseudo, Sched<[WriteVLD4]>; def VLD4q16oddPseudo : VLDQQQQPseudo, Sched<[WriteVLD4]>; def VLD4q32oddPseudo : VLDQQQQPseudo, Sched<[WriteVLD4]>; def VLD4q8oddPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD4]>; def VLD4q16oddPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD4]>; def VLD4q32oddPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD4]>; } // mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1 // Classes for VLD*LN pseudo-instructions with multi-register operands. // These are expanded to real instructions after register allocation. class VLDQLNPseudo : PseudoNLdSt<(outs QPR:$dst), (ins addrmode6:$addr, QPR:$src, nohash_imm:$lane), itin, "$src = $dst">; class VLDQLNWBPseudo : PseudoNLdSt<(outs QPR:$dst, GPR:$wb), (ins addrmode6:$addr, am6offset:$offset, QPR:$src, nohash_imm:$lane), itin, "$addr.addr = $wb, $src = $dst">; class VLDQQLNPseudo : PseudoNLdSt<(outs QQPR:$dst), (ins addrmode6:$addr, QQPR:$src, nohash_imm:$lane), itin, "$src = $dst">; class VLDQQLNWBPseudo : PseudoNLdSt<(outs QQPR:$dst, GPR:$wb), (ins addrmode6:$addr, am6offset:$offset, QQPR:$src, nohash_imm:$lane), itin, "$addr.addr = $wb, $src = $dst">; class VLDQQQQLNPseudo : PseudoNLdSt<(outs QQQQPR:$dst), (ins addrmode6:$addr, QQQQPR:$src, nohash_imm:$lane), itin, "$src = $dst">; class VLDQQQQLNWBPseudo : PseudoNLdSt<(outs QQQQPR:$dst, GPR:$wb), (ins addrmode6:$addr, am6offset:$offset, QQQQPR:$src, nohash_imm:$lane), itin, "$addr.addr = $wb, $src = $dst">; // VLD1LN : Vector Load (single element to one lane) class VLD1LN op11_8, bits<4> op7_4, string Dt, ValueType Ty, PatFrag LoadOp> : NLdStLn<1, 0b10, op11_8, op7_4, (outs DPR:$Vd), (ins addrmode6:$Rn, DPR:$src, nohash_imm:$lane), IIC_VLD1ln, "vld1", Dt, "\\{$Vd[$lane]\\}, $Rn", "$src = $Vd", [(set DPR:$Vd, (vector_insert (Ty DPR:$src), (i32 (LoadOp addrmode6:$Rn)), imm:$lane))]> { let Rm = 0b1111; let DecoderMethod = "DecodeVLD1LN"; } class VLD1LN32 op11_8, bits<4> op7_4, string Dt, ValueType Ty, PatFrag LoadOp> : NLdStLn<1, 0b10, op11_8, op7_4, (outs DPR:$Vd), (ins addrmode6oneL32:$Rn, DPR:$src, nohash_imm:$lane), IIC_VLD1ln, "vld1", Dt, "\\{$Vd[$lane]\\}, $Rn", "$src = $Vd", [(set DPR:$Vd, (vector_insert (Ty DPR:$src), (i32 (LoadOp addrmode6oneL32:$Rn)), imm:$lane))]>, Sched<[WriteVLD1]> { let Rm = 0b1111; let DecoderMethod = "DecodeVLD1LN"; } class VLD1QLNPseudo : VLDQLNPseudo, Sched<[WriteVLD1]> { let Pattern = [(set QPR:$dst, (vector_insert (Ty QPR:$src), (i32 (LoadOp addrmode6:$addr)), imm:$lane))]; } def VLD1LNd8 : VLD1LN<0b0000, {?,?,?,0}, "8", v8i8, extloadi8> { let Inst{7-5} = lane{2-0}; } def VLD1LNd16 : VLD1LN<0b0100, {?,?,0,?}, "16", v4i16, extloadi16> { let Inst{7-6} = lane{1-0}; let Inst{5-4} = Rn{5-4}; } def VLD1LNd32 : VLD1LN32<0b1000, {?,0,?,?}, "32", v2i32, load> { let Inst{7} = lane{0}; let Inst{5-4} = Rn{5-4}; } def VLD1LNq8Pseudo : VLD1QLNPseudo; def VLD1LNq16Pseudo : VLD1QLNPseudo; def VLD1LNq32Pseudo : VLD1QLNPseudo; let Predicates = [HasNEON] in { def : Pat<(vector_insert (v4f16 DPR:$src), (f16 (load addrmode6:$addr)), imm:$lane), (VLD1LNd16 addrmode6:$addr, DPR:$src, imm:$lane)>; def : Pat<(vector_insert (v8f16 QPR:$src), (f16 (load addrmode6:$addr)), imm:$lane), (VLD1LNq16Pseudo addrmode6:$addr, QPR:$src, imm:$lane)>; def : Pat<(vector_insert (v4bf16 DPR:$src), (bf16 (load addrmode6:$addr)), imm:$lane), (VLD1LNd16 addrmode6:$addr, DPR:$src, imm:$lane)>; def : Pat<(vector_insert (v8bf16 QPR:$src), (bf16 (load addrmode6:$addr)), imm:$lane), (VLD1LNq16Pseudo addrmode6:$addr, QPR:$src, imm:$lane)>; def : Pat<(vector_insert (v2f32 DPR:$src), (f32 (load addrmode6:$addr)), imm:$lane), (VLD1LNd32 addrmode6:$addr, DPR:$src, imm:$lane)>; def : Pat<(vector_insert (v4f32 QPR:$src), (f32 (load addrmode6:$addr)), imm:$lane), (VLD1LNq32Pseudo addrmode6:$addr, QPR:$src, imm:$lane)>; // A 64-bit subvector insert to the first 128-bit vector position // is a subregister copy that needs no instruction. def : Pat<(insert_subvector undef, (v1i64 DPR:$src), (i32 0)), (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), DPR:$src, dsub_0)>; def : Pat<(insert_subvector undef, (v2i32 DPR:$src), (i32 0)), (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), DPR:$src, dsub_0)>; def : Pat<(insert_subvector undef, (v2f32 DPR:$src), (i32 0)), (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), DPR:$src, dsub_0)>; def : Pat<(insert_subvector undef, (v4i16 DPR:$src), (i32 0)), (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), DPR:$src, dsub_0)>; def : Pat<(insert_subvector undef, (v4f16 DPR:$src), (i32 0)), (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), DPR:$src, dsub_0)>; def : Pat<(insert_subvector (v16i8 undef), (v8i8 DPR:$src), (i32 0)), (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), DPR:$src, dsub_0)>; } let mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1 in { // ...with address register writeback: class VLD1LNWB op11_8, bits<4> op7_4, string Dt> : NLdStLn<1, 0b10, op11_8, op7_4, (outs DPR:$Vd, GPR:$wb), (ins addrmode6:$Rn, am6offset:$Rm, DPR:$src, nohash_imm:$lane), IIC_VLD1lnu, "vld1", Dt, "\\{$Vd[$lane]\\}, $Rn$Rm", "$src = $Vd, $Rn.addr = $wb", []>, Sched<[WriteVLD1]> { let DecoderMethod = "DecodeVLD1LN"; } def VLD1LNd8_UPD : VLD1LNWB<0b0000, {?,?,?,0}, "8"> { let Inst{7-5} = lane{2-0}; } def VLD1LNd16_UPD : VLD1LNWB<0b0100, {?,?,0,?}, "16"> { let Inst{7-6} = lane{1-0}; let Inst{4} = Rn{4}; } def VLD1LNd32_UPD : VLD1LNWB<0b1000, {?,0,?,?}, "32"> { let Inst{7} = lane{0}; let Inst{5} = Rn{4}; let Inst{4} = Rn{4}; } def VLD1LNq8Pseudo_UPD : VLDQLNWBPseudo, Sched<[WriteVLD1]>; def VLD1LNq16Pseudo_UPD : VLDQLNWBPseudo, Sched<[WriteVLD1]>; def VLD1LNq32Pseudo_UPD : VLDQLNWBPseudo, Sched<[WriteVLD1]>; // VLD2LN : Vector Load (single 2-element structure to one lane) class VLD2LN op11_8, bits<4> op7_4, string Dt> : NLdStLn<1, 0b10, op11_8, op7_4, (outs DPR:$Vd, DPR:$dst2), (ins addrmode6:$Rn, DPR:$src1, DPR:$src2, nohash_imm:$lane), IIC_VLD2ln, "vld2", Dt, "\\{$Vd[$lane], $dst2[$lane]\\}, $Rn", "$src1 = $Vd, $src2 = $dst2", []>, Sched<[WriteVLD1]> { let Rm = 0b1111; let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLD2LN"; } def VLD2LNd8 : VLD2LN<0b0001, {?,?,?,?}, "8"> { let Inst{7-5} = lane{2-0}; } def VLD2LNd16 : VLD2LN<0b0101, {?,?,0,?}, "16"> { let Inst{7-6} = lane{1-0}; } def VLD2LNd32 : VLD2LN<0b1001, {?,0,0,?}, "32"> { let Inst{7} = lane{0}; } def VLD2LNd8Pseudo : VLDQLNPseudo, Sched<[WriteVLD1]>; def VLD2LNd16Pseudo : VLDQLNPseudo, Sched<[WriteVLD1]>; def VLD2LNd32Pseudo : VLDQLNPseudo, Sched<[WriteVLD1]>; // ...with double-spaced registers: def VLD2LNq16 : VLD2LN<0b0101, {?,?,1,?}, "16"> { let Inst{7-6} = lane{1-0}; } def VLD2LNq32 : VLD2LN<0b1001, {?,1,0,?}, "32"> { let Inst{7} = lane{0}; } def VLD2LNq16Pseudo : VLDQQLNPseudo, Sched<[WriteVLD1]>; def VLD2LNq32Pseudo : VLDQQLNPseudo, Sched<[WriteVLD1]>; // ...with address register writeback: class VLD2LNWB op11_8, bits<4> op7_4, string Dt> : NLdStLn<1, 0b10, op11_8, op7_4, (outs DPR:$Vd, DPR:$dst2, GPR:$wb), (ins addrmode6:$Rn, am6offset:$Rm, DPR:$src1, DPR:$src2, nohash_imm:$lane), IIC_VLD2lnu, "vld2", Dt, "\\{$Vd[$lane], $dst2[$lane]\\}, $Rn$Rm", "$src1 = $Vd, $src2 = $dst2, $Rn.addr = $wb", []> { let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLD2LN"; } def VLD2LNd8_UPD : VLD2LNWB<0b0001, {?,?,?,?}, "8"> { let Inst{7-5} = lane{2-0}; } def VLD2LNd16_UPD : VLD2LNWB<0b0101, {?,?,0,?}, "16"> { let Inst{7-6} = lane{1-0}; } def VLD2LNd32_UPD : VLD2LNWB<0b1001, {?,0,0,?}, "32"> { let Inst{7} = lane{0}; } def VLD2LNd8Pseudo_UPD : VLDQLNWBPseudo, Sched<[WriteVLD1]>; def VLD2LNd16Pseudo_UPD : VLDQLNWBPseudo, Sched<[WriteVLD1]>; def VLD2LNd32Pseudo_UPD : VLDQLNWBPseudo, Sched<[WriteVLD1]>; def VLD2LNq16_UPD : VLD2LNWB<0b0101, {?,?,1,?}, "16"> { let Inst{7-6} = lane{1-0}; } def VLD2LNq32_UPD : VLD2LNWB<0b1001, {?,1,0,?}, "32"> { let Inst{7} = lane{0}; } def VLD2LNq16Pseudo_UPD : VLDQQLNWBPseudo, Sched<[WriteVLD1]>; def VLD2LNq32Pseudo_UPD : VLDQQLNWBPseudo, Sched<[WriteVLD1]>; // VLD3LN : Vector Load (single 3-element structure to one lane) class VLD3LN op11_8, bits<4> op7_4, string Dt> : NLdStLn<1, 0b10, op11_8, op7_4, (outs DPR:$Vd, DPR:$dst2, DPR:$dst3), (ins addrmode6:$Rn, DPR:$src1, DPR:$src2, DPR:$src3, nohash_imm:$lane), IIC_VLD3ln, "vld3", Dt, "\\{$Vd[$lane], $dst2[$lane], $dst3[$lane]\\}, $Rn", "$src1 = $Vd, $src2 = $dst2, $src3 = $dst3", []>, Sched<[WriteVLD2]> { let Rm = 0b1111; let DecoderMethod = "DecodeVLD3LN"; } def VLD3LNd8 : VLD3LN<0b0010, {?,?,?,0}, "8"> { let Inst{7-5} = lane{2-0}; } def VLD3LNd16 : VLD3LN<0b0110, {?,?,0,0}, "16"> { let Inst{7-6} = lane{1-0}; } def VLD3LNd32 : VLD3LN<0b1010, {?,0,0,0}, "32"> { let Inst{7} = lane{0}; } def VLD3LNd8Pseudo : VLDQQLNPseudo, Sched<[WriteVLD2]>; def VLD3LNd16Pseudo : VLDQQLNPseudo, Sched<[WriteVLD2]>; def VLD3LNd32Pseudo : VLDQQLNPseudo, Sched<[WriteVLD2]>; // ...with double-spaced registers: def VLD3LNq16 : VLD3LN<0b0110, {?,?,1,0}, "16"> { let Inst{7-6} = lane{1-0}; } def VLD3LNq32 : VLD3LN<0b1010, {?,1,0,0}, "32"> { let Inst{7} = lane{0}; } def VLD3LNq16Pseudo : VLDQQQQLNPseudo, Sched<[WriteVLD2]>; def VLD3LNq32Pseudo : VLDQQQQLNPseudo, Sched<[WriteVLD2]>; // ...with address register writeback: class VLD3LNWB op11_8, bits<4> op7_4, string Dt> : NLdStLn<1, 0b10, op11_8, op7_4, (outs DPR:$Vd, DPR:$dst2, DPR:$dst3, GPR:$wb), (ins addrmode6:$Rn, am6offset:$Rm, DPR:$src1, DPR:$src2, DPR:$src3, nohash_imm:$lane), IIC_VLD3lnu, "vld3", Dt, "\\{$Vd[$lane], $dst2[$lane], $dst3[$lane]\\}, $Rn$Rm", "$src1 = $Vd, $src2 = $dst2, $src3 = $dst3, $Rn.addr = $wb", []>, Sched<[WriteVLD2]> { let DecoderMethod = "DecodeVLD3LN"; } def VLD3LNd8_UPD : VLD3LNWB<0b0010, {?,?,?,0}, "8"> { let Inst{7-5} = lane{2-0}; } def VLD3LNd16_UPD : VLD3LNWB<0b0110, {?,?,0,0}, "16"> { let Inst{7-6} = lane{1-0}; } def VLD3LNd32_UPD : VLD3LNWB<0b1010, {?,0,0,0}, "32"> { let Inst{7} = lane{0}; } def VLD3LNd8Pseudo_UPD : VLDQQLNWBPseudo, Sched<[WriteVLD2]>; def VLD3LNd16Pseudo_UPD : VLDQQLNWBPseudo, Sched<[WriteVLD2]>; def VLD3LNd32Pseudo_UPD : VLDQQLNWBPseudo, Sched<[WriteVLD2]>; def VLD3LNq16_UPD : VLD3LNWB<0b0110, {?,?,1,0}, "16"> { let Inst{7-6} = lane{1-0}; } def VLD3LNq32_UPD : VLD3LNWB<0b1010, {?,1,0,0}, "32"> { let Inst{7} = lane{0}; } def VLD3LNq16Pseudo_UPD : VLDQQQQLNWBPseudo, Sched<[WriteVLD2]>; def VLD3LNq32Pseudo_UPD : VLDQQQQLNWBPseudo, Sched<[WriteVLD2]>; // VLD4LN : Vector Load (single 4-element structure to one lane) class VLD4LN op11_8, bits<4> op7_4, string Dt> : NLdStLn<1, 0b10, op11_8, op7_4, (outs DPR:$Vd, DPR:$dst2, DPR:$dst3, DPR:$dst4), (ins addrmode6:$Rn, DPR:$src1, DPR:$src2, DPR:$src3, DPR:$src4, nohash_imm:$lane), IIC_VLD4ln, "vld4", Dt, "\\{$Vd[$lane], $dst2[$lane], $dst3[$lane], $dst4[$lane]\\}, $Rn", "$src1 = $Vd, $src2 = $dst2, $src3 = $dst3, $src4 = $dst4", []>, Sched<[WriteVLD2]> { let Rm = 0b1111; let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLD4LN"; } def VLD4LNd8 : VLD4LN<0b0011, {?,?,?,?}, "8"> { let Inst{7-5} = lane{2-0}; } def VLD4LNd16 : VLD4LN<0b0111, {?,?,0,?}, "16"> { let Inst{7-6} = lane{1-0}; } def VLD4LNd32 : VLD4LN<0b1011, {?,0,?,?}, "32"> { let Inst{7} = lane{0}; let Inst{5} = Rn{5}; } def VLD4LNd8Pseudo : VLDQQLNPseudo, Sched<[WriteVLD2]>; def VLD4LNd16Pseudo : VLDQQLNPseudo, Sched<[WriteVLD2]>; def VLD4LNd32Pseudo : VLDQQLNPseudo, Sched<[WriteVLD2]>; // ...with double-spaced registers: def VLD4LNq16 : VLD4LN<0b0111, {?,?,1,?}, "16"> { let Inst{7-6} = lane{1-0}; } def VLD4LNq32 : VLD4LN<0b1011, {?,1,?,?}, "32"> { let Inst{7} = lane{0}; let Inst{5} = Rn{5}; } def VLD4LNq16Pseudo : VLDQQQQLNPseudo, Sched<[WriteVLD2]>; def VLD4LNq32Pseudo : VLDQQQQLNPseudo, Sched<[WriteVLD2]>; // ...with address register writeback: class VLD4LNWB op11_8, bits<4> op7_4, string Dt> : NLdStLn<1, 0b10, op11_8, op7_4, (outs DPR:$Vd, DPR:$dst2, DPR:$dst3, DPR:$dst4, GPR:$wb), (ins addrmode6:$Rn, am6offset:$Rm, DPR:$src1, DPR:$src2, DPR:$src3, DPR:$src4, nohash_imm:$lane), IIC_VLD4lnu, "vld4", Dt, "\\{$Vd[$lane], $dst2[$lane], $dst3[$lane], $dst4[$lane]\\}, $Rn$Rm", "$src1 = $Vd, $src2 = $dst2, $src3 = $dst3, $src4 = $dst4, $Rn.addr = $wb", []> { let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLD4LN" ; } def VLD4LNd8_UPD : VLD4LNWB<0b0011, {?,?,?,?}, "8"> { let Inst{7-5} = lane{2-0}; } def VLD4LNd16_UPD : VLD4LNWB<0b0111, {?,?,0,?}, "16"> { let Inst{7-6} = lane{1-0}; } def VLD4LNd32_UPD : VLD4LNWB<0b1011, {?,0,?,?}, "32"> { let Inst{7} = lane{0}; let Inst{5} = Rn{5}; } def VLD4LNd8Pseudo_UPD : VLDQQLNWBPseudo, Sched<[WriteVLD2]>; def VLD4LNd16Pseudo_UPD : VLDQQLNWBPseudo, Sched<[WriteVLD2]>; def VLD4LNd32Pseudo_UPD : VLDQQLNWBPseudo, Sched<[WriteVLD2]>; def VLD4LNq16_UPD : VLD4LNWB<0b0111, {?,?,1,?}, "16"> { let Inst{7-6} = lane{1-0}; } def VLD4LNq32_UPD : VLD4LNWB<0b1011, {?,1,?,?}, "32"> { let Inst{7} = lane{0}; let Inst{5} = Rn{5}; } def VLD4LNq16Pseudo_UPD : VLDQQQQLNWBPseudo, Sched<[WriteVLD2]>; def VLD4LNq32Pseudo_UPD : VLDQQQQLNWBPseudo, Sched<[WriteVLD2]>; } // mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1 // VLD1DUP : Vector Load (single element to all lanes) class VLD1DUP op7_4, string Dt, ValueType Ty, PatFrag LoadOp, Operand AddrMode> : NLdSt<1, 0b10, 0b1100, op7_4, (outs VecListOneDAllLanes:$Vd), (ins AddrMode:$Rn), IIC_VLD1dup, "vld1", Dt, "$Vd, $Rn", "", [(set VecListOneDAllLanes:$Vd, (Ty (ARMvdup (i32 (LoadOp AddrMode:$Rn)))))]>, Sched<[WriteVLD2]> { let Rm = 0b1111; let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLD1DupInstruction"; } def VLD1DUPd8 : VLD1DUP<{0,0,0,?}, "8", v8i8, extloadi8, addrmode6dupalignNone>; def VLD1DUPd16 : VLD1DUP<{0,1,0,?}, "16", v4i16, extloadi16, addrmode6dupalign16>; def VLD1DUPd32 : VLD1DUP<{1,0,0,?}, "32", v2i32, load, addrmode6dupalign32>; let Predicates = [HasNEON] in { def : Pat<(v2f32 (ARMvdup (f32 (load addrmode6dup:$addr)))), (VLD1DUPd32 addrmode6:$addr)>; } class VLD1QDUP op7_4, string Dt, ValueType Ty, PatFrag LoadOp, Operand AddrMode> : NLdSt<1, 0b10, 0b1100, op7_4, (outs VecListDPairAllLanes:$Vd), (ins AddrMode:$Rn), IIC_VLD1dup, "vld1", Dt, "$Vd, $Rn", "", [(set VecListDPairAllLanes:$Vd, (Ty (ARMvdup (i32 (LoadOp AddrMode:$Rn)))))]> { let Rm = 0b1111; let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLD1DupInstruction"; } def VLD1DUPq8 : VLD1QDUP<{0,0,1,0}, "8", v16i8, extloadi8, addrmode6dupalignNone>; def VLD1DUPq16 : VLD1QDUP<{0,1,1,?}, "16", v8i16, extloadi16, addrmode6dupalign16>; def VLD1DUPq32 : VLD1QDUP<{1,0,1,?}, "32", v4i32, load, addrmode6dupalign32>; let Predicates = [HasNEON] in { def : Pat<(v4f32 (ARMvdup (f32 (load addrmode6dup:$addr)))), (VLD1DUPq32 addrmode6:$addr)>; } let mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1 in { // ...with address register writeback: multiclass VLD1DUPWB op7_4, string Dt, Operand AddrMode> { def _fixed : NLdSt<1, 0b10, 0b1100, op7_4, (outs VecListOneDAllLanes:$Vd, GPR:$wb), (ins AddrMode:$Rn), IIC_VLD1dupu, "vld1", Dt, "$Vd, $Rn!", "$Rn.addr = $wb", []> { let Rm = 0b1101; // NLdSt will assign to the right encoding bits. let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLD1DupInstruction"; } def _register : NLdSt<1, 0b10, 0b1100, op7_4, (outs VecListOneDAllLanes:$Vd, GPR:$wb), (ins AddrMode:$Rn, rGPR:$Rm), IIC_VLD1dupu, "vld1", Dt, "$Vd, $Rn, $Rm", "$Rn.addr = $wb", []> { let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLD1DupInstruction"; } } multiclass VLD1QDUPWB op7_4, string Dt, Operand AddrMode> { def _fixed : NLdSt<1, 0b10, 0b1100, op7_4, (outs VecListDPairAllLanes:$Vd, GPR:$wb), (ins AddrMode:$Rn), IIC_VLD1dupu, "vld1", Dt, "$Vd, $Rn!", "$Rn.addr = $wb", []>, Sched<[WriteVLD1]> { let Rm = 0b1101; // NLdSt will assign to the right encoding bits. let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLD1DupInstruction"; } def _register : NLdSt<1, 0b10, 0b1100, op7_4, (outs VecListDPairAllLanes:$Vd, GPR:$wb), (ins AddrMode:$Rn, rGPR:$Rm), IIC_VLD1dupu, "vld1", Dt, "$Vd, $Rn, $Rm", "$Rn.addr = $wb", []> { let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLD1DupInstruction"; } } defm VLD1DUPd8wb : VLD1DUPWB<{0,0,0,0}, "8", addrmode6dupalignNone>; defm VLD1DUPd16wb : VLD1DUPWB<{0,1,0,?}, "16", addrmode6dupalign16>; defm VLD1DUPd32wb : VLD1DUPWB<{1,0,0,?}, "32", addrmode6dupalign32>; defm VLD1DUPq8wb : VLD1QDUPWB<{0,0,1,0}, "8", addrmode6dupalignNone>; defm VLD1DUPq16wb : VLD1QDUPWB<{0,1,1,?}, "16", addrmode6dupalign16>; defm VLD1DUPq32wb : VLD1QDUPWB<{1,0,1,?}, "32", addrmode6dupalign32>; // VLD2DUP : Vector Load (single 2-element structure to all lanes) class VLD2DUP op7_4, string Dt, RegisterOperand VdTy, Operand AddrMode> : NLdSt<1, 0b10, 0b1101, op7_4, (outs VdTy:$Vd), (ins AddrMode:$Rn), IIC_VLD2dup, "vld2", Dt, "$Vd, $Rn", "", []> { let Rm = 0b1111; let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLD2DupInstruction"; } def VLD2DUPd8 : VLD2DUP<{0,0,0,?}, "8", VecListDPairAllLanes, addrmode6dupalign16>; def VLD2DUPd16 : VLD2DUP<{0,1,0,?}, "16", VecListDPairAllLanes, addrmode6dupalign32>; def VLD2DUPd32 : VLD2DUP<{1,0,0,?}, "32", VecListDPairAllLanes, addrmode6dupalign64>; // HACK this one, VLD2DUPd8x2 must be changed at the same time with VLD2b8 or // "vld2.8 {d0[], d2[]}, [r4:32]" will become "vld2.8 {d0, d2}, [r4:32]". // ...with double-spaced registers def VLD2DUPd8x2 : VLD2DUP<{0,0,1,?}, "8", VecListDPairSpacedAllLanes, addrmode6dupalign16>; def VLD2DUPd16x2 : VLD2DUP<{0,1,1,?}, "16", VecListDPairSpacedAllLanes, addrmode6dupalign32>; def VLD2DUPd32x2 : VLD2DUP<{1,0,1,?}, "32", VecListDPairSpacedAllLanes, addrmode6dupalign64>; def VLD2DUPq8EvenPseudo : VLDQQPseudo, Sched<[WriteVLD2]>; def VLD2DUPq8OddPseudo : VLDQQPseudo, Sched<[WriteVLD2]>; def VLD2DUPq16EvenPseudo : VLDQQPseudo, Sched<[WriteVLD2]>; def VLD2DUPq16OddPseudo : VLDQQPseudo, Sched<[WriteVLD2]>; def VLD2DUPq32EvenPseudo : VLDQQPseudo, Sched<[WriteVLD2]>; def VLD2DUPq32OddPseudo : VLDQQPseudo, Sched<[WriteVLD2]>; // ...with address register writeback: multiclass VLD2DUPWB op7_4, string Dt, RegisterOperand VdTy, Operand AddrMode> { def _fixed : NLdSt<1, 0b10, 0b1101, op7_4, (outs VdTy:$Vd, GPR:$wb), (ins AddrMode:$Rn), IIC_VLD2dupu, "vld2", Dt, "$Vd, $Rn!", "$Rn.addr = $wb", []>, Sched<[WriteVLD1]> { let Rm = 0b1101; // NLdSt will assign to the right encoding bits. let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLD2DupInstruction"; } def _register : NLdSt<1, 0b10, 0b1101, op7_4, (outs VdTy:$Vd, GPR:$wb), (ins AddrMode:$Rn, rGPR:$Rm), IIC_VLD2dupu, "vld2", Dt, "$Vd, $Rn, $Rm", "$Rn.addr = $wb", []>, Sched<[WriteVLD1]> { let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLD2DupInstruction"; } } defm VLD2DUPd8wb : VLD2DUPWB<{0,0,0,0}, "8", VecListDPairAllLanes, addrmode6dupalign16>; defm VLD2DUPd16wb : VLD2DUPWB<{0,1,0,?}, "16", VecListDPairAllLanes, addrmode6dupalign32>; defm VLD2DUPd32wb : VLD2DUPWB<{1,0,0,?}, "32", VecListDPairAllLanes, addrmode6dupalign64>; defm VLD2DUPd8x2wb : VLD2DUPWB<{0,0,1,0}, "8", VecListDPairSpacedAllLanes, addrmode6dupalign16>; defm VLD2DUPd16x2wb : VLD2DUPWB<{0,1,1,?}, "16", VecListDPairSpacedAllLanes, addrmode6dupalign32>; defm VLD2DUPd32x2wb : VLD2DUPWB<{1,0,1,?}, "32", VecListDPairSpacedAllLanes, addrmode6dupalign64>; def VLD2DUPq8OddPseudoWB_fixed : VLDQQWBfixedPseudo, Sched<[WriteVLD2]>; def VLD2DUPq16OddPseudoWB_fixed : VLDQQWBfixedPseudo, Sched<[WriteVLD2]>; def VLD2DUPq32OddPseudoWB_fixed : VLDQQWBfixedPseudo, Sched<[WriteVLD2]>; def VLD2DUPq8OddPseudoWB_register : VLDQQWBPseudo, Sched<[WriteVLD2]>; def VLD2DUPq16OddPseudoWB_register : VLDQQWBPseudo, Sched<[WriteVLD2]>; def VLD2DUPq32OddPseudoWB_register : VLDQQWBPseudo, Sched<[WriteVLD2]>; // VLD3DUP : Vector Load (single 3-element structure to all lanes) class VLD3DUP op7_4, string Dt> : NLdSt<1, 0b10, 0b1110, op7_4, (outs DPR:$Vd, DPR:$dst2, DPR:$dst3), (ins addrmode6dup:$Rn), IIC_VLD3dup, "vld3", Dt, "\\{$Vd[], $dst2[], $dst3[]\\}, $Rn", "", []>, Sched<[WriteVLD2]> { let Rm = 0b1111; let Inst{4} = 0; let DecoderMethod = "DecodeVLD3DupInstruction"; } def VLD3DUPd8 : VLD3DUP<{0,0,0,?}, "8">; def VLD3DUPd16 : VLD3DUP<{0,1,0,?}, "16">; def VLD3DUPd32 : VLD3DUP<{1,0,0,?}, "32">; def VLD3DUPd8Pseudo : VLDQQPseudo, Sched<[WriteVLD2]>; def VLD3DUPd16Pseudo : VLDQQPseudo, Sched<[WriteVLD2]>; def VLD3DUPd32Pseudo : VLDQQPseudo, Sched<[WriteVLD2]>; // ...with double-spaced registers (not used for codegen): def VLD3DUPq8 : VLD3DUP<{0,0,1,?}, "8">; def VLD3DUPq16 : VLD3DUP<{0,1,1,?}, "16">; def VLD3DUPq32 : VLD3DUP<{1,0,1,?}, "32">; def VLD3DUPq8EvenPseudo : VLDQQQQPseudo, Sched<[WriteVLD2]>; def VLD3DUPq8OddPseudo : VLDQQQQPseudo, Sched<[WriteVLD2]>; def VLD3DUPq16EvenPseudo : VLDQQQQPseudo, Sched<[WriteVLD2]>; def VLD3DUPq16OddPseudo : VLDQQQQPseudo, Sched<[WriteVLD2]>; def VLD3DUPq32EvenPseudo : VLDQQQQPseudo, Sched<[WriteVLD2]>; def VLD3DUPq32OddPseudo : VLDQQQQPseudo, Sched<[WriteVLD2]>; // ...with address register writeback: class VLD3DUPWB op7_4, string Dt, Operand AddrMode> : NLdSt<1, 0b10, 0b1110, op7_4, (outs DPR:$Vd, DPR:$dst2, DPR:$dst3, GPR:$wb), (ins AddrMode:$Rn, am6offset:$Rm), IIC_VLD3dupu, "vld3", Dt, "\\{$Vd[], $dst2[], $dst3[]\\}, $Rn$Rm", "$Rn.addr = $wb", []>, Sched<[WriteVLD2]> { let Inst{4} = 0; let DecoderMethod = "DecodeVLD3DupInstruction"; } def VLD3DUPd8_UPD : VLD3DUPWB<{0,0,0,0}, "8", addrmode6dupalign64>; def VLD3DUPd16_UPD : VLD3DUPWB<{0,1,0,?}, "16", addrmode6dupalign64>; def VLD3DUPd32_UPD : VLD3DUPWB<{1,0,0,?}, "32", addrmode6dupalign64>; def VLD3DUPq8_UPD : VLD3DUPWB<{0,0,1,0}, "8", addrmode6dupalign64>; def VLD3DUPq16_UPD : VLD3DUPWB<{0,1,1,?}, "16", addrmode6dupalign64>; def VLD3DUPq32_UPD : VLD3DUPWB<{1,0,1,?}, "32", addrmode6dupalign64>; def VLD3DUPd8Pseudo_UPD : VLDQQWBPseudo, Sched<[WriteVLD2]>; def VLD3DUPd16Pseudo_UPD : VLDQQWBPseudo, Sched<[WriteVLD2]>; def VLD3DUPd32Pseudo_UPD : VLDQQWBPseudo, Sched<[WriteVLD2]>; def VLD3DUPq8OddPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD2]>; def VLD3DUPq16OddPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD2]>; def VLD3DUPq32OddPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD2]>; // VLD4DUP : Vector Load (single 4-element structure to all lanes) class VLD4DUP op7_4, string Dt> : NLdSt<1, 0b10, 0b1111, op7_4, (outs DPR:$Vd, DPR:$dst2, DPR:$dst3, DPR:$dst4), (ins addrmode6dup:$Rn), IIC_VLD4dup, "vld4", Dt, "\\{$Vd[], $dst2[], $dst3[], $dst4[]\\}, $Rn", "", []> { let Rm = 0b1111; let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLD4DupInstruction"; } def VLD4DUPd8 : VLD4DUP<{0,0,0,?}, "8">; def VLD4DUPd16 : VLD4DUP<{0,1,0,?}, "16">; def VLD4DUPd32 : VLD4DUP<{1,?,0,?}, "32"> { let Inst{6} = Rn{5}; } def VLD4DUPd8Pseudo : VLDQQPseudo, Sched<[WriteVLD2]>; def VLD4DUPd16Pseudo : VLDQQPseudo, Sched<[WriteVLD2]>; def VLD4DUPd32Pseudo : VLDQQPseudo, Sched<[WriteVLD2]>; // ...with double-spaced registers (not used for codegen): def VLD4DUPq8 : VLD4DUP<{0,0,1,?}, "8">; def VLD4DUPq16 : VLD4DUP<{0,1,1,?}, "16">; def VLD4DUPq32 : VLD4DUP<{1,?,1,?}, "32"> { let Inst{6} = Rn{5}; } def VLD4DUPq8EvenPseudo : VLDQQQQPseudo, Sched<[WriteVLD2]>; def VLD4DUPq8OddPseudo : VLDQQQQPseudo, Sched<[WriteVLD2]>; def VLD4DUPq16EvenPseudo : VLDQQQQPseudo, Sched<[WriteVLD2]>; def VLD4DUPq16OddPseudo : VLDQQQQPseudo, Sched<[WriteVLD2]>; def VLD4DUPq32EvenPseudo : VLDQQQQPseudo, Sched<[WriteVLD2]>; def VLD4DUPq32OddPseudo : VLDQQQQPseudo, Sched<[WriteVLD2]>; // ...with address register writeback: class VLD4DUPWB op7_4, string Dt> : NLdSt<1, 0b10, 0b1111, op7_4, (outs DPR:$Vd, DPR:$dst2, DPR:$dst3, DPR:$dst4, GPR:$wb), (ins addrmode6dup:$Rn, am6offset:$Rm), IIC_VLD4dupu, "vld4", Dt, "\\{$Vd[], $dst2[], $dst3[], $dst4[]\\}, $Rn$Rm", "$Rn.addr = $wb", []>, Sched<[WriteVLD2]> { let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLD4DupInstruction"; } def VLD4DUPd8_UPD : VLD4DUPWB<{0,0,0,0}, "8">; def VLD4DUPd16_UPD : VLD4DUPWB<{0,1,0,?}, "16">; def VLD4DUPd32_UPD : VLD4DUPWB<{1,?,0,?}, "32"> { let Inst{6} = Rn{5}; } def VLD4DUPq8_UPD : VLD4DUPWB<{0,0,1,0}, "8">; def VLD4DUPq16_UPD : VLD4DUPWB<{0,1,1,?}, "16">; def VLD4DUPq32_UPD : VLD4DUPWB<{1,?,1,?}, "32"> { let Inst{6} = Rn{5}; } def VLD4DUPd8Pseudo_UPD : VLDQQWBPseudo, Sched<[WriteVLD2]>; def VLD4DUPd16Pseudo_UPD : VLDQQWBPseudo, Sched<[WriteVLD2]>; def VLD4DUPd32Pseudo_UPD : VLDQQWBPseudo, Sched<[WriteVLD2]>; def VLD4DUPq8OddPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD2]>; def VLD4DUPq16OddPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD2]>; def VLD4DUPq32OddPseudo_UPD : VLDQQQQWBPseudo, Sched<[WriteVLD2]>; } // mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1 let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in { // Classes for VST* pseudo-instructions with multi-register operands. // These are expanded to real instructions after register allocation. class VSTQPseudo : PseudoNLdSt<(outs), (ins addrmode6:$addr, QPR:$src), itin, "">; class VSTQWBPseudo : PseudoNLdSt<(outs GPR:$wb), (ins addrmode6:$addr, am6offset:$offset, QPR:$src), itin, "$addr.addr = $wb">; class VSTQWBfixedPseudo : PseudoNLdSt<(outs GPR:$wb), (ins addrmode6:$addr, QPR:$src), itin, "$addr.addr = $wb">; class VSTQWBregisterPseudo : PseudoNLdSt<(outs GPR:$wb), (ins addrmode6:$addr, rGPR:$offset, QPR:$src), itin, "$addr.addr = $wb">; class VSTQQPseudo : PseudoNLdSt<(outs), (ins addrmode6:$addr, QQPR:$src), itin, "">; class VSTQQWBPseudo : PseudoNLdSt<(outs GPR:$wb), (ins addrmode6:$addr, am6offset:$offset, QQPR:$src), itin, "$addr.addr = $wb">; class VSTQQWBfixedPseudo : PseudoNLdSt<(outs GPR:$wb), (ins addrmode6:$addr, QQPR:$src), itin, "$addr.addr = $wb">; class VSTQQWBregisterPseudo : PseudoNLdSt<(outs GPR:$wb), (ins addrmode6:$addr, rGPR:$offset, QQPR:$src), itin, "$addr.addr = $wb">; class VSTQQQQPseudo : PseudoNLdSt<(outs), (ins addrmode6:$addr, QQQQPR:$src), itin, "">; class VSTQQQQWBPseudo : PseudoNLdSt<(outs GPR:$wb), (ins addrmode6:$addr, am6offset:$offset, QQQQPR:$src), itin, "$addr.addr = $wb">; // VST1 : Vector Store (multiple single elements) class VST1D op7_4, string Dt, Operand AddrMode> : NLdSt<0,0b00,0b0111,op7_4, (outs), (ins AddrMode:$Rn, VecListOneD:$Vd), IIC_VST1, "vst1", Dt, "$Vd, $Rn", "", []>, Sched<[WriteVST1]> { let Rm = 0b1111; let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLDST1Instruction"; } class VST1Q op7_4, string Dt, Operand AddrMode> : NLdSt<0,0b00,0b1010,op7_4, (outs), (ins AddrMode:$Rn, VecListDPair:$Vd), IIC_VST1x2, "vst1", Dt, "$Vd, $Rn", "", []>, Sched<[WriteVST2]> { let Rm = 0b1111; let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST1Instruction"; } def VST1d8 : VST1D<{0,0,0,?}, "8", addrmode6align64>; def VST1d16 : VST1D<{0,1,0,?}, "16", addrmode6align64>; def VST1d32 : VST1D<{1,0,0,?}, "32", addrmode6align64>; def VST1d64 : VST1D<{1,1,0,?}, "64", addrmode6align64>; def VST1q8 : VST1Q<{0,0,?,?}, "8", addrmode6align64or128>; def VST1q16 : VST1Q<{0,1,?,?}, "16", addrmode6align64or128>; def VST1q32 : VST1Q<{1,0,?,?}, "32", addrmode6align64or128>; def VST1q64 : VST1Q<{1,1,?,?}, "64", addrmode6align64or128>; // ...with address register writeback: multiclass VST1DWB op7_4, string Dt, Operand AddrMode> { def _fixed : NLdSt<0,0b00, 0b0111,op7_4, (outs GPR:$wb), (ins AddrMode:$Rn, VecListOneD:$Vd), IIC_VLD1u, "vst1", Dt, "$Vd, $Rn!", "$Rn.addr = $wb", []>, Sched<[WriteVST1]> { let Rm = 0b1101; // NLdSt will assign to the right encoding bits. let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLDST1Instruction"; } def _register : NLdSt<0,0b00,0b0111,op7_4, (outs GPR:$wb), (ins AddrMode:$Rn, rGPR:$Rm, VecListOneD:$Vd), IIC_VLD1u, "vst1", Dt, "$Vd, $Rn, $Rm", "$Rn.addr = $wb", []>, Sched<[WriteVST1]> { let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLDST1Instruction"; } } multiclass VST1QWB op7_4, string Dt, Operand AddrMode> { def _fixed : NLdSt<0,0b00,0b1010,op7_4, (outs GPR:$wb), (ins AddrMode:$Rn, VecListDPair:$Vd), IIC_VLD1x2u, "vst1", Dt, "$Vd, $Rn!", "$Rn.addr = $wb", []>, Sched<[WriteVST2]> { let Rm = 0b1101; // NLdSt will assign to the right encoding bits. let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST1Instruction"; } def _register : NLdSt<0,0b00,0b1010,op7_4, (outs GPR:$wb), (ins AddrMode:$Rn, rGPR:$Rm, VecListDPair:$Vd), IIC_VLD1x2u, "vst1", Dt, "$Vd, $Rn, $Rm", "$Rn.addr = $wb", []>, Sched<[WriteVST2]> { let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST1Instruction"; } } defm VST1d8wb : VST1DWB<{0,0,0,?}, "8", addrmode6align64>; defm VST1d16wb : VST1DWB<{0,1,0,?}, "16", addrmode6align64>; defm VST1d32wb : VST1DWB<{1,0,0,?}, "32", addrmode6align64>; defm VST1d64wb : VST1DWB<{1,1,0,?}, "64", addrmode6align64>; defm VST1q8wb : VST1QWB<{0,0,?,?}, "8", addrmode6align64or128>; defm VST1q16wb : VST1QWB<{0,1,?,?}, "16", addrmode6align64or128>; defm VST1q32wb : VST1QWB<{1,0,?,?}, "32", addrmode6align64or128>; defm VST1q64wb : VST1QWB<{1,1,?,?}, "64", addrmode6align64or128>; // ...with 3 registers class VST1D3 op7_4, string Dt, Operand AddrMode> : NLdSt<0, 0b00, 0b0110, op7_4, (outs), (ins AddrMode:$Rn, VecListThreeD:$Vd), IIC_VST1x3, "vst1", Dt, "$Vd, $Rn", "", []>, Sched<[WriteVST3]> { let Rm = 0b1111; let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLDST1Instruction"; } multiclass VST1D3WB op7_4, string Dt, Operand AddrMode> { def _fixed : NLdSt<0,0b00,0b0110,op7_4, (outs GPR:$wb), (ins AddrMode:$Rn, VecListThreeD:$Vd), IIC_VLD1x3u, "vst1", Dt, "$Vd, $Rn!", "$Rn.addr = $wb", []>, Sched<[WriteVST3]> { let Rm = 0b1101; // NLdSt will assign to the right encoding bits. let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST1Instruction"; } def _register : NLdSt<0,0b00,0b0110,op7_4, (outs GPR:$wb), (ins AddrMode:$Rn, rGPR:$Rm, VecListThreeD:$Vd), IIC_VLD1x3u, "vst1", Dt, "$Vd, $Rn, $Rm", "$Rn.addr = $wb", []>, Sched<[WriteVST3]> { let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST1Instruction"; } } def VST1d8T : VST1D3<{0,0,0,?}, "8", addrmode6align64>; def VST1d16T : VST1D3<{0,1,0,?}, "16", addrmode6align64>; def VST1d32T : VST1D3<{1,0,0,?}, "32", addrmode6align64>; def VST1d64T : VST1D3<{1,1,0,?}, "64", addrmode6align64>; defm VST1d8Twb : VST1D3WB<{0,0,0,?}, "8", addrmode6align64>; defm VST1d16Twb : VST1D3WB<{0,1,0,?}, "16", addrmode6align64>; defm VST1d32Twb : VST1D3WB<{1,0,0,?}, "32", addrmode6align64>; defm VST1d64Twb : VST1D3WB<{1,1,0,?}, "64", addrmode6align64>; def VST1d8TPseudo : VSTQQPseudo, Sched<[WriteVST3]>; def VST1d8TPseudoWB_fixed : VSTQQWBfixedPseudo, Sched<[WriteVST3]>; def VST1d8TPseudoWB_register : VSTQQWBPseudo, Sched<[WriteVST3]>; def VST1d16TPseudo : VSTQQPseudo, Sched<[WriteVST3]>; def VST1d16TPseudoWB_fixed : VSTQQWBfixedPseudo, Sched<[WriteVST3]>; def VST1d16TPseudoWB_register : VSTQQWBPseudo, Sched<[WriteVST3]>; def VST1d32TPseudo : VSTQQPseudo, Sched<[WriteVST3]>; def VST1d32TPseudoWB_fixed : VSTQQWBfixedPseudo, Sched<[WriteVST3]>; def VST1d32TPseudoWB_register : VSTQQWBPseudo, Sched<[WriteVST3]>; def VST1d64TPseudo : VSTQQPseudo, Sched<[WriteVST3]>; def VST1d64TPseudoWB_fixed : VSTQQWBfixedPseudo, Sched<[WriteVST3]>; def VST1d64TPseudoWB_register : VSTQQWBPseudo, Sched<[WriteVST3]>; def VST1q8HighTPseudo : VSTQQQQPseudo, Sched<[WriteVST3]>; def VST1q16HighTPseudo : VSTQQQQPseudo, Sched<[WriteVST3]>; def VST1q32HighTPseudo : VSTQQQQPseudo, Sched<[WriteVST3]>; def VST1q64HighTPseudo : VSTQQQQPseudo, Sched<[WriteVST3]>; def VST1q8HighTPseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST3]>; def VST1q16HighTPseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST3]>; def VST1q32HighTPseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST3]>; def VST1q64HighTPseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST3]>; def VST1q8LowTPseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST3]>; def VST1q16LowTPseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST3]>; def VST1q32LowTPseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST3]>; def VST1q64LowTPseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST3]>; // ...with 4 registers class VST1D4 op7_4, string Dt, Operand AddrMode> : NLdSt<0, 0b00, 0b0010, op7_4, (outs), (ins AddrMode:$Rn, VecListFourD:$Vd), IIC_VST1x4, "vst1", Dt, "$Vd, $Rn", "", []>, Sched<[WriteVST4]> { let Rm = 0b1111; let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST1Instruction"; } multiclass VST1D4WB op7_4, string Dt, Operand AddrMode> { def _fixed : NLdSt<0,0b00,0b0010,op7_4, (outs GPR:$wb), (ins AddrMode:$Rn, VecListFourD:$Vd), IIC_VLD1x4u, "vst1", Dt, "$Vd, $Rn!", "$Rn.addr = $wb", []>, Sched<[WriteVST4]> { let Rm = 0b1101; // NLdSt will assign to the right encoding bits. let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST1Instruction"; } def _register : NLdSt<0,0b00,0b0010,op7_4, (outs GPR:$wb), (ins AddrMode:$Rn, rGPR:$Rm, VecListFourD:$Vd), IIC_VLD1x4u, "vst1", Dt, "$Vd, $Rn, $Rm", "$Rn.addr = $wb", []>, Sched<[WriteVST4]> { let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST1Instruction"; } } def VST1d8Q : VST1D4<{0,0,?,?}, "8", addrmode6align64or128or256>; def VST1d16Q : VST1D4<{0,1,?,?}, "16", addrmode6align64or128or256>; def VST1d32Q : VST1D4<{1,0,?,?}, "32", addrmode6align64or128or256>; def VST1d64Q : VST1D4<{1,1,?,?}, "64", addrmode6align64or128or256>; defm VST1d8Qwb : VST1D4WB<{0,0,?,?}, "8", addrmode6align64or128or256>; defm VST1d16Qwb : VST1D4WB<{0,1,?,?}, "16", addrmode6align64or128or256>; defm VST1d32Qwb : VST1D4WB<{1,0,?,?}, "32", addrmode6align64or128or256>; defm VST1d64Qwb : VST1D4WB<{1,1,?,?}, "64", addrmode6align64or128or256>; def VST1d8QPseudo : VSTQQPseudo, Sched<[WriteVST4]>; def VST1d8QPseudoWB_fixed : VSTQQWBfixedPseudo, Sched<[WriteVST4]>; def VST1d8QPseudoWB_register : VSTQQWBPseudo, Sched<[WriteVST4]>; def VST1d16QPseudo : VSTQQPseudo, Sched<[WriteVST4]>; def VST1d16QPseudoWB_fixed : VSTQQWBfixedPseudo, Sched<[WriteVST4]>; def VST1d16QPseudoWB_register : VSTQQWBPseudo, Sched<[WriteVST4]>; def VST1d32QPseudo : VSTQQPseudo, Sched<[WriteVST4]>; def VST1d32QPseudoWB_fixed : VSTQQWBfixedPseudo, Sched<[WriteVST4]>; def VST1d32QPseudoWB_register : VSTQQWBPseudo, Sched<[WriteVST4]>; def VST1d64QPseudo : VSTQQPseudo, Sched<[WriteVST4]>; def VST1d64QPseudoWB_fixed : VSTQQWBfixedPseudo, Sched<[WriteVST4]>; def VST1d64QPseudoWB_register : VSTQQWBPseudo, Sched<[WriteVST4]>; def VST1q8HighQPseudo : VSTQQQQPseudo, Sched<[WriteVST4]>; def VST1q16HighQPseudo : VSTQQQQPseudo, Sched<[WriteVST4]>; def VST1q32HighQPseudo : VSTQQQQPseudo, Sched<[WriteVST4]>; def VST1q64HighQPseudo : VSTQQQQPseudo, Sched<[WriteVST4]>; def VST1q8HighQPseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST4]>; def VST1q16HighQPseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST4]>; def VST1q32HighQPseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST4]>; def VST1q64HighQPseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST4]>; def VST1q8LowQPseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST4]>; def VST1q16LowQPseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST4]>; def VST1q32LowQPseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST4]>; def VST1q64LowQPseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST4]>; // VST2 : Vector Store (multiple 2-element structures) class VST2 op11_8, bits<4> op7_4, string Dt, RegisterOperand VdTy, InstrItinClass itin, Operand AddrMode> : NLdSt<0, 0b00, op11_8, op7_4, (outs), (ins AddrMode:$Rn, VdTy:$Vd), itin, "vst2", Dt, "$Vd, $Rn", "", []> { let Rm = 0b1111; let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST2Instruction"; } def VST2d8 : VST2<0b1000, {0,0,?,?}, "8", VecListDPair, IIC_VST2, addrmode6align64or128>, Sched<[WriteVST2]>; def VST2d16 : VST2<0b1000, {0,1,?,?}, "16", VecListDPair, IIC_VST2, addrmode6align64or128>, Sched<[WriteVST2]>; def VST2d32 : VST2<0b1000, {1,0,?,?}, "32", VecListDPair, IIC_VST2, addrmode6align64or128>, Sched<[WriteVST2]>; def VST2q8 : VST2<0b0011, {0,0,?,?}, "8", VecListFourD, IIC_VST2x2, addrmode6align64or128or256>, Sched<[WriteVST4]>; def VST2q16 : VST2<0b0011, {0,1,?,?}, "16", VecListFourD, IIC_VST2x2, addrmode6align64or128or256>, Sched<[WriteVST4]>; def VST2q32 : VST2<0b0011, {1,0,?,?}, "32", VecListFourD, IIC_VST2x2, addrmode6align64or128or256>, Sched<[WriteVST4]>; def VST2q8Pseudo : VSTQQPseudo, Sched<[WriteVST4]>; def VST2q16Pseudo : VSTQQPseudo, Sched<[WriteVST4]>; def VST2q32Pseudo : VSTQQPseudo, Sched<[WriteVST4]>; // ...with address register writeback: multiclass VST2DWB op11_8, bits<4> op7_4, string Dt, RegisterOperand VdTy, Operand AddrMode> { def _fixed : NLdSt<0, 0b00, op11_8, op7_4, (outs GPR:$wb), (ins AddrMode:$Rn, VdTy:$Vd), IIC_VLD1u, "vst2", Dt, "$Vd, $Rn!", "$Rn.addr = $wb", []>, Sched<[WriteVST2]> { let Rm = 0b1101; // NLdSt will assign to the right encoding bits. let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST2Instruction"; } def _register : NLdSt<0, 0b00, op11_8, op7_4, (outs GPR:$wb), (ins AddrMode:$Rn, rGPR:$Rm, VdTy:$Vd), IIC_VLD1u, "vst2", Dt, "$Vd, $Rn, $Rm", "$Rn.addr = $wb", []>, Sched<[WriteVST2]> { let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST2Instruction"; } } multiclass VST2QWB op7_4, string Dt, Operand AddrMode> { def _fixed : NLdSt<0, 0b00, 0b0011, op7_4, (outs GPR:$wb), (ins AddrMode:$Rn, VecListFourD:$Vd), IIC_VLD1u, "vst2", Dt, "$Vd, $Rn!", "$Rn.addr = $wb", []>, Sched<[WriteVST4]> { let Rm = 0b1101; // NLdSt will assign to the right encoding bits. let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST2Instruction"; } def _register : NLdSt<0, 0b00, 0b0011, op7_4, (outs GPR:$wb), (ins AddrMode:$Rn, rGPR:$Rm, VecListFourD:$Vd), IIC_VLD1u, "vst2", Dt, "$Vd, $Rn, $Rm", "$Rn.addr = $wb", []>, Sched<[WriteVST4]> { let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST2Instruction"; } } defm VST2d8wb : VST2DWB<0b1000, {0,0,?,?}, "8", VecListDPair, addrmode6align64or128>; defm VST2d16wb : VST2DWB<0b1000, {0,1,?,?}, "16", VecListDPair, addrmode6align64or128>; defm VST2d32wb : VST2DWB<0b1000, {1,0,?,?}, "32", VecListDPair, addrmode6align64or128>; defm VST2q8wb : VST2QWB<{0,0,?,?}, "8", addrmode6align64or128or256>; defm VST2q16wb : VST2QWB<{0,1,?,?}, "16", addrmode6align64or128or256>; defm VST2q32wb : VST2QWB<{1,0,?,?}, "32", addrmode6align64or128or256>; def VST2q8PseudoWB_fixed : VSTQQWBfixedPseudo, Sched<[WriteVST4]>; def VST2q16PseudoWB_fixed : VSTQQWBfixedPseudo, Sched<[WriteVST4]>; def VST2q32PseudoWB_fixed : VSTQQWBfixedPseudo, Sched<[WriteVST4]>; def VST2q8PseudoWB_register : VSTQQWBregisterPseudo, Sched<[WriteVST4]>; def VST2q16PseudoWB_register : VSTQQWBregisterPseudo, Sched<[WriteVST4]>; def VST2q32PseudoWB_register : VSTQQWBregisterPseudo, Sched<[WriteVST4]>; // ...with double-spaced registers def VST2b8 : VST2<0b1001, {0,0,?,?}, "8", VecListDPairSpaced, IIC_VST2, addrmode6align64or128>; def VST2b16 : VST2<0b1001, {0,1,?,?}, "16", VecListDPairSpaced, IIC_VST2, addrmode6align64or128>; def VST2b32 : VST2<0b1001, {1,0,?,?}, "32", VecListDPairSpaced, IIC_VST2, addrmode6align64or128>; defm VST2b8wb : VST2DWB<0b1001, {0,0,?,?}, "8", VecListDPairSpaced, addrmode6align64or128>; defm VST2b16wb : VST2DWB<0b1001, {0,1,?,?}, "16", VecListDPairSpaced, addrmode6align64or128>; defm VST2b32wb : VST2DWB<0b1001, {1,0,?,?}, "32", VecListDPairSpaced, addrmode6align64or128>; // VST3 : Vector Store (multiple 3-element structures) class VST3D op11_8, bits<4> op7_4, string Dt> : NLdSt<0, 0b00, op11_8, op7_4, (outs), (ins addrmode6:$Rn, DPR:$Vd, DPR:$src2, DPR:$src3), IIC_VST3, "vst3", Dt, "\\{$Vd, $src2, $src3\\}, $Rn", "", []>, Sched<[WriteVST3]> { let Rm = 0b1111; let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLDST3Instruction"; } def VST3d8 : VST3D<0b0100, {0,0,0,?}, "8">; def VST3d16 : VST3D<0b0100, {0,1,0,?}, "16">; def VST3d32 : VST3D<0b0100, {1,0,0,?}, "32">; def VST3d8Pseudo : VSTQQPseudo, Sched<[WriteVST3]>; def VST3d16Pseudo : VSTQQPseudo, Sched<[WriteVST3]>; def VST3d32Pseudo : VSTQQPseudo, Sched<[WriteVST3]>; // ...with address register writeback: class VST3DWB op11_8, bits<4> op7_4, string Dt> : NLdSt<0, 0b00, op11_8, op7_4, (outs GPR:$wb), (ins addrmode6:$Rn, am6offset:$Rm, DPR:$Vd, DPR:$src2, DPR:$src3), IIC_VST3u, "vst3", Dt, "\\{$Vd, $src2, $src3\\}, $Rn$Rm", "$Rn.addr = $wb", []>, Sched<[WriteVST3]> { let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVLDST3Instruction"; } def VST3d8_UPD : VST3DWB<0b0100, {0,0,0,?}, "8">; def VST3d16_UPD : VST3DWB<0b0100, {0,1,0,?}, "16">; def VST3d32_UPD : VST3DWB<0b0100, {1,0,0,?}, "32">; def VST3d8Pseudo_UPD : VSTQQWBPseudo, Sched<[WriteVST3]>; def VST3d16Pseudo_UPD : VSTQQWBPseudo, Sched<[WriteVST3]>; def VST3d32Pseudo_UPD : VSTQQWBPseudo, Sched<[WriteVST3]>; // ...with double-spaced registers: def VST3q8 : VST3D<0b0101, {0,0,0,?}, "8">; def VST3q16 : VST3D<0b0101, {0,1,0,?}, "16">; def VST3q32 : VST3D<0b0101, {1,0,0,?}, "32">; def VST3q8_UPD : VST3DWB<0b0101, {0,0,0,?}, "8">; def VST3q16_UPD : VST3DWB<0b0101, {0,1,0,?}, "16">; def VST3q32_UPD : VST3DWB<0b0101, {1,0,0,?}, "32">; def VST3q8Pseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST3]>; def VST3q16Pseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST3]>; def VST3q32Pseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST3]>; // ...alternate versions to be allocated odd register numbers: def VST3q8oddPseudo : VSTQQQQPseudo, Sched<[WriteVST3]>; def VST3q16oddPseudo : VSTQQQQPseudo, Sched<[WriteVST3]>; def VST3q32oddPseudo : VSTQQQQPseudo, Sched<[WriteVST3]>; def VST3q8oddPseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST3]>; def VST3q16oddPseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST3]>; def VST3q32oddPseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST3]>; // VST4 : Vector Store (multiple 4-element structures) class VST4D op11_8, bits<4> op7_4, string Dt> : NLdSt<0, 0b00, op11_8, op7_4, (outs), (ins addrmode6:$Rn, DPR:$Vd, DPR:$src2, DPR:$src3, DPR:$src4), IIC_VST4, "vst4", Dt, "\\{$Vd, $src2, $src3, $src4\\}, $Rn", "", []>, Sched<[WriteVST4]> { let Rm = 0b1111; let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST4Instruction"; } def VST4d8 : VST4D<0b0000, {0,0,?,?}, "8">; def VST4d16 : VST4D<0b0000, {0,1,?,?}, "16">; def VST4d32 : VST4D<0b0000, {1,0,?,?}, "32">; def VST4d8Pseudo : VSTQQPseudo, Sched<[WriteVST4]>; def VST4d16Pseudo : VSTQQPseudo, Sched<[WriteVST4]>; def VST4d32Pseudo : VSTQQPseudo, Sched<[WriteVST4]>; // ...with address register writeback: class VST4DWB op11_8, bits<4> op7_4, string Dt> : NLdSt<0, 0b00, op11_8, op7_4, (outs GPR:$wb), (ins addrmode6:$Rn, am6offset:$Rm, DPR:$Vd, DPR:$src2, DPR:$src3, DPR:$src4), IIC_VST4u, "vst4", Dt, "\\{$Vd, $src2, $src3, $src4\\}, $Rn$Rm", "$Rn.addr = $wb", []>, Sched<[WriteVST4]> { let Inst{5-4} = Rn{5-4}; let DecoderMethod = "DecodeVLDST4Instruction"; } def VST4d8_UPD : VST4DWB<0b0000, {0,0,?,?}, "8">; def VST4d16_UPD : VST4DWB<0b0000, {0,1,?,?}, "16">; def VST4d32_UPD : VST4DWB<0b0000, {1,0,?,?}, "32">; def VST4d8Pseudo_UPD : VSTQQWBPseudo, Sched<[WriteVST4]>; def VST4d16Pseudo_UPD : VSTQQWBPseudo, Sched<[WriteVST4]>; def VST4d32Pseudo_UPD : VSTQQWBPseudo, Sched<[WriteVST4]>; // ...with double-spaced registers: def VST4q8 : VST4D<0b0001, {0,0,?,?}, "8">; def VST4q16 : VST4D<0b0001, {0,1,?,?}, "16">; def VST4q32 : VST4D<0b0001, {1,0,?,?}, "32">; def VST4q8_UPD : VST4DWB<0b0001, {0,0,?,?}, "8">; def VST4q16_UPD : VST4DWB<0b0001, {0,1,?,?}, "16">; def VST4q32_UPD : VST4DWB<0b0001, {1,0,?,?}, "32">; def VST4q8Pseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST4]>; def VST4q16Pseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST4]>; def VST4q32Pseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST4]>; // ...alternate versions to be allocated odd register numbers: def VST4q8oddPseudo : VSTQQQQPseudo, Sched<[WriteVST4]>; def VST4q16oddPseudo : VSTQQQQPseudo, Sched<[WriteVST4]>; def VST4q32oddPseudo : VSTQQQQPseudo, Sched<[WriteVST4]>; def VST4q8oddPseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST4]>; def VST4q16oddPseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST4]>; def VST4q32oddPseudo_UPD : VSTQQQQWBPseudo, Sched<[WriteVST4]>; } // mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 // Classes for VST*LN pseudo-instructions with multi-register operands. // These are expanded to real instructions after register allocation. class VSTQLNPseudo : PseudoNLdSt<(outs), (ins addrmode6:$addr, QPR:$src, nohash_imm:$lane), itin, "">; class VSTQLNWBPseudo : PseudoNLdSt<(outs GPR:$wb), (ins addrmode6:$addr, am6offset:$offset, QPR:$src, nohash_imm:$lane), itin, "$addr.addr = $wb">; class VSTQQLNPseudo : PseudoNLdSt<(outs), (ins addrmode6:$addr, QQPR:$src, nohash_imm:$lane), itin, "">; class VSTQQLNWBPseudo : PseudoNLdSt<(outs GPR:$wb), (ins addrmode6:$addr, am6offset:$offset, QQPR:$src, nohash_imm:$lane), itin, "$addr.addr = $wb">; class VSTQQQQLNPseudo : PseudoNLdSt<(outs), (ins addrmode6:$addr, QQQQPR:$src, nohash_imm:$lane), itin, "">; class VSTQQQQLNWBPseudo : PseudoNLdSt<(outs GPR:$wb), (ins addrmode6:$addr, am6offset:$offset, QQQQPR:$src, nohash_imm:$lane), itin, "$addr.addr = $wb">; // VST1LN : Vector Store (single element from one lane) class VST1LN op11_8, bits<4> op7_4, string Dt, ValueType Ty, PatFrag StoreOp, SDNode ExtractOp, Operand AddrMode> : NLdStLn<1, 0b00, op11_8, op7_4, (outs), (ins AddrMode:$Rn, DPR:$Vd, nohash_imm:$lane), IIC_VST1ln, "vst1", Dt, "\\{$Vd[$lane]\\}, $Rn", "", [(StoreOp (ExtractOp (Ty DPR:$Vd), imm:$lane), AddrMode:$Rn)]>, Sched<[WriteVST1]> { let Rm = 0b1111; let DecoderMethod = "DecodeVST1LN"; } class VST1QLNPseudo : VSTQLNPseudo, Sched<[WriteVST1]> { let Pattern = [(StoreOp (ExtractOp (Ty QPR:$src), imm:$lane), addrmode6:$addr)]; } def VST1LNd8 : VST1LN<0b0000, {?,?,?,0}, "8", v8i8, truncstorei8, ARMvgetlaneu, addrmode6> { let Inst{7-5} = lane{2-0}; } def VST1LNd16 : VST1LN<0b0100, {?,?,0,?}, "16", v4i16, truncstorei16, ARMvgetlaneu, addrmode6> { let Inst{7-6} = lane{1-0}; let Inst{4} = Rn{4}; } def VST1LNd32 : VST1LN<0b1000, {?,0,?,?}, "32", v2i32, store, extractelt, addrmode6oneL32> { let Inst{7} = lane{0}; let Inst{5-4} = Rn{5-4}; } def VST1LNq8Pseudo : VST1QLNPseudo; def VST1LNq16Pseudo : VST1QLNPseudo; def VST1LNq32Pseudo : VST1QLNPseudo; let Predicates = [HasNEON] in { def : Pat<(store (extractelt (v2f32 DPR:$src), imm:$lane), addrmode6:$addr), (VST1LNd32 addrmode6:$addr, DPR:$src, imm:$lane)>; def : Pat<(store (extractelt (v4f32 QPR:$src), imm:$lane), addrmode6:$addr), (VST1LNq32Pseudo addrmode6:$addr, QPR:$src, imm:$lane)>; def : Pat<(store (extractelt (v4f16 DPR:$src), imm:$lane), addrmode6:$addr), (VST1LNd16 addrmode6:$addr, DPR:$src, imm:$lane)>; def : Pat<(store (extractelt (v8f16 QPR:$src), imm:$lane), addrmode6:$addr), (VST1LNq16Pseudo addrmode6:$addr, QPR:$src, imm:$lane)>; } // ...with address register writeback: class VST1LNWB op11_8, bits<4> op7_4, string Dt, ValueType Ty, PatFrag StoreOp, SDNode ExtractOp, Operand AdrMode> : NLdStLn<1, 0b00, op11_8, op7_4, (outs GPR:$wb), (ins AdrMode:$Rn, am6offset:$Rm, DPR:$Vd, nohash_imm:$lane), IIC_VST1lnu, "vst1", Dt, "\\{$Vd[$lane]\\}, $Rn$Rm", "$Rn.addr = $wb", [(set GPR:$wb, (StoreOp (ExtractOp (Ty DPR:$Vd), imm:$lane), AdrMode:$Rn, am6offset:$Rm))]>, Sched<[WriteVST1]> { let DecoderMethod = "DecodeVST1LN"; } class VST1QLNWBPseudo : VSTQLNWBPseudo, Sched<[WriteVST1]> { let Pattern = [(set GPR:$wb, (StoreOp (ExtractOp (Ty QPR:$src), imm:$lane), addrmode6:$addr, am6offset:$offset))]; } def VST1LNd8_UPD : VST1LNWB<0b0000, {?,?,?,0}, "8", v8i8, post_truncsti8, ARMvgetlaneu, addrmode6> { let Inst{7-5} = lane{2-0}; } def VST1LNd16_UPD : VST1LNWB<0b0100, {?,?,0,?}, "16", v4i16, post_truncsti16, ARMvgetlaneu, addrmode6> { let Inst{7-6} = lane{1-0}; let Inst{4} = Rn{4}; } def VST1LNd32_UPD : VST1LNWB<0b1000, {?,0,?,?}, "32", v2i32, post_store, extractelt, addrmode6oneL32> { let Inst{7} = lane{0}; let Inst{5-4} = Rn{5-4}; } def VST1LNq8Pseudo_UPD : VST1QLNWBPseudo; def VST1LNq16Pseudo_UPD : VST1QLNWBPseudo; def VST1LNq32Pseudo_UPD : VST1QLNWBPseudo; let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in { // VST2LN : Vector Store (single 2-element structure from one lane) class VST2LN op11_8, bits<4> op7_4, string Dt> : NLdStLn<1, 0b00, op11_8, op7_4, (outs), (ins addrmode6:$Rn, DPR:$Vd, DPR:$src2, nohash_imm:$lane), IIC_VST2ln, "vst2", Dt, "\\{$Vd[$lane], $src2[$lane]\\}, $Rn", "", []>, Sched<[WriteVST1]> { let Rm = 0b1111; let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVST2LN"; } def VST2LNd8 : VST2LN<0b0001, {?,?,?,?}, "8"> { let Inst{7-5} = lane{2-0}; } def VST2LNd16 : VST2LN<0b0101, {?,?,0,?}, "16"> { let Inst{7-6} = lane{1-0}; } def VST2LNd32 : VST2LN<0b1001, {?,0,0,?}, "32"> { let Inst{7} = lane{0}; } def VST2LNd8Pseudo : VSTQLNPseudo, Sched<[WriteVST1]>; def VST2LNd16Pseudo : VSTQLNPseudo, Sched<[WriteVST1]>; def VST2LNd32Pseudo : VSTQLNPseudo, Sched<[WriteVST1]>; // ...with double-spaced registers: def VST2LNq16 : VST2LN<0b0101, {?,?,1,?}, "16"> { let Inst{7-6} = lane{1-0}; let Inst{4} = Rn{4}; } def VST2LNq32 : VST2LN<0b1001, {?,1,0,?}, "32"> { let Inst{7} = lane{0}; let Inst{4} = Rn{4}; } def VST2LNq16Pseudo : VSTQQLNPseudo, Sched<[WriteVST1]>; def VST2LNq32Pseudo : VSTQQLNPseudo, Sched<[WriteVST1]>; // ...with address register writeback: class VST2LNWB op11_8, bits<4> op7_4, string Dt> : NLdStLn<1, 0b00, op11_8, op7_4, (outs GPR:$wb), (ins addrmode6:$Rn, am6offset:$Rm, DPR:$Vd, DPR:$src2, nohash_imm:$lane), IIC_VST2lnu, "vst2", Dt, "\\{$Vd[$lane], $src2[$lane]\\}, $Rn$Rm", "$Rn.addr = $wb", []> { let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVST2LN"; } def VST2LNd8_UPD : VST2LNWB<0b0001, {?,?,?,?}, "8"> { let Inst{7-5} = lane{2-0}; } def VST2LNd16_UPD : VST2LNWB<0b0101, {?,?,0,?}, "16"> { let Inst{7-6} = lane{1-0}; } def VST2LNd32_UPD : VST2LNWB<0b1001, {?,0,0,?}, "32"> { let Inst{7} = lane{0}; } def VST2LNd8Pseudo_UPD : VSTQLNWBPseudo, Sched<[WriteVST1]>; def VST2LNd16Pseudo_UPD : VSTQLNWBPseudo, Sched<[WriteVST1]>; def VST2LNd32Pseudo_UPD : VSTQLNWBPseudo, Sched<[WriteVST1]>; def VST2LNq16_UPD : VST2LNWB<0b0101, {?,?,1,?}, "16"> { let Inst{7-6} = lane{1-0}; } def VST2LNq32_UPD : VST2LNWB<0b1001, {?,1,0,?}, "32"> { let Inst{7} = lane{0}; } def VST2LNq16Pseudo_UPD : VSTQQLNWBPseudo, Sched<[WriteVST1]>; def VST2LNq32Pseudo_UPD : VSTQQLNWBPseudo, Sched<[WriteVST1]>; // VST3LN : Vector Store (single 3-element structure from one lane) class VST3LN op11_8, bits<4> op7_4, string Dt> : NLdStLn<1, 0b00, op11_8, op7_4, (outs), (ins addrmode6:$Rn, DPR:$Vd, DPR:$src2, DPR:$src3, nohash_imm:$lane), IIC_VST3ln, "vst3", Dt, "\\{$Vd[$lane], $src2[$lane], $src3[$lane]\\}, $Rn", "", []>, Sched<[WriteVST2]> { let Rm = 0b1111; let DecoderMethod = "DecodeVST3LN"; } def VST3LNd8 : VST3LN<0b0010, {?,?,?,0}, "8"> { let Inst{7-5} = lane{2-0}; } def VST3LNd16 : VST3LN<0b0110, {?,?,0,0}, "16"> { let Inst{7-6} = lane{1-0}; } def VST3LNd32 : VST3LN<0b1010, {?,0,0,0}, "32"> { let Inst{7} = lane{0}; } def VST3LNd8Pseudo : VSTQQLNPseudo, Sched<[WriteVST2]>; def VST3LNd16Pseudo : VSTQQLNPseudo, Sched<[WriteVST2]>; def VST3LNd32Pseudo : VSTQQLNPseudo, Sched<[WriteVST2]>; // ...with double-spaced registers: def VST3LNq16 : VST3LN<0b0110, {?,?,1,0}, "16"> { let Inst{7-6} = lane{1-0}; } def VST3LNq32 : VST3LN<0b1010, {?,1,0,0}, "32"> { let Inst{7} = lane{0}; } def VST3LNq16Pseudo : VSTQQQQLNPseudo; def VST3LNq32Pseudo : VSTQQQQLNPseudo; // ...with address register writeback: class VST3LNWB op11_8, bits<4> op7_4, string Dt> : NLdStLn<1, 0b00, op11_8, op7_4, (outs GPR:$wb), (ins addrmode6:$Rn, am6offset:$Rm, DPR:$Vd, DPR:$src2, DPR:$src3, nohash_imm:$lane), IIC_VST3lnu, "vst3", Dt, "\\{$Vd[$lane], $src2[$lane], $src3[$lane]\\}, $Rn$Rm", "$Rn.addr = $wb", []> { let DecoderMethod = "DecodeVST3LN"; } def VST3LNd8_UPD : VST3LNWB<0b0010, {?,?,?,0}, "8"> { let Inst{7-5} = lane{2-0}; } def VST3LNd16_UPD : VST3LNWB<0b0110, {?,?,0,0}, "16"> { let Inst{7-6} = lane{1-0}; } def VST3LNd32_UPD : VST3LNWB<0b1010, {?,0,0,0}, "32"> { let Inst{7} = lane{0}; } def VST3LNd8Pseudo_UPD : VSTQQLNWBPseudo, Sched<[WriteVST2]>; def VST3LNd16Pseudo_UPD : VSTQQLNWBPseudo, Sched<[WriteVST2]>; def VST3LNd32Pseudo_UPD : VSTQQLNWBPseudo, Sched<[WriteVST2]>; def VST3LNq16_UPD : VST3LNWB<0b0110, {?,?,1,0}, "16"> { let Inst{7-6} = lane{1-0}; } def VST3LNq32_UPD : VST3LNWB<0b1010, {?,1,0,0}, "32"> { let Inst{7} = lane{0}; } def VST3LNq16Pseudo_UPD : VSTQQQQLNWBPseudo, Sched<[WriteVST2]>; def VST3LNq32Pseudo_UPD : VSTQQQQLNWBPseudo, Sched<[WriteVST2]>; // VST4LN : Vector Store (single 4-element structure from one lane) class VST4LN op11_8, bits<4> op7_4, string Dt> : NLdStLn<1, 0b00, op11_8, op7_4, (outs), (ins addrmode6:$Rn, DPR:$Vd, DPR:$src2, DPR:$src3, DPR:$src4, nohash_imm:$lane), IIC_VST4ln, "vst4", Dt, "\\{$Vd[$lane], $src2[$lane], $src3[$lane], $src4[$lane]\\}, $Rn", "", []>, Sched<[WriteVST2]> { let Rm = 0b1111; let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVST4LN"; } def VST4LNd8 : VST4LN<0b0011, {?,?,?,?}, "8"> { let Inst{7-5} = lane{2-0}; } def VST4LNd16 : VST4LN<0b0111, {?,?,0,?}, "16"> { let Inst{7-6} = lane{1-0}; } def VST4LNd32 : VST4LN<0b1011, {?,0,?,?}, "32"> { let Inst{7} = lane{0}; let Inst{5} = Rn{5}; } def VST4LNd8Pseudo : VSTQQLNPseudo, Sched<[WriteVST2]>; def VST4LNd16Pseudo : VSTQQLNPseudo, Sched<[WriteVST2]>; def VST4LNd32Pseudo : VSTQQLNPseudo, Sched<[WriteVST2]>; // ...with double-spaced registers: def VST4LNq16 : VST4LN<0b0111, {?,?,1,?}, "16"> { let Inst{7-6} = lane{1-0}; } def VST4LNq32 : VST4LN<0b1011, {?,1,?,?}, "32"> { let Inst{7} = lane{0}; let Inst{5} = Rn{5}; } def VST4LNq16Pseudo : VSTQQQQLNPseudo, Sched<[WriteVST2]>; def VST4LNq32Pseudo : VSTQQQQLNPseudo, Sched<[WriteVST2]>; // ...with address register writeback: class VST4LNWB op11_8, bits<4> op7_4, string Dt> : NLdStLn<1, 0b00, op11_8, op7_4, (outs GPR:$wb), (ins addrmode6:$Rn, am6offset:$Rm, DPR:$Vd, DPR:$src2, DPR:$src3, DPR:$src4, nohash_imm:$lane), IIC_VST4lnu, "vst4", Dt, "\\{$Vd[$lane], $src2[$lane], $src3[$lane], $src4[$lane]\\}, $Rn$Rm", "$Rn.addr = $wb", []> { let Inst{4} = Rn{4}; let DecoderMethod = "DecodeVST4LN"; } def VST4LNd8_UPD : VST4LNWB<0b0011, {?,?,?,?}, "8"> { let Inst{7-5} = lane{2-0}; } def VST4LNd16_UPD : VST4LNWB<0b0111, {?,?,0,?}, "16"> { let Inst{7-6} = lane{1-0}; } def VST4LNd32_UPD : VST4LNWB<0b1011, {?,0,?,?}, "32"> { let Inst{7} = lane{0}; let Inst{5} = Rn{5}; } def VST4LNd8Pseudo_UPD : VSTQQLNWBPseudo, Sched<[WriteVST2]>; def VST4LNd16Pseudo_UPD : VSTQQLNWBPseudo, Sched<[WriteVST2]>; def VST4LNd32Pseudo_UPD : VSTQQLNWBPseudo, Sched<[WriteVST2]>; def VST4LNq16_UPD : VST4LNWB<0b0111, {?,?,1,?}, "16"> { let Inst{7-6} = lane{1-0}; } def VST4LNq32_UPD : VST4LNWB<0b1011, {?,1,?,?}, "32"> { let Inst{7} = lane{0}; let Inst{5} = Rn{5}; } def VST4LNq16Pseudo_UPD : VSTQQQQLNWBPseudo, Sched<[WriteVST2]>; def VST4LNq32Pseudo_UPD : VSTQQQQLNWBPseudo, Sched<[WriteVST2]>; } // mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 // Use vld1/vst1 for unaligned f64 load / store let Predicates = [IsLE,HasNEON] in { def : Pat<(f64 (hword_alignedload addrmode6:$addr)), (VLD1d16 addrmode6:$addr)>; def : Pat<(hword_alignedstore (f64 DPR:$value), addrmode6:$addr), (VST1d16 addrmode6:$addr, DPR:$value)>; def : Pat<(f64 (byte_alignedload addrmode6:$addr)), (VLD1d8 addrmode6:$addr)>; def : Pat<(byte_alignedstore (f64 DPR:$value), addrmode6:$addr), (VST1d8 addrmode6:$addr, DPR:$value)>; } let Predicates = [IsBE,HasNEON] in { def : Pat<(f64 (non_word_alignedload addrmode6:$addr)), (VLD1d64 addrmode6:$addr)>; def : Pat<(non_word_alignedstore (f64 DPR:$value), addrmode6:$addr), (VST1d64 addrmode6:$addr, DPR:$value)>; } // Use vld1/vst1 for Q and QQ. Also use them for unaligned v2f64 // load / store if it's legal. let Predicates = [HasNEON] in { def : Pat<(v2f64 (dword_alignedload addrmode6:$addr)), (VLD1q64 addrmode6:$addr)>; def : Pat<(dword_alignedstore (v2f64 QPR:$value), addrmode6:$addr), (VST1q64 addrmode6:$addr, QPR:$value)>; } let Predicates = [IsLE,HasNEON] in { def : Pat<(v2f64 (word_alignedload addrmode6:$addr)), (VLD1q32 addrmode6:$addr)>; def : Pat<(word_alignedstore (v2f64 QPR:$value), addrmode6:$addr), (VST1q32 addrmode6:$addr, QPR:$value)>; def : Pat<(v2f64 (hword_alignedload addrmode6:$addr)), (VLD1q16 addrmode6:$addr)>; def : Pat<(hword_alignedstore (v2f64 QPR:$value), addrmode6:$addr), (VST1q16 addrmode6:$addr, QPR:$value)>; def : Pat<(v2f64 (byte_alignedload addrmode6:$addr)), (VLD1q8 addrmode6:$addr)>; def : Pat<(byte_alignedstore (v2f64 QPR:$value), addrmode6:$addr), (VST1q8 addrmode6:$addr, QPR:$value)>; } //===----------------------------------------------------------------------===// // Instruction Classes //===----------------------------------------------------------------------===// // Basic 2-register operations: double- and quad-register. class N2VD op24_23, bits<2> op21_20, bits<2> op19_18, bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDNode OpNode> : N2V; class N2VQ op24_23, bits<2> op21_20, bits<2> op19_18, bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDNode OpNode> : N2V; // Basic 2-register intrinsics, both double- and quad-register. class N2VDInt op24_23, bits<2> op21_20, bits<2> op19_18, bits<2> op17_16, bits<5> op11_7, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp> : N2V; class N2VQInt op24_23, bits<2> op21_20, bits<2> op19_18, bits<2> op17_16, bits<5> op11_7, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp> : N2V; // Same as above, but not predicated. class N2VDIntnp op19_18, bits<2> op17_16, bits<3> op10_8, bit op7, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp> : N2Vnp; class N2VQIntnp op19_18, bits<2> op17_16, bits<3> op10_8, bit op7, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp> : N2Vnp; // Similar to NV2VQIntnp with some more encoding bits exposed (crypto). class N2VQIntXnp op19_18, bits<2> op17_16, bits<3> op10_8, bit op6, bit op7, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp> : N2Vnp; // Same as N2VQIntXnp but with Vd as a src register. class N2VQIntX2np op19_18, bits<2> op17_16, bits<3> op10_8, bit op6, bit op7, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp> : N2Vnp { let Constraints = "$src = $Vd"; } // Narrow 2-register operations. class N2VN op24_23, bits<2> op21_20, bits<2> op19_18, bits<2> op17_16, bits<5> op11_7, bit op6, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType TyD, ValueType TyQ, SDNode OpNode> : N2V; // Narrow 2-register intrinsics. class N2VNInt op24_23, bits<2> op21_20, bits<2> op19_18, bits<2> op17_16, bits<5> op11_7, bit op6, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType TyD, ValueType TyQ, SDPatternOperator IntOp> : N2V; // Long 2-register operations (currently only used for VMOVL). class N2VL op24_23, bits<2> op21_20, bits<2> op19_18, bits<2> op17_16, bits<5> op11_7, bit op6, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType TyQ, ValueType TyD, SDNode OpNode> : N2V; // Long 2-register intrinsics. class N2VLInt op24_23, bits<2> op21_20, bits<2> op19_18, bits<2> op17_16, bits<5> op11_7, bit op6, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType TyQ, ValueType TyD, SDPatternOperator IntOp> : N2V; // 2-register shuffles (VTRN/VZIP/VUZP), both double- and quad-register. class N2VDShuffle op19_18, bits<5> op11_7, string OpcodeStr, string Dt> : N2V<0b11, 0b11, op19_18, 0b10, op11_7, 0, 0, (outs DPR:$Vd, DPR:$Vm), (ins DPR:$src1, DPR:$src2), IIC_VPERMD, OpcodeStr, Dt, "$Vd, $Vm", "$src1 = $Vd, $src2 = $Vm", []>; class N2VQShuffle op19_18, bits<5> op11_7, InstrItinClass itin, string OpcodeStr, string Dt> : N2V<0b11, 0b11, op19_18, 0b10, op11_7, 1, 0, (outs QPR:$Vd, QPR:$Vm), (ins QPR:$src1, QPR:$src2), itin, OpcodeStr, Dt, "$Vd, $Vm", "$src1 = $Vd, $src2 = $Vm", []>; // Basic 3-register operations: double- and quad-register. class N3VD op21_20, bits<4> op11_8, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDNode OpNode, bit Commutable> : N3V { // All of these have a two-operand InstAlias. let TwoOperandAliasConstraint = "$Vn = $Vd"; let isCommutable = Commutable; } // Same as N3VD but no data type. class N3VDX op21_20, bits<4> op11_8, bit op4, InstrItinClass itin, string OpcodeStr, ValueType ResTy, ValueType OpTy, SDNode OpNode, bit Commutable> : N3VX{ // All of these have a two-operand InstAlias. let TwoOperandAliasConstraint = "$Vn = $Vd"; let isCommutable = Commutable; } class N3VDSL op21_20, bits<4> op11_8, InstrItinClass itin, string OpcodeStr, string Dt, ValueType Ty, SDNode ShOp> : N3VLane32<0, 1, op21_20, op11_8, 1, 0, (outs DPR:$Vd), (ins DPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane), NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "", [(set (Ty DPR:$Vd), (Ty (ShOp (Ty DPR:$Vn), (Ty (ARMvduplane (Ty DPR_VFP2:$Vm),imm:$lane)))))]> { // All of these have a two-operand InstAlias. let TwoOperandAliasConstraint = "$Vn = $Vd"; let isCommutable = 0; } class N3VDSL16 op21_20, bits<4> op11_8, string OpcodeStr, string Dt, ValueType Ty, SDNode ShOp> : N3VLane16<0, 1, op21_20, op11_8, 1, 0, (outs DPR:$Vd), (ins DPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane), NVMulSLFrm, IIC_VMULi16D, OpcodeStr, Dt,"$Vd, $Vn, $Vm$lane","", [(set (Ty DPR:$Vd), (Ty (ShOp (Ty DPR:$Vn), (Ty (ARMvduplane (Ty DPR_8:$Vm), imm:$lane)))))]> { // All of these have a two-operand InstAlias. let TwoOperandAliasConstraint = "$Vn = $Vd"; let isCommutable = 0; } class N3VQ op21_20, bits<4> op11_8, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDNode OpNode, bit Commutable> : N3V { // All of these have a two-operand InstAlias. let TwoOperandAliasConstraint = "$Vn = $Vd"; let isCommutable = Commutable; } class N3VQX op21_20, bits<4> op11_8, bit op4, InstrItinClass itin, string OpcodeStr, ValueType ResTy, ValueType OpTy, SDNode OpNode, bit Commutable> : N3VX{ // All of these have a two-operand InstAlias. let TwoOperandAliasConstraint = "$Vn = $Vd"; let isCommutable = Commutable; } class N3VQSL op21_20, bits<4> op11_8, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDNode ShOp> : N3VLane32<1, 1, op21_20, op11_8, 1, 0, (outs QPR:$Vd), (ins QPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane), NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "", [(set (ResTy QPR:$Vd), (ResTy (ShOp (ResTy QPR:$Vn), (ResTy (ARMvduplane (OpTy DPR_VFP2:$Vm), imm:$lane)))))]> { // All of these have a two-operand InstAlias. let TwoOperandAliasConstraint = "$Vn = $Vd"; let isCommutable = 0; } class N3VQSL16 op21_20, bits<4> op11_8, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDNode ShOp> : N3VLane16<1, 1, op21_20, op11_8, 1, 0, (outs QPR:$Vd), (ins QPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane), NVMulSLFrm, IIC_VMULi16Q, OpcodeStr, Dt,"$Vd, $Vn, $Vm$lane", "", [(set (ResTy QPR:$Vd), (ResTy (ShOp (ResTy QPR:$Vn), (ResTy (ARMvduplane (OpTy DPR_8:$Vm), imm:$lane)))))]> { // All of these have a two-operand InstAlias. let TwoOperandAliasConstraint = "$Vn = $Vd"; let isCommutable = 0; } // Basic 3-register intrinsics, both double- and quad-register. class N3VDInt op21_20, bits<4> op11_8, bit op4, Format f, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp, bit Commutable> : N3V { // All of these have a two-operand InstAlias. let TwoOperandAliasConstraint = "$Vn = $Vd"; let isCommutable = Commutable; } class N3VDIntnp op27_23, bits<2> op21_20, bits<4> op11_8, bit op6, bit op4, Format f, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp, bit Commutable> : N3Vnp { let isCommutable = Commutable; } class N3VDIntSL op21_20, bits<4> op11_8, InstrItinClass itin, string OpcodeStr, string Dt, ValueType Ty, SDPatternOperator IntOp> : N3VLane32<0, 1, op21_20, op11_8, 1, 0, (outs DPR:$Vd), (ins DPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane), NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "", [(set (Ty DPR:$Vd), (Ty (IntOp (Ty DPR:$Vn), (Ty (ARMvduplane (Ty DPR_VFP2:$Vm), imm:$lane)))))]> { let isCommutable = 0; } class N3VDIntSL16 op21_20, bits<4> op11_8, InstrItinClass itin, string OpcodeStr, string Dt, ValueType Ty, SDPatternOperator IntOp> : N3VLane16<0, 1, op21_20, op11_8, 1, 0, (outs DPR:$Vd), (ins DPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane), NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "", [(set (Ty DPR:$Vd), (Ty (IntOp (Ty DPR:$Vn), (Ty (ARMvduplane (Ty DPR_8:$Vm), imm:$lane)))))]> { let isCommutable = 0; } class N3VDIntSh op21_20, bits<4> op11_8, bit op4, Format f, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp> : N3V { let TwoOperandAliasConstraint = "$Vm = $Vd"; let isCommutable = 0; } class N3VQInt op21_20, bits<4> op11_8, bit op4, Format f, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp, bit Commutable> : N3V { // All of these have a two-operand InstAlias. let TwoOperandAliasConstraint = "$Vn = $Vd"; let isCommutable = Commutable; } class N3VQIntnp op27_23, bits<2> op21_20, bits<4> op11_8, bit op6, bit op4, Format f, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp, bit Commutable> : N3Vnp { let isCommutable = Commutable; } // Same as N3VQIntnp but with Vd as a src register. class N3VQInt3np op27_23, bits<2> op21_20, bits<4> op11_8, bit op6, bit op4, Format f, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp> : N3Vnp { let Constraints = "$src = $Vd"; let isCommutable = 0; } class N3VQIntSL op21_20, bits<4> op11_8, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp> : N3VLane32<1, 1, op21_20, op11_8, 1, 0, (outs QPR:$Vd), (ins QPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane), NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "", [(set (ResTy QPR:$Vd), (ResTy (IntOp (ResTy QPR:$Vn), (ResTy (ARMvduplane (OpTy DPR_VFP2:$Vm), imm:$lane)))))]> { let isCommutable = 0; } class N3VQIntSL16 op21_20, bits<4> op11_8, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp> : N3VLane16<1, 1, op21_20, op11_8, 1, 0, (outs QPR:$Vd), (ins QPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane), NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "", [(set (ResTy QPR:$Vd), (ResTy (IntOp (ResTy QPR:$Vn), (ResTy (ARMvduplane (OpTy DPR_8:$Vm), imm:$lane)))))]> { let isCommutable = 0; } class N3VQIntSh op21_20, bits<4> op11_8, bit op4, Format f, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp> : N3V { let TwoOperandAliasConstraint = "$Vm = $Vd"; let isCommutable = 0; } // Multiply-Add/Sub operations: double- and quad-register. class N3VDMulOp op21_20, bits<4> op11_8, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType Ty, SDPatternOperator MulOp, SDPatternOperator OpNode> : N3V; class N3VDMulOpSL op21_20, bits<4> op11_8, InstrItinClass itin, string OpcodeStr, string Dt, ValueType Ty, SDPatternOperator MulOp, SDPatternOperator ShOp> : N3VLane32<0, 1, op21_20, op11_8, 1, 0, (outs DPR:$Vd), (ins DPR:$src1, DPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane), NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "$src1 = $Vd", [(set (Ty DPR:$Vd), (Ty (ShOp (Ty DPR:$src1), (Ty (MulOp DPR:$Vn, (Ty (ARMvduplane (Ty DPR_VFP2:$Vm), imm:$lane)))))))]>; class N3VDMulOpSL16 op21_20, bits<4> op11_8, InstrItinClass itin, string OpcodeStr, string Dt, ValueType Ty, SDPatternOperator MulOp, SDPatternOperator ShOp> : N3VLane16<0, 1, op21_20, op11_8, 1, 0, (outs DPR:$Vd), (ins DPR:$src1, DPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane), NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "$src1 = $Vd", [(set (Ty DPR:$Vd), (Ty (ShOp (Ty DPR:$src1), (Ty (MulOp DPR:$Vn, (Ty (ARMvduplane (Ty DPR_8:$Vm), imm:$lane)))))))]>; class N3VQMulOp op21_20, bits<4> op11_8, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType Ty, SDPatternOperator MulOp, SDPatternOperator OpNode> : N3V; class N3VQMulOpSL op21_20, bits<4> op11_8, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator MulOp, SDPatternOperator ShOp> : N3VLane32<1, 1, op21_20, op11_8, 1, 0, (outs QPR:$Vd), (ins QPR:$src1, QPR:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane), NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "$src1 = $Vd", [(set (ResTy QPR:$Vd), (ResTy (ShOp (ResTy QPR:$src1), (ResTy (MulOp QPR:$Vn, (ResTy (ARMvduplane (OpTy DPR_VFP2:$Vm), imm:$lane)))))))]>; class N3VQMulOpSL16 op21_20, bits<4> op11_8, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator MulOp, SDPatternOperator ShOp> : N3VLane16<1, 1, op21_20, op11_8, 1, 0, (outs QPR:$Vd), (ins QPR:$src1, QPR:$Vn, DPR_8:$Vm, VectorIndex16:$lane), NVMulSLFrm, itin, OpcodeStr, Dt, "$Vd, $Vn, $Vm$lane", "$src1 = $Vd", [(set (ResTy QPR:$Vd), (ResTy (ShOp (ResTy QPR:$src1), (ResTy (MulOp QPR:$Vn, (ResTy (ARMvduplane (OpTy DPR_8:$Vm), imm:$lane)))))))]>; // Neon Intrinsic-Op instructions (VABA): double- and quad-register. class N3VDIntOp op21_20, bits<4> op11_8, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType Ty, SDPatternOperator IntOp, SDNode OpNode> : N3V; class N3VQIntOp op21_20, bits<4> op11_8, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType Ty, SDPatternOperator IntOp, SDNode OpNode> : N3V; // Neon 3-argument intrinsics, both double- and quad-register. // The destination register is also used as the first source operand register. class N3VDInt3 op21_20, bits<4> op11_8, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp> : N3V; class N3VQInt3 op21_20, bits<4> op11_8, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp> : N3V; // Long Multiply-Add/Sub operations. class N3VLMulOp op21_20, bits<4> op11_8, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType TyQ, ValueType TyD, SDNode MulOp, SDNode OpNode> : N3V; class N3VLMulOpSL op21_20, bits<4> op11_8, InstrItinClass itin, string OpcodeStr, string Dt, ValueType TyQ, ValueType TyD, SDNode MulOp, SDNode OpNode> : N3VLane32; class N3VLMulOpSL16 op21_20, bits<4> op11_8, InstrItinClass itin, string OpcodeStr, string Dt, ValueType TyQ, ValueType TyD, SDNode MulOp, SDNode OpNode> : N3VLane16; // Long Intrinsic-Op vector operations with explicit extend (VABAL). class N3VLIntExtOp op21_20, bits<4> op11_8, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType TyQ, ValueType TyD, SDPatternOperator IntOp, SDNode ExtOp, SDNode OpNode> : N3V; // Neon Long 3-argument intrinsic. The destination register is // a quad-register and is also used as the first source operand register. class N3VLInt3 op21_20, bits<4> op11_8, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType TyQ, ValueType TyD, SDPatternOperator IntOp> : N3V; class N3VLInt3SL op21_20, bits<4> op11_8, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp> : N3VLane32; class N3VLInt3SL16 op21_20, bits<4> op11_8, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp> : N3VLane16; // Narrowing 3-register intrinsics. class N3VNInt op21_20, bits<4> op11_8, bit op4, string OpcodeStr, string Dt, ValueType TyD, ValueType TyQ, SDPatternOperator IntOp, bit Commutable> : N3V { let isCommutable = Commutable; } // Long 3-register operations. class N3VL op21_20, bits<4> op11_8, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType TyQ, ValueType TyD, SDNode OpNode, bit Commutable> : N3V { let isCommutable = Commutable; } class N3VLSL op21_20, bits<4> op11_8, InstrItinClass itin, string OpcodeStr, string Dt, ValueType TyQ, ValueType TyD, SDNode OpNode> : N3VLane32; class N3VLSL16 op21_20, bits<4> op11_8, InstrItinClass itin, string OpcodeStr, string Dt, ValueType TyQ, ValueType TyD, SDNode OpNode> : N3VLane16; // Long 3-register operations with explicitly extended operands. class N3VLExt op21_20, bits<4> op11_8, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType TyQ, ValueType TyD, SDNode OpNode, SDPatternOperator ExtOp, bit Commutable> : N3V { let isCommutable = Commutable; } // Long 3-register intrinsics with explicit extend (VABDL). class N3VLIntExt op21_20, bits<4> op11_8, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType TyQ, ValueType TyD, SDPatternOperator IntOp, SDNode ExtOp, bit Commutable> : N3V { let isCommutable = Commutable; } // Long 3-register intrinsics. class N3VLInt op21_20, bits<4> op11_8, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType TyQ, ValueType TyD, SDPatternOperator IntOp, bit Commutable> : N3V { let isCommutable = Commutable; } // Same as above, but not predicated. class N3VLIntnp op27_23, bits<2> op21_20, bits<4> op11_8, bit op6, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp, bit Commutable> : N3Vnp { let isCommutable = Commutable; } class N3VLIntSL op21_20, bits<4> op11_8, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp> : N3VLane32; class N3VLIntSL16 op21_20, bits<4> op11_8, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp> : N3VLane16; // Wide 3-register operations. class N3VW op21_20, bits<4> op11_8, bit op4, string OpcodeStr, string Dt, ValueType TyQ, ValueType TyD, SDNode OpNode, SDPatternOperator ExtOp, bit Commutable> : N3V { // All of these have a two-operand InstAlias. let TwoOperandAliasConstraint = "$Vn = $Vd"; let isCommutable = Commutable; } // Pairwise long 2-register intrinsics, both double- and quad-register. class N2VDPLInt op24_23, bits<2> op21_20, bits<2> op19_18, bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp> : N2V; class N2VQPLInt op24_23, bits<2> op21_20, bits<2> op19_18, bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp> : N2V; // Pairwise long 2-register accumulate intrinsics, // both double- and quad-register. // The destination register is also used as the first source operand register. class N2VDPLInt2 op24_23, bits<2> op21_20, bits<2> op19_18, bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp> : N2V; class N2VQPLInt2 op24_23, bits<2> op21_20, bits<2> op19_18, bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp> : N2V; // Shift by immediate, // both double- and quad-register. let TwoOperandAliasConstraint = "$Vm = $Vd" in { class N2VDSh op11_8, bit op7, bit op4, Format f, InstrItinClass itin, Operand ImmTy, string OpcodeStr, string Dt, ValueType Ty, SDNode OpNode> : N2VImm; class N2VQSh op11_8, bit op7, bit op4, Format f, InstrItinClass itin, Operand ImmTy, string OpcodeStr, string Dt, ValueType Ty, SDNode OpNode> : N2VImm; } // Long shift by immediate. class N2VLSh op11_8, bit op7, bit op6, bit op4, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, Operand ImmTy, SDPatternOperator OpNode> : N2VImm; // Narrow shift by immediate. class N2VNSh op11_8, bit op7, bit op6, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, Operand ImmTy, SDPatternOperator OpNode> : N2VImm; // Shift right by immediate and accumulate, // both double- and quad-register. let TwoOperandAliasConstraint = "$Vm = $Vd" in { class N2VDShAdd op11_8, bit op7, bit op4, Operand ImmTy, string OpcodeStr, string Dt, ValueType Ty, SDNode ShOp> : N2VImm; class N2VQShAdd op11_8, bit op7, bit op4, Operand ImmTy, string OpcodeStr, string Dt, ValueType Ty, SDNode ShOp> : N2VImm; } // Shift by immediate and insert, // both double- and quad-register. let TwoOperandAliasConstraint = "$Vm = $Vd" in { class N2VDShIns op11_8, bit op7, bit op4, Operand ImmTy, Format f, string OpcodeStr, string Dt, ValueType Ty,SDNode ShOp> : N2VImm; class N2VQShIns op11_8, bit op7, bit op4, Operand ImmTy, Format f, string OpcodeStr, string Dt, ValueType Ty,SDNode ShOp> : N2VImm; } // Convert, with fractional bits immediate, // both double- and quad-register. class N2VCvtD op11_8, bit op7, bit op4, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp> : N2VImm; class N2VCvtQ op11_8, bit op7, bit op4, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, SDPatternOperator IntOp> : N2VImm; //===----------------------------------------------------------------------===// // Multiclasses //===----------------------------------------------------------------------===// // Abbreviations used in multiclass suffixes: // Q = quarter int (8 bit) elements // H = half int (16 bit) elements // S = single int (32 bit) elements // D = double int (64 bit) elements // Neon 2-register vector operations and intrinsics. // Neon 2-register comparisons. // source operand element sizes of 8, 16 and 32 bits: multiclass N2V_QHS_cmp op24_23, bits<2> op21_20, bits<2> op17_16, bits<5> op11_7, bit op4, string opc, string Dt, string asm, PatFrag fc> { // 64-bit vector types. def v8i8 : N2V; def v4i16 : N2V; def v2i32 : N2V; def v2f32 : N2V { let Inst{10} = 1; // overwrite F = 1 } def v4f16 : N2V, Requires<[HasNEON,HasFullFP16]> { let Inst{10} = 1; // overwrite F = 1 } // 128-bit vector types. def v16i8 : N2V; def v8i16 : N2V; def v4i32 : N2V; def v4f32 : N2V { let Inst{10} = 1; // overwrite F = 1 } def v8f16 : N2V, Requires<[HasNEON,HasFullFP16]> { let Inst{10} = 1; // overwrite F = 1 } } // Neon 3-register comparisons. class N3VQ_cmp op21_20, bits<4> op11_8, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, PatFrag fc, bit Commutable> : N3V { // All of these have a two-operand InstAlias. let TwoOperandAliasConstraint = "$Vn = $Vd"; let isCommutable = Commutable; } class N3VD_cmp op21_20, bits<4> op11_8, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, PatFrag fc, bit Commutable> : N3V { // All of these have a two-operand InstAlias. let TwoOperandAliasConstraint = "$Vn = $Vd"; let isCommutable = Commutable; } multiclass N3V_QHS_cmp op11_8, bit op4, InstrItinClass itinD16, InstrItinClass itinD32, InstrItinClass itinQ16, InstrItinClass itinQ32, string OpcodeStr, string Dt, PatFrag fc, bit Commutable = 0> { // 64-bit vector types. def v8i8 : N3VD_cmp; def v4i16 : N3VD_cmp; def v2i32 : N3VD_cmp; // 128-bit vector types. def v16i8 : N3VQ_cmp; def v8i16 : N3VQ_cmp; def v4i32 : N3VQ_cmp; } // Neon 2-register vector intrinsics, // element sizes of 8, 16 and 32 bits: multiclass N2VInt_QHS op24_23, bits<2> op21_20, bits<2> op17_16, bits<5> op11_7, bit op4, InstrItinClass itinD, InstrItinClass itinQ, string OpcodeStr, string Dt, SDPatternOperator IntOp> { // 64-bit vector types. def v8i8 : N2VDInt; def v4i16 : N2VDInt; def v2i32 : N2VDInt; // 128-bit vector types. def v16i8 : N2VQInt; def v8i16 : N2VQInt; def v4i32 : N2VQInt; } // Neon Narrowing 2-register vector operations, // source operand element sizes of 16, 32 and 64 bits: multiclass N2VN_HSD op24_23, bits<2> op21_20, bits<2> op17_16, bits<5> op11_7, bit op6, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, SDNode OpNode> { def v8i8 : N2VN; def v4i16 : N2VN; def v2i32 : N2VN; } // Neon Narrowing 2-register vector intrinsics, // source operand element sizes of 16, 32 and 64 bits: multiclass N2VNInt_HSD op24_23, bits<2> op21_20, bits<2> op17_16, bits<5> op11_7, bit op6, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, SDPatternOperator IntOp> { def v8i8 : N2VNInt; def v4i16 : N2VNInt; def v2i32 : N2VNInt; } // Neon Lengthening 2-register vector intrinsic (currently specific to VMOVL). // source operand element sizes of 16, 32 and 64 bits: multiclass N2VL_QHS op24_23, bits<5> op11_7, bit op6, bit op4, string OpcodeStr, string Dt, SDNode OpNode> { def v8i16 : N2VL; def v4i32 : N2VL; def v2i64 : N2VL; } // Neon 3-register vector operations. // First with only element sizes of 8, 16 and 32 bits: multiclass N3V_QHS op11_8, bit op4, InstrItinClass itinD16, InstrItinClass itinD32, InstrItinClass itinQ16, InstrItinClass itinQ32, string OpcodeStr, string Dt, SDNode OpNode, bit Commutable = 0> { // 64-bit vector types. def v8i8 : N3VD; def v4i16 : N3VD; def v2i32 : N3VD; // 128-bit vector types. def v16i8 : N3VQ; def v8i16 : N3VQ; def v4i32 : N3VQ; } multiclass N3VSL_HS op11_8, string OpcodeStr, SDNode ShOp> { def v4i16 : N3VDSL16<0b01, op11_8, OpcodeStr, "i16", v4i16, ShOp>; def v2i32 : N3VDSL<0b10, op11_8, IIC_VMULi32D, OpcodeStr, "i32", v2i32, ShOp>; def v8i16 : N3VQSL16<0b01, op11_8, OpcodeStr, "i16", v8i16, v4i16, ShOp>; def v4i32 : N3VQSL<0b10, op11_8, IIC_VMULi32Q, OpcodeStr, "i32", v4i32, v2i32, ShOp>; } // ....then also with element size 64 bits: multiclass N3V_QHSD op11_8, bit op4, InstrItinClass itinD, InstrItinClass itinQ, string OpcodeStr, string Dt, SDNode OpNode, bit Commutable = 0> : N3V_QHS { def v1i64 : N3VD; def v2i64 : N3VQ; } // Neon 3-register vector intrinsics. // First with only element sizes of 16 and 32 bits: multiclass N3VInt_HS op11_8, bit op4, Format f, InstrItinClass itinD16, InstrItinClass itinD32, InstrItinClass itinQ16, InstrItinClass itinQ32, string OpcodeStr, string Dt, SDPatternOperator IntOp, bit Commutable = 0> { // 64-bit vector types. def v4i16 : N3VDInt; def v2i32 : N3VDInt; // 128-bit vector types. def v8i16 : N3VQInt; def v4i32 : N3VQInt; } multiclass N3VInt_HSSh op11_8, bit op4, Format f, InstrItinClass itinD16, InstrItinClass itinD32, InstrItinClass itinQ16, InstrItinClass itinQ32, string OpcodeStr, string Dt, SDPatternOperator IntOp> { // 64-bit vector types. def v4i16 : N3VDIntSh; def v2i32 : N3VDIntSh; // 128-bit vector types. def v8i16 : N3VQIntSh; def v4i32 : N3VQIntSh; } multiclass N3VIntSL_HS op11_8, InstrItinClass itinD16, InstrItinClass itinD32, InstrItinClass itinQ16, InstrItinClass itinQ32, string OpcodeStr, string Dt, SDPatternOperator IntOp> { def v4i16 : N3VDIntSL16<0b01, op11_8, itinD16, OpcodeStr, !strconcat(Dt, "16"), v4i16, IntOp>; def v2i32 : N3VDIntSL<0b10, op11_8, itinD32, OpcodeStr, !strconcat(Dt, "32"), v2i32, IntOp>; def v8i16 : N3VQIntSL16<0b01, op11_8, itinQ16, OpcodeStr, !strconcat(Dt, "16"), v8i16, v4i16, IntOp>; def v4i32 : N3VQIntSL<0b10, op11_8, itinQ32, OpcodeStr, !strconcat(Dt, "32"), v4i32, v2i32, IntOp>; } // ....then also with element size of 8 bits: multiclass N3VInt_QHS op11_8, bit op4, Format f, InstrItinClass itinD16, InstrItinClass itinD32, InstrItinClass itinQ16, InstrItinClass itinQ32, string OpcodeStr, string Dt, SDPatternOperator IntOp, bit Commutable = 0> : N3VInt_HS { def v8i8 : N3VDInt; def v16i8 : N3VQInt; } multiclass N3VInt_QHSSh op11_8, bit op4, Format f, InstrItinClass itinD16, InstrItinClass itinD32, InstrItinClass itinQ16, InstrItinClass itinQ32, string OpcodeStr, string Dt, SDPatternOperator IntOp> : N3VInt_HSSh { def v8i8 : N3VDIntSh; def v16i8 : N3VQIntSh; } // ....then also with element size of 64 bits: multiclass N3VInt_QHSD op11_8, bit op4, Format f, InstrItinClass itinD16, InstrItinClass itinD32, InstrItinClass itinQ16, InstrItinClass itinQ32, string OpcodeStr, string Dt, SDPatternOperator IntOp, bit Commutable = 0> : N3VInt_QHS { def v1i64 : N3VDInt; def v2i64 : N3VQInt; } multiclass N3VInt_QHSDSh op11_8, bit op4, Format f, InstrItinClass itinD16, InstrItinClass itinD32, InstrItinClass itinQ16, InstrItinClass itinQ32, string OpcodeStr, string Dt, SDPatternOperator IntOp> : N3VInt_QHSSh { def v1i64 : N3VDIntSh; def v2i64 : N3VQIntSh; } // Neon Narrowing 3-register vector intrinsics, // source operand element sizes of 16, 32 and 64 bits: multiclass N3VNInt_HSD op11_8, bit op4, string OpcodeStr, string Dt, SDPatternOperator IntOp, bit Commutable = 0> { def v8i8 : N3VNInt; def v4i16 : N3VNInt; def v2i32 : N3VNInt; } // Neon Long 3-register vector operations. multiclass N3VL_QHS op11_8, bit op4, InstrItinClass itin16, InstrItinClass itin32, string OpcodeStr, string Dt, SDNode OpNode, bit Commutable = 0> { def v8i16 : N3VL; def v4i32 : N3VL; def v2i64 : N3VL; } multiclass N3VLSL_HS op11_8, InstrItinClass itin, string OpcodeStr, string Dt, SDNode OpNode> { def v4i16 : N3VLSL16; def v2i32 : N3VLSL; } multiclass N3VLExt_QHS op11_8, bit op4, InstrItinClass itin16, InstrItinClass itin32, string OpcodeStr, string Dt, SDNode OpNode, SDPatternOperator ExtOp, bit Commutable = 0> { def v8i16 : N3VLExt; def v4i32 : N3VLExt; def v2i64 : N3VLExt; } // Neon Long 3-register vector intrinsics. // First with only element sizes of 16 and 32 bits: multiclass N3VLInt_HS op11_8, bit op4, InstrItinClass itin16, InstrItinClass itin32, string OpcodeStr, string Dt, SDPatternOperator IntOp, bit Commutable = 0> { def v4i32 : N3VLInt; def v2i64 : N3VLInt; } multiclass N3VLIntSL_HS op11_8, InstrItinClass itin, string OpcodeStr, string Dt, SDPatternOperator IntOp> { def v4i16 : N3VLIntSL16; def v2i32 : N3VLIntSL; } // ....then also with element size of 8 bits: multiclass N3VLInt_QHS op11_8, bit op4, InstrItinClass itin16, InstrItinClass itin32, string OpcodeStr, string Dt, SDPatternOperator IntOp, bit Commutable = 0> : N3VLInt_HS { def v8i16 : N3VLInt; } // ....with explicit extend (VABDL). multiclass N3VLIntExt_QHS op11_8, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, SDPatternOperator IntOp, SDNode ExtOp, bit Commutable = 0> { def v8i16 : N3VLIntExt; def v4i32 : N3VLIntExt; def v2i64 : N3VLIntExt; } // Neon Wide 3-register vector intrinsics, // source operand element sizes of 8, 16 and 32 bits: multiclass N3VW_QHS op11_8, bit op4, string OpcodeStr, string Dt, SDNode OpNode, SDPatternOperator ExtOp, bit Commutable = 0> { def v8i16 : N3VW; def v4i32 : N3VW; def v2i64 : N3VW; } // Neon Multiply-Op vector operations, // element sizes of 8, 16 and 32 bits: multiclass N3VMulOp_QHS op11_8, bit op4, InstrItinClass itinD16, InstrItinClass itinD32, InstrItinClass itinQ16, InstrItinClass itinQ32, string OpcodeStr, string Dt, SDNode OpNode> { // 64-bit vector types. def v8i8 : N3VDMulOp; def v4i16 : N3VDMulOp; def v2i32 : N3VDMulOp; // 128-bit vector types. def v16i8 : N3VQMulOp; def v8i16 : N3VQMulOp; def v4i32 : N3VQMulOp; } multiclass N3VMulOpSL_HS op11_8, InstrItinClass itinD16, InstrItinClass itinD32, InstrItinClass itinQ16, InstrItinClass itinQ32, string OpcodeStr, string Dt, SDPatternOperator ShOp> { def v4i16 : N3VDMulOpSL16<0b01, op11_8, itinD16, OpcodeStr, !strconcat(Dt, "16"), v4i16, mul, ShOp>; def v2i32 : N3VDMulOpSL<0b10, op11_8, itinD32, OpcodeStr, !strconcat(Dt, "32"), v2i32, mul, ShOp>; def v8i16 : N3VQMulOpSL16<0b01, op11_8, itinQ16, OpcodeStr, !strconcat(Dt, "16"), v8i16, v4i16, mul, ShOp>; def v4i32 : N3VQMulOpSL<0b10, op11_8, itinQ32, OpcodeStr, !strconcat(Dt, "32"), v4i32, v2i32, mul, ShOp>; } // Neon Intrinsic-Op vector operations, // element sizes of 8, 16 and 32 bits: multiclass N3VIntOp_QHS op11_8, bit op4, InstrItinClass itinD, InstrItinClass itinQ, string OpcodeStr, string Dt, SDPatternOperator IntOp, SDNode OpNode> { // 64-bit vector types. def v8i8 : N3VDIntOp; def v4i16 : N3VDIntOp; def v2i32 : N3VDIntOp; // 128-bit vector types. def v16i8 : N3VQIntOp; def v8i16 : N3VQIntOp; def v4i32 : N3VQIntOp; } // Neon 3-argument intrinsics, // element sizes of 16 and 32 bits: multiclass N3VInt3_HS op11_8, bit op4, InstrItinClass itinD16, InstrItinClass itinD32, InstrItinClass itinQ16, InstrItinClass itinQ32, string OpcodeStr, string Dt, SDPatternOperator IntOp> { // 64-bit vector types. def v4i16 : N3VDInt3; def v2i32 : N3VDInt3; // 128-bit vector types. def v8i16 : N3VQInt3; def v4i32 : N3VQInt3; } // element sizes of 8, 16 and 32 bits: multiclass N3VInt3_QHS op11_8, bit op4, InstrItinClass itinD16, InstrItinClass itinD32, InstrItinClass itinQ16, InstrItinClass itinQ32, string OpcodeStr, string Dt, SDPatternOperator IntOp> :N3VInt3_HS { // 64-bit vector types. def v8i8 : N3VDInt3; // 128-bit vector types. def v16i8 : N3VQInt3; } // Neon Long Multiply-Op vector operations, // element sizes of 8, 16 and 32 bits: multiclass N3VLMulOp_QHS op11_8, bit op4, InstrItinClass itin16, InstrItinClass itin32, string OpcodeStr, string Dt, SDNode MulOp, SDNode OpNode> { def v8i16 : N3VLMulOp; def v4i32 : N3VLMulOp; def v2i64 : N3VLMulOp; } multiclass N3VLMulOpSL_HS op11_8, string OpcodeStr, string Dt, SDNode MulOp, SDNode OpNode> { def v4i16 : N3VLMulOpSL16; def v2i32 : N3VLMulOpSL; } // Neon Long 3-argument intrinsics. // First with only element sizes of 16 and 32 bits: multiclass N3VLInt3_HS op11_8, bit op4, InstrItinClass itin16, InstrItinClass itin32, string OpcodeStr, string Dt, SDPatternOperator IntOp> { def v4i32 : N3VLInt3; def v2i64 : N3VLInt3; } multiclass N3VLInt3SL_HS op11_8, string OpcodeStr, string Dt, SDPatternOperator IntOp> { def v4i16 : N3VLInt3SL16; def v2i32 : N3VLInt3SL; } // ....then also with element size of 8 bits: multiclass N3VLInt3_QHS op11_8, bit op4, InstrItinClass itin16, InstrItinClass itin32, string OpcodeStr, string Dt, SDPatternOperator IntOp> : N3VLInt3_HS { def v8i16 : N3VLInt3; } // ....with explicit extend (VABAL). multiclass N3VLIntExtOp_QHS op11_8, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, SDPatternOperator IntOp, SDNode ExtOp, SDNode OpNode> { def v8i16 : N3VLIntExtOp; def v4i32 : N3VLIntExtOp; def v2i64 : N3VLIntExtOp; } // Neon Pairwise long 2-register intrinsics, // element sizes of 8, 16 and 32 bits: multiclass N2VPLInt_QHS op24_23, bits<2> op21_20, bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr, string Dt, SDPatternOperator IntOp> { // 64-bit vector types. def v8i8 : N2VDPLInt; def v4i16 : N2VDPLInt; def v2i32 : N2VDPLInt; // 128-bit vector types. def v16i8 : N2VQPLInt; def v8i16 : N2VQPLInt; def v4i32 : N2VQPLInt; } // Neon Pairwise long 2-register accumulate intrinsics, // element sizes of 8, 16 and 32 bits: multiclass N2VPLInt2_QHS op24_23, bits<2> op21_20, bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr, string Dt, SDPatternOperator IntOp> { // 64-bit vector types. def v8i8 : N2VDPLInt2; def v4i16 : N2VDPLInt2; def v2i32 : N2VDPLInt2; // 128-bit vector types. def v16i8 : N2VQPLInt2; def v8i16 : N2VQPLInt2; def v4i32 : N2VQPLInt2; } // Neon 2-register vector shift by immediate, // with f of either N2RegVShLFrm or N2RegVShRFrm // element sizes of 8, 16, 32 and 64 bits: multiclass N2VShL_QHSD op11_8, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, SDNode OpNode> { // 64-bit vector types. def v8i8 : N2VDSh { let Inst{21-19} = 0b001; // imm6 = 001xxx } def v4i16 : N2VDSh { let Inst{21-20} = 0b01; // imm6 = 01xxxx } def v2i32 : N2VDSh { let Inst{21} = 0b1; // imm6 = 1xxxxx } def v1i64 : N2VDSh; // imm6 = xxxxxx // 128-bit vector types. def v16i8 : N2VQSh { let Inst{21-19} = 0b001; // imm6 = 001xxx } def v8i16 : N2VQSh { let Inst{21-20} = 0b01; // imm6 = 01xxxx } def v4i32 : N2VQSh { let Inst{21} = 0b1; // imm6 = 1xxxxx } def v2i64 : N2VQSh; // imm6 = xxxxxx } multiclass N2VShR_QHSD op11_8, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, SDNode OpNode> { // 64-bit vector types. def v8i8 : N2VDSh { let Inst{21-19} = 0b001; // imm6 = 001xxx } def v4i16 : N2VDSh { let Inst{21-20} = 0b01; // imm6 = 01xxxx } def v2i32 : N2VDSh { let Inst{21} = 0b1; // imm6 = 1xxxxx } def v1i64 : N2VDSh; // imm6 = xxxxxx // 128-bit vector types. def v16i8 : N2VQSh { let Inst{21-19} = 0b001; // imm6 = 001xxx } def v8i16 : N2VQSh { let Inst{21-20} = 0b01; // imm6 = 01xxxx } def v4i32 : N2VQSh { let Inst{21} = 0b1; // imm6 = 1xxxxx } def v2i64 : N2VQSh; // imm6 = xxxxxx } // Neon Shift-Accumulate vector operations, // element sizes of 8, 16, 32 and 64 bits: multiclass N2VShAdd_QHSD op11_8, bit op4, string OpcodeStr, string Dt, SDNode ShOp> { // 64-bit vector types. def v8i8 : N2VDShAdd { let Inst{21-19} = 0b001; // imm6 = 001xxx } def v4i16 : N2VDShAdd { let Inst{21-20} = 0b01; // imm6 = 01xxxx } def v2i32 : N2VDShAdd { let Inst{21} = 0b1; // imm6 = 1xxxxx } def v1i64 : N2VDShAdd; // imm6 = xxxxxx // 128-bit vector types. def v16i8 : N2VQShAdd { let Inst{21-19} = 0b001; // imm6 = 001xxx } def v8i16 : N2VQShAdd { let Inst{21-20} = 0b01; // imm6 = 01xxxx } def v4i32 : N2VQShAdd { let Inst{21} = 0b1; // imm6 = 1xxxxx } def v2i64 : N2VQShAdd; // imm6 = xxxxxx } // Neon Shift-Insert vector operations, // with f of either N2RegVShLFrm or N2RegVShRFrm // element sizes of 8, 16, 32 and 64 bits: multiclass N2VShInsL_QHSD op11_8, bit op4, string OpcodeStr> { // 64-bit vector types. def v8i8 : N2VDShIns { let Inst{21-19} = 0b001; // imm6 = 001xxx } def v4i16 : N2VDShIns { let Inst{21-20} = 0b01; // imm6 = 01xxxx } def v2i32 : N2VDShIns { let Inst{21} = 0b1; // imm6 = 1xxxxx } def v1i64 : N2VDShIns; // imm6 = xxxxxx // 128-bit vector types. def v16i8 : N2VQShIns { let Inst{21-19} = 0b001; // imm6 = 001xxx } def v8i16 : N2VQShIns { let Inst{21-20} = 0b01; // imm6 = 01xxxx } def v4i32 : N2VQShIns { let Inst{21} = 0b1; // imm6 = 1xxxxx } def v2i64 : N2VQShIns; // imm6 = xxxxxx } multiclass N2VShInsR_QHSD op11_8, bit op4, string OpcodeStr> { // 64-bit vector types. def v8i8 : N2VDShIns { let Inst{21-19} = 0b001; // imm6 = 001xxx } def v4i16 : N2VDShIns { let Inst{21-20} = 0b01; // imm6 = 01xxxx } def v2i32 : N2VDShIns { let Inst{21} = 0b1; // imm6 = 1xxxxx } def v1i64 : N2VDShIns; // imm6 = xxxxxx // 128-bit vector types. def v16i8 : N2VQShIns { let Inst{21-19} = 0b001; // imm6 = 001xxx } def v8i16 : N2VQShIns { let Inst{21-20} = 0b01; // imm6 = 01xxxx } def v4i32 : N2VQShIns { let Inst{21} = 0b1; // imm6 = 1xxxxx } def v2i64 : N2VQShIns; // imm6 = xxxxxx } // Neon Shift Long operations, // element sizes of 8, 16, 32 bits: multiclass N2VLSh_QHS op11_8, bit op7, bit op6, bit op4, string OpcodeStr, string Dt, SDPatternOperator OpNode> { def v8i16 : N2VLSh { let Inst{21-19} = 0b001; // imm6 = 001xxx } def v4i32 : N2VLSh { let Inst{21-20} = 0b01; // imm6 = 01xxxx } def v2i64 : N2VLSh { let Inst{21} = 0b1; // imm6 = 1xxxxx } } // Neon Shift Narrow operations, // element sizes of 16, 32, 64 bits: multiclass N2VNSh_HSD op11_8, bit op7, bit op6, bit op4, InstrItinClass itin, string OpcodeStr, string Dt, SDPatternOperator OpNode> { def v8i8 : N2VNSh { let Inst{21-19} = 0b001; // imm6 = 001xxx } def v4i16 : N2VNSh { let Inst{21-20} = 0b01; // imm6 = 01xxxx } def v2i32 : N2VNSh { let Inst{21} = 0b1; // imm6 = 1xxxxx } } //===----------------------------------------------------------------------===// // Instruction Definitions. //===----------------------------------------------------------------------===// // Vector Add Operations. // VADD : Vector Add (integer and floating-point) defm VADD : N3V_QHSD<0, 0, 0b1000, 0, IIC_VBINiD, IIC_VBINiQ, "vadd", "i", add, 1>; def VADDfd : N3VD<0, 0, 0b00, 0b1101, 0, IIC_VBIND, "vadd", "f32", v2f32, v2f32, fadd, 1>; def VADDfq : N3VQ<0, 0, 0b00, 0b1101, 0, IIC_VBINQ, "vadd", "f32", v4f32, v4f32, fadd, 1>; def VADDhd : N3VD<0, 0, 0b01, 0b1101, 0, IIC_VBIND, "vadd", "f16", v4f16, v4f16, fadd, 1>, Requires<[HasNEON,HasFullFP16]>; def VADDhq : N3VQ<0, 0, 0b01, 0b1101, 0, IIC_VBINQ, "vadd", "f16", v8f16, v8f16, fadd, 1>, Requires<[HasNEON,HasFullFP16]>; // VADDL : Vector Add Long (Q = D + D) defm VADDLs : N3VLExt_QHS<0,1,0b0000,0, IIC_VSHLiD, IIC_VSHLiD, "vaddl", "s", add, sext, 1>; defm VADDLu : N3VLExt_QHS<1,1,0b0000,0, IIC_VSHLiD, IIC_VSHLiD, "vaddl", "u", add, zanyext, 1>; // VADDW : Vector Add Wide (Q = Q + D) defm VADDWs : N3VW_QHS<0,1,0b0001,0, "vaddw", "s", add, sext, 0>; defm VADDWu : N3VW_QHS<1,1,0b0001,0, "vaddw", "u", add, zanyext, 0>; // VHADD : Vector Halving Add defm VHADDs : N3VInt_QHS<0, 0, 0b0000, 0, N3RegFrm, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q, IIC_VBINi4Q, "vhadd", "s", int_arm_neon_vhadds, 1>; defm VHADDu : N3VInt_QHS<1, 0, 0b0000, 0, N3RegFrm, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q, IIC_VBINi4Q, "vhadd", "u", int_arm_neon_vhaddu, 1>; // VRHADD : Vector Rounding Halving Add defm VRHADDs : N3VInt_QHS<0, 0, 0b0001, 0, N3RegFrm, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q, IIC_VBINi4Q, "vrhadd", "s", int_arm_neon_vrhadds, 1>; defm VRHADDu : N3VInt_QHS<1, 0, 0b0001, 0, N3RegFrm, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q, IIC_VBINi4Q, "vrhadd", "u", int_arm_neon_vrhaddu, 1>; // VQADD : Vector Saturating Add defm VQADDs : N3VInt_QHSD<0, 0, 0b0000, 1, N3RegFrm, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q, IIC_VBINi4Q, "vqadd", "s", saddsat, 1>; defm VQADDu : N3VInt_QHSD<1, 0, 0b0000, 1, N3RegFrm, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q, IIC_VBINi4Q, "vqadd", "u", uaddsat, 1>; // VADDHN : Vector Add and Narrow Returning High Half (D = Q + Q) defm VADDHN : N3VNInt_HSD<0,1,0b0100,0, "vaddhn", "i", null_frag, 1>; // VRADDHN : Vector Rounding Add and Narrow Returning High Half (D = Q + Q) defm VRADDHN : N3VNInt_HSD<1,1,0b0100,0, "vraddhn", "i", int_arm_neon_vraddhn, 1>; let Predicates = [HasNEON] in { def : Pat<(v8i8 (trunc (ARMvshruImm (add (v8i16 QPR:$Vn), QPR:$Vm), 8))), (VADDHNv8i8 QPR:$Vn, QPR:$Vm)>; def : Pat<(v4i16 (trunc (ARMvshruImm (add (v4i32 QPR:$Vn), QPR:$Vm), 16))), (VADDHNv4i16 QPR:$Vn, QPR:$Vm)>; def : Pat<(v2i32 (trunc (ARMvshruImm (add (v2i64 QPR:$Vn), QPR:$Vm), 32))), (VADDHNv2i32 QPR:$Vn, QPR:$Vm)>; } // Vector Multiply Operations. // VMUL : Vector Multiply (integer, polynomial and floating-point) defm VMUL : N3V_QHS<0, 0, 0b1001, 1, IIC_VMULi16D, IIC_VMULi32D, IIC_VMULi16Q, IIC_VMULi32Q, "vmul", "i", mul, 1>; def VMULpd : N3VDInt<1, 0, 0b00, 0b1001, 1, N3RegFrm, IIC_VMULi16D, "vmul", "p8", v8i8, v8i8, int_arm_neon_vmulp, 1>; def VMULpq : N3VQInt<1, 0, 0b00, 0b1001, 1, N3RegFrm, IIC_VMULi16Q, "vmul", "p8", v16i8, v16i8, int_arm_neon_vmulp, 1>; def VMULfd : N3VD<1, 0, 0b00, 0b1101, 1, IIC_VFMULD, "vmul", "f32", v2f32, v2f32, fmul, 1>; def VMULfq : N3VQ<1, 0, 0b00, 0b1101, 1, IIC_VFMULQ, "vmul", "f32", v4f32, v4f32, fmul, 1>; def VMULhd : N3VD<1, 0, 0b01, 0b1101, 1, IIC_VFMULD, "vmul", "f16", v4f16, v4f16, fmul, 1>, Requires<[HasNEON,HasFullFP16]>; def VMULhq : N3VQ<1, 0, 0b01, 0b1101, 1, IIC_VFMULQ, "vmul", "f16", v8f16, v8f16, fmul, 1>, Requires<[HasNEON,HasFullFP16]>; defm VMULsl : N3VSL_HS<0b1000, "vmul", mul>; def VMULslfd : N3VDSL<0b10, 0b1001, IIC_VBIND, "vmul", "f32", v2f32, fmul>; def VMULslfq : N3VQSL<0b10, 0b1001, IIC_VBINQ, "vmul", "f32", v4f32, v2f32, fmul>; def VMULslhd : N3VDSL16<0b01, 0b1001, "vmul", "f16", v4f16, fmul>, Requires<[HasNEON,HasFullFP16]>; def VMULslhq : N3VQSL16<0b01, 0b1001, "vmul", "f16", v8f16, v4f16, fmul>, Requires<[HasNEON,HasFullFP16]>; let Predicates = [HasNEON] in { def : Pat<(v8i16 (mul (v8i16 QPR:$src1), (v8i16 (ARMvduplane (v8i16 QPR:$src2), imm:$lane)))), (v8i16 (VMULslv8i16 (v8i16 QPR:$src1), (v4i16 (EXTRACT_SUBREG QPR:$src2, (DSubReg_i16_reg imm:$lane))), (SubReg_i16_lane imm:$lane)))>; def : Pat<(v4i32 (mul (v4i32 QPR:$src1), (v4i32 (ARMvduplane (v4i32 QPR:$src2), imm:$lane)))), (v4i32 (VMULslv4i32 (v4i32 QPR:$src1), (v2i32 (EXTRACT_SUBREG QPR:$src2, (DSubReg_i32_reg imm:$lane))), (SubReg_i32_lane imm:$lane)))>; def : Pat<(v4f32 (fmul (v4f32 QPR:$src1), (v4f32 (ARMvduplane (v4f32 QPR:$src2), imm:$lane)))), (v4f32 (VMULslfq (v4f32 QPR:$src1), (v2f32 (EXTRACT_SUBREG QPR:$src2, (DSubReg_i32_reg imm:$lane))), (SubReg_i32_lane imm:$lane)))>; def : Pat<(v8f16 (fmul (v8f16 QPR:$src1), (v8f16 (ARMvduplane (v8f16 QPR:$src2), imm:$lane)))), (v8f16 (VMULslhq(v8f16 QPR:$src1), (v4f16 (EXTRACT_SUBREG QPR:$src2, (DSubReg_i16_reg imm:$lane))), (SubReg_i16_lane imm:$lane)))>; def : Pat<(v2f32 (fmul DPR:$Rn, (ARMvdup (f32 SPR:$Rm)))), (VMULslfd DPR:$Rn, (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), SPR:$Rm, ssub_0), (i32 0))>; def : Pat<(v4f16 (fmul DPR:$Rn, (ARMvdup (f16 HPR:$Rm)))), (VMULslhd DPR:$Rn, (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), (f16 HPR:$Rm), ssub_0), (i32 0))>; def : Pat<(v4f32 (fmul QPR:$Rn, (ARMvdup (f32 SPR:$Rm)))), (VMULslfq QPR:$Rn, (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), SPR:$Rm, ssub_0), (i32 0))>; def : Pat<(v8f16 (fmul QPR:$Rn, (ARMvdup (f16 HPR:$Rm)))), (VMULslhq QPR:$Rn, (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), (f16 HPR:$Rm), ssub_0), (i32 0))>; } // VQDMULH : Vector Saturating Doubling Multiply Returning High Half defm VQDMULH : N3VInt_HS<0, 0, 0b1011, 0, N3RegFrm, IIC_VMULi16D, IIC_VMULi32D, IIC_VMULi16Q, IIC_VMULi32Q, "vqdmulh", "s", int_arm_neon_vqdmulh, 1>; defm VQDMULHsl: N3VIntSL_HS<0b1100, IIC_VMULi16D, IIC_VMULi32D, IIC_VMULi16Q, IIC_VMULi32Q, "vqdmulh", "s", int_arm_neon_vqdmulh>; let Predicates = [HasNEON] in { def : Pat<(v8i16 (int_arm_neon_vqdmulh (v8i16 QPR:$src1), (v8i16 (ARMvduplane (v8i16 QPR:$src2), imm:$lane)))), (v8i16 (VQDMULHslv8i16 (v8i16 QPR:$src1), (v4i16 (EXTRACT_SUBREG QPR:$src2, (DSubReg_i16_reg imm:$lane))), (SubReg_i16_lane imm:$lane)))>; def : Pat<(v4i32 (int_arm_neon_vqdmulh (v4i32 QPR:$src1), (v4i32 (ARMvduplane (v4i32 QPR:$src2), imm:$lane)))), (v4i32 (VQDMULHslv4i32 (v4i32 QPR:$src1), (v2i32 (EXTRACT_SUBREG QPR:$src2, (DSubReg_i32_reg imm:$lane))), (SubReg_i32_lane imm:$lane)))>; } // VQRDMULH : Vector Rounding Saturating Doubling Multiply Returning High Half defm VQRDMULH : N3VInt_HS<1, 0, 0b1011, 0, N3RegFrm, IIC_VMULi16D,IIC_VMULi32D,IIC_VMULi16Q,IIC_VMULi32Q, "vqrdmulh", "s", int_arm_neon_vqrdmulh, 1>; defm VQRDMULHsl : N3VIntSL_HS<0b1101, IIC_VMULi16D, IIC_VMULi32D, IIC_VMULi16Q, IIC_VMULi32Q, "vqrdmulh", "s", int_arm_neon_vqrdmulh>; let Predicates = [HasNEON] in { def : Pat<(v8i16 (int_arm_neon_vqrdmulh (v8i16 QPR:$src1), (v8i16 (ARMvduplane (v8i16 QPR:$src2), imm:$lane)))), (v8i16 (VQRDMULHslv8i16 (v8i16 QPR:$src1), (v4i16 (EXTRACT_SUBREG QPR:$src2, (DSubReg_i16_reg imm:$lane))), (SubReg_i16_lane imm:$lane)))>; def : Pat<(v4i32 (int_arm_neon_vqrdmulh (v4i32 QPR:$src1), (v4i32 (ARMvduplane (v4i32 QPR:$src2), imm:$lane)))), (v4i32 (VQRDMULHslv4i32 (v4i32 QPR:$src1), (v2i32 (EXTRACT_SUBREG QPR:$src2, (DSubReg_i32_reg imm:$lane))), (SubReg_i32_lane imm:$lane)))>; } // VMULL : Vector Multiply Long (integer and polynomial) (Q = D * D) let PostEncoderMethod = "NEONThumb2DataIPostEncoder", DecoderNamespace = "NEONData" in { defm VMULLs : N3VL_QHS<0,1,0b1100,0, IIC_VMULi16D, IIC_VMULi32D, "vmull", "s", ARMvmulls, 1>; defm VMULLu : N3VL_QHS<1,1,0b1100,0, IIC_VMULi16D, IIC_VMULi32D, "vmull", "u", ARMvmullu, 1>; def VMULLp8 : N3VLInt<0, 1, 0b00, 0b1110, 0, IIC_VMULi16D, "vmull", "p8", v8i16, v8i8, int_arm_neon_vmullp, 1>; def VMULLp64 : N3VLIntnp<0b00101, 0b10, 0b1110, 0, 0, NoItinerary, "vmull", "p64", v2i64, v1i64, int_arm_neon_vmullp, 1>, Requires<[HasV8, HasAES]>; } defm VMULLsls : N3VLSL_HS<0, 0b1010, IIC_VMULi16D, "vmull", "s", ARMvmulls>; defm VMULLslu : N3VLSL_HS<1, 0b1010, IIC_VMULi16D, "vmull", "u", ARMvmullu>; // VQDMULL : Vector Saturating Doubling Multiply Long (Q = D * D) defm VQDMULL : N3VLInt_HS<0,1,0b1101,0, IIC_VMULi16D, IIC_VMULi32D, "vqdmull", "s", int_arm_neon_vqdmull, 1>; defm VQDMULLsl: N3VLIntSL_HS<0, 0b1011, IIC_VMULi16D, "vqdmull", "s", int_arm_neon_vqdmull>; // Vector Multiply-Accumulate and Multiply-Subtract Operations. // VMLA : Vector Multiply Accumulate (integer and floating-point) defm VMLA : N3VMulOp_QHS<0, 0, 0b1001, 0, IIC_VMACi16D, IIC_VMACi32D, IIC_VMACi16Q, IIC_VMACi32Q, "vmla", "i", add>; def VMLAfd : N3VDMulOp<0, 0, 0b00, 0b1101, 1, IIC_VMACD, "vmla", "f32", v2f32, fmul_su, fadd_mlx>, Requires<[HasNEON, UseFPVMLx]>; def VMLAfq : N3VQMulOp<0, 0, 0b00, 0b1101, 1, IIC_VMACQ, "vmla", "f32", v4f32, fmul_su, fadd_mlx>, Requires<[HasNEON, UseFPVMLx]>; def VMLAhd : N3VDMulOp<0, 0, 0b01, 0b1101, 1, IIC_VMACD, "vmla", "f16", v4f16, fmul_su, fadd_mlx>, Requires<[HasNEON, HasFullFP16, UseFPVMLx]>; def VMLAhq : N3VQMulOp<0, 0, 0b01, 0b1101, 1, IIC_VMACQ, "vmla", "f16", v8f16, fmul_su, fadd_mlx>, Requires<[HasNEON, HasFullFP16, UseFPVMLx]>; defm VMLAsl : N3VMulOpSL_HS<0b0000, IIC_VMACi16D, IIC_VMACi32D, IIC_VMACi16Q, IIC_VMACi32Q, "vmla", "i", add>; def VMLAslfd : N3VDMulOpSL<0b10, 0b0001, IIC_VMACD, "vmla", "f32", v2f32, fmul_su, fadd_mlx>, Requires<[HasNEON, UseFPVMLx]>; def VMLAslfq : N3VQMulOpSL<0b10, 0b0001, IIC_VMACQ, "vmla", "f32", v4f32, v2f32, fmul_su, fadd_mlx>, Requires<[HasNEON, UseFPVMLx]>; def VMLAslhd : N3VDMulOpSL16<0b01, 0b0001, IIC_VMACD, "vmla", "f16", v4f16, fmul, fadd>, Requires<[HasNEON, HasFullFP16, UseFPVMLx]>; def VMLAslhq : N3VQMulOpSL16<0b01, 0b0001, IIC_VMACQ, "vmla", "f16", v8f16, v4f16, fmul, fadd>, Requires<[HasNEON, HasFullFP16, UseFPVMLx]>; let Predicates = [HasNEON] in { def : Pat<(v8i16 (add (v8i16 QPR:$src1), (mul (v8i16 QPR:$src2), (v8i16 (ARMvduplane (v8i16 QPR:$src3), imm:$lane))))), (v8i16 (VMLAslv8i16 (v8i16 QPR:$src1), (v8i16 QPR:$src2), (v4i16 (EXTRACT_SUBREG QPR:$src3, (DSubReg_i16_reg imm:$lane))), (SubReg_i16_lane imm:$lane)))>; def : Pat<(v4i32 (add (v4i32 QPR:$src1), (mul (v4i32 QPR:$src2), (v4i32 (ARMvduplane (v4i32 QPR:$src3), imm:$lane))))), (v4i32 (VMLAslv4i32 (v4i32 QPR:$src1), (v4i32 QPR:$src2), (v2i32 (EXTRACT_SUBREG QPR:$src3, (DSubReg_i32_reg imm:$lane))), (SubReg_i32_lane imm:$lane)))>; } def : Pat<(v4f32 (fadd_mlx (v4f32 QPR:$src1), (fmul_su (v4f32 QPR:$src2), (v4f32 (ARMvduplane (v4f32 QPR:$src3), imm:$lane))))), (v4f32 (VMLAslfq (v4f32 QPR:$src1), (v4f32 QPR:$src2), (v2f32 (EXTRACT_SUBREG QPR:$src3, (DSubReg_i32_reg imm:$lane))), (SubReg_i32_lane imm:$lane)))>, Requires<[HasNEON, UseFPVMLx]>; // VMLAL : Vector Multiply Accumulate Long (Q += D * D) defm VMLALs : N3VLMulOp_QHS<0,1,0b1000,0, IIC_VMACi16D, IIC_VMACi32D, "vmlal", "s", ARMvmulls, add>; defm VMLALu : N3VLMulOp_QHS<1,1,0b1000,0, IIC_VMACi16D, IIC_VMACi32D, "vmlal", "u", ARMvmullu, add>; defm VMLALsls : N3VLMulOpSL_HS<0, 0b0010, "vmlal", "s", ARMvmulls, add>; defm VMLALslu : N3VLMulOpSL_HS<1, 0b0010, "vmlal", "u", ARMvmullu, add>; let Predicates = [HasNEON, HasV8_1a] in { // v8.1a Neon Rounding Double Multiply-Op vector operations, // VQRDMLAH : Vector Saturating Rounding Doubling Multiply Accumulate Long // (Q += D * D) defm VQRDMLAH : N3VInt3_HS<1, 0, 0b1011, 1, IIC_VMACi16D, IIC_VMACi32D, IIC_VMACi16Q, IIC_VMACi32Q, "vqrdmlah", "s", null_frag>; def : Pat<(v4i16 (int_arm_neon_vqrdmlah (v4i16 DPR:$src1), (v4i16 DPR:$Vn), (v4i16 DPR:$Vm))), (v4i16 (VQRDMLAHv4i16 DPR:$src1, DPR:$Vn, DPR:$Vm))>; def : Pat<(v2i32 (int_arm_neon_vqrdmlah (v2i32 DPR:$src1), (v2i32 DPR:$Vn), (v2i32 DPR:$Vm))), (v2i32 (VQRDMLAHv2i32 DPR:$src1, DPR:$Vn, DPR:$Vm))>; def : Pat<(v8i16 (int_arm_neon_vqrdmlah (v8i16 QPR:$src1), (v8i16 QPR:$Vn), (v8i16 QPR:$Vm))), (v8i16 (VQRDMLAHv8i16 QPR:$src1, QPR:$Vn, QPR:$Vm))>; def : Pat<(v4i32 (int_arm_neon_vqrdmlah (v4i32 QPR:$src1), (v4i32 QPR:$Vn), (v4i32 QPR:$Vm))), (v4i32 (VQRDMLAHv4i32 QPR:$src1, QPR:$Vn, QPR:$Vm))>; defm VQRDMLAHsl : N3VMulOpSL_HS<0b1110, IIC_VMACi16D, IIC_VMACi32D, IIC_VMACi16Q, IIC_VMACi32Q, "vqrdmlah", "s", null_frag>; def : Pat<(v4i16 (int_arm_neon_vqrdmlah (v4i16 DPR:$src1), (v4i16 DPR:$Vn), (v4i16 (ARMvduplane (v4i16 DPR_8:$Vm), imm:$lane)))), (v4i16 (VQRDMLAHslv4i16 DPR:$src1, DPR:$Vn, DPR_8:$Vm, imm:$lane))>; def : Pat<(v2i32 (int_arm_neon_vqrdmlah (v2i32 DPR:$src1), (v2i32 DPR:$Vn), (v2i32 (ARMvduplane (v2i32 DPR_VFP2:$Vm), imm:$lane)))), (v2i32 (VQRDMLAHslv2i32 DPR:$src1, DPR:$Vn, DPR_VFP2:$Vm, imm:$lane))>; def : Pat<(v8i16 (int_arm_neon_vqrdmlah (v8i16 QPR:$src1), (v8i16 QPR:$src2), (v8i16 (ARMvduplane (v8i16 QPR:$src3), imm:$lane)))), (v8i16 (VQRDMLAHslv8i16 (v8i16 QPR:$src1), (v8i16 QPR:$src2), (v4i16 (EXTRACT_SUBREG QPR:$src3, (DSubReg_i16_reg imm:$lane))), (SubReg_i16_lane imm:$lane)))>; def : Pat<(v4i32 (int_arm_neon_vqrdmlah (v4i32 QPR:$src1), (v4i32 QPR:$src2), (v4i32 (ARMvduplane (v4i32 QPR:$src3), imm:$lane)))), (v4i32 (VQRDMLAHslv4i32 (v4i32 QPR:$src1), (v4i32 QPR:$src2), (v2i32 (EXTRACT_SUBREG QPR:$src3, (DSubReg_i32_reg imm:$lane))), (SubReg_i32_lane imm:$lane)))>; // VQRDMLSH : Vector Saturating Rounding Doubling Multiply Subtract Long // (Q -= D * D) defm VQRDMLSH : N3VInt3_HS<1, 0, 0b1100, 1, IIC_VMACi16D, IIC_VMACi32D, IIC_VMACi16Q, IIC_VMACi32Q, "vqrdmlsh", "s", null_frag>; def : Pat<(v4i16 (int_arm_neon_vqrdmlsh (v4i16 DPR:$src1), (v4i16 DPR:$Vn), (v4i16 DPR:$Vm))), (v4i16 (VQRDMLSHv4i16 DPR:$src1, DPR:$Vn, DPR:$Vm))>; def : Pat<(v2i32 (int_arm_neon_vqrdmlsh (v2i32 DPR:$src1), (v2i32 DPR:$Vn), (v2i32 DPR:$Vm))), (v2i32 (VQRDMLSHv2i32 DPR:$src1, DPR:$Vn, DPR:$Vm))>; def : Pat<(v8i16 (int_arm_neon_vqrdmlsh (v8i16 QPR:$src1), (v8i16 QPR:$Vn), (v8i16 QPR:$Vm))), (v8i16 (VQRDMLSHv8i16 QPR:$src1, QPR:$Vn, QPR:$Vm))>; def : Pat<(v4i32 (int_arm_neon_vqrdmlsh (v4i32 QPR:$src1), (v4i32 QPR:$Vn), (v4i32 QPR:$Vm))), (v4i32 (VQRDMLSHv4i32 QPR:$src1, QPR:$Vn, QPR:$Vm))>; defm VQRDMLSHsl : N3VMulOpSL_HS<0b1111, IIC_VMACi16D, IIC_VMACi32D, IIC_VMACi16Q, IIC_VMACi32Q, "vqrdmlsh", "s", null_frag>; def : Pat<(v4i16 (int_arm_neon_vqrdmlsh (v4i16 DPR:$src1), (v4i16 DPR:$Vn), (v4i16 (ARMvduplane (v4i16 DPR_8:$Vm), imm:$lane)))), (v4i16 (VQRDMLSHslv4i16 DPR:$src1, DPR:$Vn, DPR_8:$Vm, imm:$lane))>; def : Pat<(v2i32 (int_arm_neon_vqrdmlsh (v2i32 DPR:$src1), (v2i32 DPR:$Vn), (v2i32 (ARMvduplane (v2i32 DPR_VFP2:$Vm), imm:$lane)))), (v2i32 (VQRDMLSHslv2i32 DPR:$src1, DPR:$Vn, DPR_VFP2:$Vm, imm:$lane))>; def : Pat<(v8i16 (int_arm_neon_vqrdmlsh (v8i16 QPR:$src1), (v8i16 QPR:$src2), (v8i16 (ARMvduplane (v8i16 QPR:$src3), imm:$lane)))), (v8i16 (VQRDMLSHslv8i16 (v8i16 QPR:$src1), (v8i16 QPR:$src2), (v4i16 (EXTRACT_SUBREG QPR:$src3, (DSubReg_i16_reg imm:$lane))), (SubReg_i16_lane imm:$lane)))>; def : Pat<(v4i32 (int_arm_neon_vqrdmlsh (v4i32 QPR:$src1), (v4i32 QPR:$src2), (v4i32 (ARMvduplane (v4i32 QPR:$src3), imm:$lane)))), (v4i32 (VQRDMLSHslv4i32 (v4i32 QPR:$src1), (v4i32 QPR:$src2), (v2i32 (EXTRACT_SUBREG QPR:$src3, (DSubReg_i32_reg imm:$lane))), (SubReg_i32_lane imm:$lane)))>; } // VQDMLAL : Vector Saturating Doubling Multiply Accumulate Long (Q += D * D) defm VQDMLAL : N3VLInt3_HS<0, 1, 0b1001, 0, IIC_VMACi16D, IIC_VMACi32D, "vqdmlal", "s", null_frag>; defm VQDMLALsl: N3VLInt3SL_HS<0, 0b0011, "vqdmlal", "s", null_frag>; let Predicates = [HasNEON] in { def : Pat<(v4i32 (saddsat (v4i32 QPR:$src1), (v4i32 (int_arm_neon_vqdmull (v4i16 DPR:$Vn), (v4i16 DPR:$Vm))))), (VQDMLALv4i32 QPR:$src1, DPR:$Vn, DPR:$Vm)>; def : Pat<(v2i64 (saddsat (v2i64 QPR:$src1), (v2i64 (int_arm_neon_vqdmull (v2i32 DPR:$Vn), (v2i32 DPR:$Vm))))), (VQDMLALv2i64 QPR:$src1, DPR:$Vn, DPR:$Vm)>; def : Pat<(v4i32 (saddsat (v4i32 QPR:$src1), (v4i32 (int_arm_neon_vqdmull (v4i16 DPR:$Vn), (v4i16 (ARMvduplane (v4i16 DPR_8:$Vm), imm:$lane)))))), (VQDMLALslv4i16 QPR:$src1, DPR:$Vn, DPR_8:$Vm, imm:$lane)>; def : Pat<(v2i64 (saddsat (v2i64 QPR:$src1), (v2i64 (int_arm_neon_vqdmull (v2i32 DPR:$Vn), (v2i32 (ARMvduplane (v2i32 DPR_VFP2:$Vm), imm:$lane)))))), (VQDMLALslv2i32 QPR:$src1, DPR:$Vn, DPR_VFP2:$Vm, imm:$lane)>; } // VMLS : Vector Multiply Subtract (integer and floating-point) defm VMLS : N3VMulOp_QHS<1, 0, 0b1001, 0, IIC_VMACi16D, IIC_VMACi32D, IIC_VMACi16Q, IIC_VMACi32Q, "vmls", "i", sub>; def VMLSfd : N3VDMulOp<0, 0, 0b10, 0b1101, 1, IIC_VMACD, "vmls", "f32", v2f32, fmul_su, fsub_mlx>, Requires<[HasNEON, UseFPVMLx]>; def VMLSfq : N3VQMulOp<0, 0, 0b10, 0b1101, 1, IIC_VMACQ, "vmls", "f32", v4f32, fmul_su, fsub_mlx>, Requires<[HasNEON, UseFPVMLx]>; def VMLShd : N3VDMulOp<0, 0, 0b11, 0b1101, 1, IIC_VMACD, "vmls", "f16", v4f16, fmul, fsub>, Requires<[HasNEON, HasFullFP16, UseFPVMLx]>; def VMLShq : N3VQMulOp<0, 0, 0b11, 0b1101, 1, IIC_VMACQ, "vmls", "f16", v8f16, fmul, fsub>, Requires<[HasNEON, HasFullFP16, UseFPVMLx]>; defm VMLSsl : N3VMulOpSL_HS<0b0100, IIC_VMACi16D, IIC_VMACi32D, IIC_VMACi16Q, IIC_VMACi32Q, "vmls", "i", sub>; def VMLSslfd : N3VDMulOpSL<0b10, 0b0101, IIC_VMACD, "vmls", "f32", v2f32, fmul_su, fsub_mlx>, Requires<[HasNEON, UseFPVMLx]>; def VMLSslfq : N3VQMulOpSL<0b10, 0b0101, IIC_VMACQ, "vmls", "f32", v4f32, v2f32, fmul_su, fsub_mlx>, Requires<[HasNEON, UseFPVMLx]>; def VMLSslhd : N3VDMulOpSL16<0b01, 0b0101, IIC_VMACD, "vmls", "f16", v4f16, fmul, fsub>, Requires<[HasNEON, HasFullFP16, UseFPVMLx]>; def VMLSslhq : N3VQMulOpSL16<0b01, 0b0101, IIC_VMACQ, "vmls", "f16", v8f16, v4f16, fmul, fsub>, Requires<[HasNEON, HasFullFP16, UseFPVMLx]>; let Predicates = [HasNEON] in { def : Pat<(v8i16 (sub (v8i16 QPR:$src1), (mul (v8i16 QPR:$src2), (v8i16 (ARMvduplane (v8i16 QPR:$src3), imm:$lane))))), (v8i16 (VMLSslv8i16 (v8i16 QPR:$src1), (v8i16 QPR:$src2), (v4i16 (EXTRACT_SUBREG QPR:$src3, (DSubReg_i16_reg imm:$lane))), (SubReg_i16_lane imm:$lane)))>; def : Pat<(v4i32 (sub (v4i32 QPR:$src1), (mul (v4i32 QPR:$src2), (v4i32 (ARMvduplane (v4i32 QPR:$src3), imm:$lane))))), (v4i32 (VMLSslv4i32 (v4i32 QPR:$src1), (v4i32 QPR:$src2), (v2i32 (EXTRACT_SUBREG QPR:$src3, (DSubReg_i32_reg imm:$lane))), (SubReg_i32_lane imm:$lane)))>; } def : Pat<(v4f32 (fsub_mlx (v4f32 QPR:$src1), (fmul_su (v4f32 QPR:$src2), (v4f32 (ARMvduplane (v4f32 QPR:$src3), imm:$lane))))), (v4f32 (VMLSslfq (v4f32 QPR:$src1), (v4f32 QPR:$src2), (v2f32 (EXTRACT_SUBREG QPR:$src3, (DSubReg_i32_reg imm:$lane))), (SubReg_i32_lane imm:$lane)))>, Requires<[HasNEON, UseFPVMLx]>; // VMLSL : Vector Multiply Subtract Long (Q -= D * D) defm VMLSLs : N3VLMulOp_QHS<0,1,0b1010,0, IIC_VMACi16D, IIC_VMACi32D, "vmlsl", "s", ARMvmulls, sub>; defm VMLSLu : N3VLMulOp_QHS<1,1,0b1010,0, IIC_VMACi16D, IIC_VMACi32D, "vmlsl", "u", ARMvmullu, sub>; defm VMLSLsls : N3VLMulOpSL_HS<0, 0b0110, "vmlsl", "s", ARMvmulls, sub>; defm VMLSLslu : N3VLMulOpSL_HS<1, 0b0110, "vmlsl", "u", ARMvmullu, sub>; // VQDMLSL : Vector Saturating Doubling Multiply Subtract Long (Q -= D * D) defm VQDMLSL : N3VLInt3_HS<0, 1, 0b1011, 0, IIC_VMACi16D, IIC_VMACi32D, "vqdmlsl", "s", null_frag>; defm VQDMLSLsl: N3VLInt3SL_HS<0, 0b0111, "vqdmlsl", "s", null_frag>; let Predicates = [HasNEON] in { def : Pat<(v4i32 (ssubsat (v4i32 QPR:$src1), (v4i32 (int_arm_neon_vqdmull (v4i16 DPR:$Vn), (v4i16 DPR:$Vm))))), (VQDMLSLv4i32 QPR:$src1, DPR:$Vn, DPR:$Vm)>; def : Pat<(v2i64 (ssubsat (v2i64 QPR:$src1), (v2i64 (int_arm_neon_vqdmull (v2i32 DPR:$Vn), (v2i32 DPR:$Vm))))), (VQDMLSLv2i64 QPR:$src1, DPR:$Vn, DPR:$Vm)>; def : Pat<(v4i32 (ssubsat (v4i32 QPR:$src1), (v4i32 (int_arm_neon_vqdmull (v4i16 DPR:$Vn), (v4i16 (ARMvduplane (v4i16 DPR_8:$Vm), imm:$lane)))))), (VQDMLSLslv4i16 QPR:$src1, DPR:$Vn, DPR_8:$Vm, imm:$lane)>; def : Pat<(v2i64 (ssubsat (v2i64 QPR:$src1), (v2i64 (int_arm_neon_vqdmull (v2i32 DPR:$Vn), (v2i32 (ARMvduplane (v2i32 DPR_VFP2:$Vm), imm:$lane)))))), (VQDMLSLslv2i32 QPR:$src1, DPR:$Vn, DPR_VFP2:$Vm, imm:$lane)>; } // Fused Vector Multiply-Accumulate and Fused Multiply-Subtract Operations. def VFMAfd : N3VDMulOp<0, 0, 0b00, 0b1100, 1, IIC_VFMACD, "vfma", "f32", v2f32, fmul_su, fadd_mlx>, Requires<[HasNEON,HasVFP4,UseFusedMAC]>; def VFMAfq : N3VQMulOp<0, 0, 0b00, 0b1100, 1, IIC_VFMACQ, "vfma", "f32", v4f32, fmul_su, fadd_mlx>, Requires<[HasNEON,HasVFP4,UseFusedMAC]>; def VFMAhd : N3VDMulOp<0, 0, 0b01, 0b1100, 1, IIC_VFMACD, "vfma", "f16", v4f16, fmul, fadd>, Requires<[HasNEON,HasFullFP16,UseFusedMAC]>; def VFMAhq : N3VQMulOp<0, 0, 0b01, 0b1100, 1, IIC_VFMACQ, "vfma", "f16", v8f16, fmul, fadd>, Requires<[HasNEON,HasFullFP16,UseFusedMAC]>; // Fused Vector Multiply Subtract (floating-point) def VFMSfd : N3VDMulOp<0, 0, 0b10, 0b1100, 1, IIC_VFMACD, "vfms", "f32", v2f32, fmul_su, fsub_mlx>, Requires<[HasNEON,HasVFP4,UseFusedMAC]>; def VFMSfq : N3VQMulOp<0, 0, 0b10, 0b1100, 1, IIC_VFMACQ, "vfms", "f32", v4f32, fmul_su, fsub_mlx>, Requires<[HasNEON,HasVFP4,UseFusedMAC]>; def VFMShd : N3VDMulOp<0, 0, 0b11, 0b1100, 1, IIC_VFMACD, "vfms", "f16", v4f16, fmul, fsub>, Requires<[HasNEON,HasFullFP16,UseFusedMAC]>; def VFMShq : N3VQMulOp<0, 0, 0b11, 0b1100, 1, IIC_VFMACQ, "vfms", "f16", v8f16, fmul, fsub>, Requires<[HasNEON,HasFullFP16,UseFusedMAC]>; // Match @llvm.fma.* intrinsics def : Pat<(v4f16 (fma DPR:$Vn, DPR:$Vm, DPR:$src1)), (VFMAhd DPR:$src1, DPR:$Vn, DPR:$Vm)>, Requires<[HasNEON,HasFullFP16]>; def : Pat<(v8f16 (fma QPR:$Vn, QPR:$Vm, QPR:$src1)), (VFMAhq QPR:$src1, QPR:$Vn, QPR:$Vm)>, Requires<[HasNEON,HasFullFP16]>; def : Pat<(v2f32 (fma DPR:$Vn, DPR:$Vm, DPR:$src1)), (VFMAfd DPR:$src1, DPR:$Vn, DPR:$Vm)>, Requires<[HasNEON,HasVFP4]>; def : Pat<(v4f32 (fma QPR:$Vn, QPR:$Vm, QPR:$src1)), (VFMAfq QPR:$src1, QPR:$Vn, QPR:$Vm)>, Requires<[HasNEON,HasVFP4]>; def : Pat<(v2f32 (fma (fneg DPR:$Vn), DPR:$Vm, DPR:$src1)), (VFMSfd DPR:$src1, DPR:$Vn, DPR:$Vm)>, Requires<[HasNEON,HasVFP4]>; def : Pat<(v4f32 (fma (fneg QPR:$Vn), QPR:$Vm, QPR:$src1)), (VFMSfq QPR:$src1, QPR:$Vn, QPR:$Vm)>, Requires<[HasNEON,HasVFP4]>; // ARMv8.2a dot product instructions. // We put them in the VFPV8 decoder namespace because the ARM and Thumb // encodings are the same and thus no further bit twiddling is necessary // in the disassembler. class VDOT : N3Vnp<{0b1100, op23}, 0b10, 0b1101, op6, op4, (outs RegTy:$dst), (ins RegTy:$Vd, RegTy:$Vn, RegTy:$Vm), N3RegFrm, IIC_VDOTPROD, Asm, AsmTy, [(set (AccumTy RegTy:$dst), (OpNode (AccumTy RegTy:$Vd), (InputTy RegTy:$Vn), (InputTy RegTy:$Vm)))]> { let Predicates = [HasDotProd]; let DecoderNamespace = "VFPV8"; let Constraints = "$dst = $Vd"; } def VUDOTD : VDOT<0, 1, 0, DPR, "vudot", "u8", v2i32, v8i8, int_arm_neon_udot>; def VSDOTD : VDOT<0, 0, 0, DPR, "vsdot", "s8", v2i32, v8i8, int_arm_neon_sdot>; def VUDOTQ : VDOT<1, 1, 0, QPR, "vudot", "u8", v4i32, v16i8, int_arm_neon_udot>; def VSDOTQ : VDOT<1, 0, 0, QPR, "vsdot", "s8", v4i32, v16i8, int_arm_neon_sdot>; // Indexed dot product instructions: multiclass DOTI { def "" : N3Vnp<0b11100, 0b10, 0b1101, Q, U, (outs Ty:$dst), (ins Ty:$Vd, Ty:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane), N3RegFrm, IIC_VDOTPROD, opc, dt, []> { bit lane; let Inst{5} = lane; let AsmString = !strconcat(opc, ".", dt, "\t$Vd, $Vn, $Vm$lane"); let Constraints = "$dst = $Vd"; let Predicates = [HasDotProd]; let DecoderNamespace = "VFPV8"; } def : Pat< (AccumType (OpNode (AccumType Ty:$Vd), (InputType Ty:$Vn), (InputType (bitconvert (AccumType (ARMvduplane (AccumType Ty:$Vm), VectorIndex32:$lane)))))), (!cast(NAME) Ty:$Vd, Ty:$Vn, RHS, VectorIndex32:$lane)>; } defm VUDOTDI : DOTI<"vudot", "u8", 0b0, 0b1, DPR, v2i32, v8i8, int_arm_neon_udot, (v2i32 DPR_VFP2:$Vm)>; defm VSDOTDI : DOTI<"vsdot", "s8", 0b0, 0b0, DPR, v2i32, v8i8, int_arm_neon_sdot, (v2i32 DPR_VFP2:$Vm)>; defm VUDOTQI : DOTI<"vudot", "u8", 0b1, 0b1, QPR, v4i32, v16i8, int_arm_neon_udot, (EXTRACT_SUBREG QPR:$Vm, dsub_0)>; defm VSDOTQI : DOTI<"vsdot", "s8", 0b1, 0b0, QPR, v4i32, v16i8, int_arm_neon_sdot, (EXTRACT_SUBREG QPR:$Vm, dsub_0)>; // v8.6A matrix multiplication extension let Predicates = [HasMatMulInt8] in { class N3VMatMul : N3Vnp<{0b1100, B}, 0b10, 0b1100, 1, U, (outs QPR:$dst), (ins QPR:$Vd, QPR:$Vn, QPR:$Vm), N3RegFrm, NoItinerary, Asm, AsmTy, [(set (v4i32 QPR:$dst), (OpNode (v4i32 QPR:$Vd), (v16i8 QPR:$Vn), (v16i8 QPR:$Vm)))]> { let DecoderNamespace = "VFPV8"; let Constraints = "$dst = $Vd"; } multiclass N3VMixedDotLane { def "" : N3Vnp<0b11101, 0b00, 0b1101, Q, U, (outs RegTy:$dst), (ins RegTy:$Vd, RegTy:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane), N3RegFrm, NoItinerary, Asm, AsmTy, []> { bit lane; let Inst{5} = lane; let AsmString = !strconcat(Asm, ".", AsmTy, "\t$Vd, $Vn, $Vm$lane"); let DecoderNamespace = "VFPV8"; let Constraints = "$dst = $Vd"; } def : Pat< (AccumTy (OpNode (AccumTy RegTy:$Vd), (InputTy RegTy:$Vn), (InputTy (bitconvert (AccumTy (ARMvduplane (AccumTy RegTy:$Vm), VectorIndex32:$lane)))))), (!cast(NAME) RegTy:$Vd, RegTy:$Vn, RHS, VectorIndex32:$lane)>; } multiclass SUDOTLane : N3VMixedDotLane { def : Pat< (AccumTy (int_arm_neon_usdot (AccumTy RegTy:$Vd), (InputTy (bitconvert (AccumTy (ARMvduplane (AccumTy RegTy:$Vm), VectorIndex32:$lane)))), (InputTy RegTy:$Vn))), (!cast(NAME) RegTy:$Vd, RegTy:$Vn, RHS, VectorIndex32:$lane)>; } def VSMMLA : N3VMatMul<0, 0, "vsmmla", "s8", int_arm_neon_smmla>; def VUMMLA : N3VMatMul<0, 1, "vummla", "u8", int_arm_neon_ummla>; def VUSMMLA : N3VMatMul<1, 0, "vusmmla", "s8", int_arm_neon_usmmla>; def VUSDOTD : VDOT<0, 0, 1, DPR, "vusdot", "s8", v2i32, v8i8, int_arm_neon_usdot>; def VUSDOTQ : VDOT<1, 0, 1, QPR, "vusdot", "s8", v4i32, v16i8, int_arm_neon_usdot>; defm VUSDOTDI : N3VMixedDotLane<0, 0, "vusdot", "s8", DPR, v2i32, v8i8, int_arm_neon_usdot, (v2i32 DPR_VFP2:$Vm)>; defm VUSDOTQI : N3VMixedDotLane<1, 0, "vusdot", "s8", QPR, v4i32, v16i8, int_arm_neon_usdot, (EXTRACT_SUBREG QPR:$Vm, dsub_0)>; defm VSUDOTDI : SUDOTLane<0, DPR, v2i32, v8i8, (v2i32 DPR_VFP2:$Vm)>; defm VSUDOTQI : SUDOTLane<1, QPR, v4i32, v16i8, (EXTRACT_SUBREG QPR:$Vm, dsub_0)>; } // ARMv8.3 complex operations class BaseN3VCP8ComplexTied pattern> : N3VCP8<{?,?}, {op21,s}, q, op4, oops, iops, itin, opc, dt, "$Vd, $Vn, $Vm, $rot", "$src1 = $Vd", pattern>{ bits<2> rot; let Inst{24-23} = rot; } class BaseN3VCP8ComplexOdd pattern> : N3VCP8<{?,op23}, {op21,s}, q, op4, oops, iops, itin, opc, dt, "$Vd, $Vn, $Vm, $rot", "", pattern> { bits<1> rot; let Inst{24} = rot; } class BaseN3VCP8ComplexTiedLane32 pattern> : N3VLaneCP8 { bits<2> rot; bit lane; let Inst{21-20} = rot; let Inst{5} = lane; } class BaseN3VCP8ComplexTiedLane64 pattern> : N3VLaneCP8 { bits<2> rot; bit lane; let Inst{21-20} = rot; let Inst{5} = Vm{4}; // This is needed because the lane operand does not have any bits in the // encoding (it only has one possible value), so we need to manually set it // to it's default value. let DecoderMethod = "DecodeNEONComplexLane64Instruction"; } multiclass N3VCP8ComplexTied { let Predicates = [HasNEON,HasV8_3a,HasFullFP16] in { def v4f16 : BaseN3VCP8ComplexTied; def v8f16 : BaseN3VCP8ComplexTied; } let Predicates = [HasNEON,HasV8_3a] in { def v2f32 : BaseN3VCP8ComplexTied; def v4f32 : BaseN3VCP8ComplexTied; } } multiclass N3VCP8ComplexOdd { let Predicates = [HasNEON,HasV8_3a,HasFullFP16] in { def v4f16 : BaseN3VCP8ComplexOdd; def v8f16 : BaseN3VCP8ComplexOdd; } let Predicates = [HasNEON,HasV8_3a] in { def v2f32 : BaseN3VCP8ComplexOdd; def v4f32 : BaseN3VCP8ComplexOdd; } } // These instructions index by pairs of lanes, so the VectorIndexes are twice // as wide as the data types. multiclass N3VCP8ComplexTiedLane { let Predicates = [HasNEON,HasV8_3a,HasFullFP16] in { def v4f16_indexed : BaseN3VCP8ComplexTiedLane32; def v8f16_indexed : BaseN3VCP8ComplexTiedLane32; } let Predicates = [HasNEON,HasV8_3a] in { def v2f32_indexed : BaseN3VCP8ComplexTiedLane64; def v4f32_indexed : BaseN3VCP8ComplexTiedLane64; } } defm VCMLA : N3VCP8ComplexTied<1, 0, "vcmla">; defm VCADD : N3VCP8ComplexOdd<1, 0, 0, "vcadd">; defm VCMLA : N3VCP8ComplexTiedLane<0, "vcmla">; let Predicates = [HasNEON,HasV8_3a,HasFullFP16] in { def : Pat<(v4f16 (int_arm_neon_vcadd_rot90 (v4f16 DPR:$Rn), (v4f16 DPR:$Rm))), (VCADDv4f16 (v4f16 DPR:$Rn), (v4f16 DPR:$Rm), (i32 0))>; def : Pat<(v4f16 (int_arm_neon_vcadd_rot270 (v4f16 DPR:$Rn), (v4f16 DPR:$Rm))), (VCADDv4f16 (v4f16 DPR:$Rn), (v4f16 DPR:$Rm), (i32 1))>; def : Pat<(v8f16 (int_arm_neon_vcadd_rot90 (v8f16 QPR:$Rn), (v8f16 QPR:$Rm))), (VCADDv8f16 (v8f16 QPR:$Rn), (v8f16 QPR:$Rm), (i32 0))>; def : Pat<(v8f16 (int_arm_neon_vcadd_rot270 (v8f16 QPR:$Rn), (v8f16 QPR:$Rm))), (VCADDv8f16 (v8f16 QPR:$Rn), (v8f16 QPR:$Rm), (i32 1))>; } let Predicates = [HasNEON,HasV8_3a] in { def : Pat<(v2f32 (int_arm_neon_vcadd_rot90 (v2f32 DPR:$Rn), (v2f32 DPR:$Rm))), (VCADDv2f32 (v2f32 DPR:$Rn), (v2f32 DPR:$Rm), (i32 0))>; def : Pat<(v2f32 (int_arm_neon_vcadd_rot270 (v2f32 DPR:$Rn), (v2f32 DPR:$Rm))), (VCADDv2f32 (v2f32 DPR:$Rn), (v2f32 DPR:$Rm), (i32 1))>; def : Pat<(v4f32 (int_arm_neon_vcadd_rot90 (v4f32 QPR:$Rn), (v4f32 QPR:$Rm))), (VCADDv4f32 (v4f32 QPR:$Rn), (v4f32 QPR:$Rm), (i32 0))>; def : Pat<(v4f32 (int_arm_neon_vcadd_rot270 (v4f32 QPR:$Rn), (v4f32 QPR:$Rm))), (VCADDv4f32 (v4f32 QPR:$Rn), (v4f32 QPR:$Rm), (i32 1))>; } // Vector Subtract Operations. // VSUB : Vector Subtract (integer and floating-point) defm VSUB : N3V_QHSD<1, 0, 0b1000, 0, IIC_VSUBiD, IIC_VSUBiQ, "vsub", "i", sub, 0>; def VSUBfd : N3VD<0, 0, 0b10, 0b1101, 0, IIC_VBIND, "vsub", "f32", v2f32, v2f32, fsub, 0>; def VSUBfq : N3VQ<0, 0, 0b10, 0b1101, 0, IIC_VBINQ, "vsub", "f32", v4f32, v4f32, fsub, 0>; def VSUBhd : N3VD<0, 0, 0b11, 0b1101, 0, IIC_VBIND, "vsub", "f16", v4f16, v4f16, fsub, 0>, Requires<[HasNEON,HasFullFP16]>; def VSUBhq : N3VQ<0, 0, 0b11, 0b1101, 0, IIC_VBINQ, "vsub", "f16", v8f16, v8f16, fsub, 0>, Requires<[HasNEON,HasFullFP16]>; // VSUBL : Vector Subtract Long (Q = D - D) defm VSUBLs : N3VLExt_QHS<0,1,0b0010,0, IIC_VSHLiD, IIC_VSHLiD, "vsubl", "s", sub, sext, 0>; defm VSUBLu : N3VLExt_QHS<1,1,0b0010,0, IIC_VSHLiD, IIC_VSHLiD, "vsubl", "u", sub, zanyext, 0>; // VSUBW : Vector Subtract Wide (Q = Q - D) defm VSUBWs : N3VW_QHS<0,1,0b0011,0, "vsubw", "s", sub, sext, 0>; defm VSUBWu : N3VW_QHS<1,1,0b0011,0, "vsubw", "u", sub, zanyext, 0>; // VHSUB : Vector Halving Subtract defm VHSUBs : N3VInt_QHS<0, 0, 0b0010, 0, N3RegFrm, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q, "vhsub", "s", int_arm_neon_vhsubs, 0>; defm VHSUBu : N3VInt_QHS<1, 0, 0b0010, 0, N3RegFrm, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q, "vhsub", "u", int_arm_neon_vhsubu, 0>; // VQSUB : Vector Saturing Subtract defm VQSUBs : N3VInt_QHSD<0, 0, 0b0010, 1, N3RegFrm, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q, "vqsub", "s", ssubsat, 0>; defm VQSUBu : N3VInt_QHSD<1, 0, 0b0010, 1, N3RegFrm, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q, "vqsub", "u", usubsat, 0>; // VSUBHN : Vector Subtract and Narrow Returning High Half (D = Q - Q) defm VSUBHN : N3VNInt_HSD<0,1,0b0110,0, "vsubhn", "i", null_frag, 0>; // VRSUBHN : Vector Rounding Subtract and Narrow Returning High Half (D=Q-Q) defm VRSUBHN : N3VNInt_HSD<1,1,0b0110,0, "vrsubhn", "i", int_arm_neon_vrsubhn, 0>; let Predicates = [HasNEON] in { def : Pat<(v8i8 (trunc (ARMvshruImm (sub (v8i16 QPR:$Vn), QPR:$Vm), 8))), (VSUBHNv8i8 QPR:$Vn, QPR:$Vm)>; def : Pat<(v4i16 (trunc (ARMvshruImm (sub (v4i32 QPR:$Vn), QPR:$Vm), 16))), (VSUBHNv4i16 QPR:$Vn, QPR:$Vm)>; def : Pat<(v2i32 (trunc (ARMvshruImm (sub (v2i64 QPR:$Vn), QPR:$Vm), 32))), (VSUBHNv2i32 QPR:$Vn, QPR:$Vm)>; } // Vector Comparisons. // VCEQ : Vector Compare Equal defm VCEQ : N3V_QHS_cmp<1, 0, 0b1000, 1, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q, "vceq", "i", ARMCCeq, 1>; def VCEQfd : N3VD_cmp<0,0,0b00,0b1110,0, IIC_VBIND, "vceq", "f32", v2i32, v2f32, ARMCCeq, 1>; def VCEQfq : N3VQ_cmp<0,0,0b00,0b1110,0, IIC_VBINQ, "vceq", "f32", v4i32, v4f32, ARMCCeq, 1>; def VCEQhd : N3VD_cmp<0,0,0b01,0b1110,0, IIC_VBIND, "vceq", "f16", v4i16, v4f16, ARMCCeq, 1>, Requires<[HasNEON, HasFullFP16]>; def VCEQhq : N3VQ_cmp<0,0,0b01,0b1110,0, IIC_VBINQ, "vceq", "f16", v8i16, v8f16, ARMCCeq, 1>, Requires<[HasNEON, HasFullFP16]>; let TwoOperandAliasConstraint = "$Vm = $Vd" in defm VCEQz : N2V_QHS_cmp<0b11, 0b11, 0b01, 0b00010, 0, "vceq", "i", "$Vd, $Vm, #0", ARMCCeq>; // VCGE : Vector Compare Greater Than or Equal defm VCGEs : N3V_QHS_cmp<0, 0, 0b0011, 1, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q, "vcge", "s", ARMCCge, 0>; defm VCGEu : N3V_QHS_cmp<1, 0, 0b0011, 1, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q, "vcge", "u", ARMCChs, 0>; def VCGEfd : N3VD_cmp<1,0,0b00,0b1110,0, IIC_VBIND, "vcge", "f32", v2i32, v2f32, ARMCCge, 0>; def VCGEfq : N3VQ_cmp<1,0,0b00,0b1110,0, IIC_VBINQ, "vcge", "f32", v4i32, v4f32, ARMCCge, 0>; def VCGEhd : N3VD_cmp<1,0,0b01,0b1110,0, IIC_VBIND, "vcge", "f16", v4i16, v4f16, ARMCCge, 0>, Requires<[HasNEON, HasFullFP16]>; def VCGEhq : N3VQ_cmp<1,0,0b01,0b1110,0, IIC_VBINQ, "vcge", "f16", v8i16, v8f16, ARMCCge, 0>, Requires<[HasNEON, HasFullFP16]>; let TwoOperandAliasConstraint = "$Vm = $Vd" in { defm VCGEz : N2V_QHS_cmp<0b11, 0b11, 0b01, 0b00001, 0, "vcge", "s", "$Vd, $Vm, #0", ARMCCge>; defm VCLEz : N2V_QHS_cmp<0b11, 0b11, 0b01, 0b00011, 0, "vcle", "s", "$Vd, $Vm, #0", ARMCCle>; } // VCGT : Vector Compare Greater Than defm VCGTs : N3V_QHS_cmp<0, 0, 0b0011, 0, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q, "vcgt", "s", ARMCCgt, 0>; defm VCGTu : N3V_QHS_cmp<1, 0, 0b0011, 0, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q, "vcgt", "u", ARMCChi, 0>; def VCGTfd : N3VD_cmp<1,0,0b10,0b1110,0, IIC_VBIND, "vcgt", "f32", v2i32, v2f32, ARMCCgt, 0>; def VCGTfq : N3VQ_cmp<1,0,0b10,0b1110,0, IIC_VBINQ, "vcgt", "f32", v4i32, v4f32, ARMCCgt, 0>; def VCGThd : N3VD_cmp<1,0,0b11,0b1110,0, IIC_VBIND, "vcgt", "f16", v4i16, v4f16, ARMCCgt, 0>, Requires<[HasNEON, HasFullFP16]>; def VCGThq : N3VQ_cmp<1,0,0b11,0b1110,0, IIC_VBINQ, "vcgt", "f16", v8i16, v8f16, ARMCCgt, 0>, Requires<[HasNEON, HasFullFP16]>; let TwoOperandAliasConstraint = "$Vm = $Vd" in { defm VCGTz : N2V_QHS_cmp<0b11, 0b11, 0b01, 0b00000, 0, "vcgt", "s", "$Vd, $Vm, #0", ARMCCgt>; defm VCLTz : N2V_QHS_cmp<0b11, 0b11, 0b01, 0b00100, 0, "vclt", "s", "$Vd, $Vm, #0", ARMCClt>; } // VACGE : Vector Absolute Compare Greater Than or Equal (aka VCAGE) def VACGEfd : N3VDInt<1, 0, 0b00, 0b1110, 1, N3RegFrm, IIC_VBIND, "vacge", "f32", v2i32, v2f32, int_arm_neon_vacge, 0>; def VACGEfq : N3VQInt<1, 0, 0b00, 0b1110, 1, N3RegFrm, IIC_VBINQ, "vacge", "f32", v4i32, v4f32, int_arm_neon_vacge, 0>; def VACGEhd : N3VDInt<1, 0, 0b01, 0b1110, 1, N3RegFrm, IIC_VBIND, "vacge", "f16", v4i16, v4f16, int_arm_neon_vacge, 0>, Requires<[HasNEON, HasFullFP16]>; def VACGEhq : N3VQInt<1, 0, 0b01, 0b1110, 1, N3RegFrm, IIC_VBINQ, "vacge", "f16", v8i16, v8f16, int_arm_neon_vacge, 0>, Requires<[HasNEON, HasFullFP16]>; // VACGT : Vector Absolute Compare Greater Than (aka VCAGT) def VACGTfd : N3VDInt<1, 0, 0b10, 0b1110, 1, N3RegFrm, IIC_VBIND, "vacgt", "f32", v2i32, v2f32, int_arm_neon_vacgt, 0>; def VACGTfq : N3VQInt<1, 0, 0b10, 0b1110, 1, N3RegFrm, IIC_VBINQ, "vacgt", "f32", v4i32, v4f32, int_arm_neon_vacgt, 0>; def VACGThd : N3VDInt<1, 0, 0b11, 0b1110, 1, N3RegFrm, IIC_VBIND, "vacgt", "f16", v4i16, v4f16, int_arm_neon_vacgt, 0>, Requires<[HasNEON, HasFullFP16]>; def VACGThq : N3VQInt<1, 0, 0b11, 0b1110, 1, N3RegFrm, IIC_VBINQ, "vacgt", "f16", v8i16, v8f16, int_arm_neon_vacgt, 0>, Requires<[HasNEON, HasFullFP16]>; // VTST : Vector Test Bits defm VTST : N3V_QHS<0, 0, 0b1000, 1, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q, IIC_VBINi4Q, "vtst", "", NEONvtst, 1>; def: NEONInstAlias<"vaclt${p}.f32 $Vd, $Vn, $Vm", (VACGTfd DPR:$Vd, DPR:$Vm, DPR:$Vn, pred:$p)>; def: NEONInstAlias<"vaclt${p}.f32 $Vd, $Vn, $Vm", (VACGTfq QPR:$Vd, QPR:$Vm, QPR:$Vn, pred:$p)>; def: NEONInstAlias<"vacle${p}.f32 $Vd, $Vn, $Vm", (VACGEfd DPR:$Vd, DPR:$Vm, DPR:$Vn, pred:$p)>; def: NEONInstAlias<"vacle${p}.f32 $Vd, $Vn, $Vm", (VACGEfq QPR:$Vd, QPR:$Vm, QPR:$Vn, pred:$p)>; let Predicates = [HasNEON, HasFullFP16] in { def: NEONInstAlias<"vaclt${p}.f16 $Vd, $Vn, $Vm", (VACGThd DPR:$Vd, DPR:$Vm, DPR:$Vn, pred:$p)>; def: NEONInstAlias<"vaclt${p}.f16 $Vd, $Vn, $Vm", (VACGThq QPR:$Vd, QPR:$Vm, QPR:$Vn, pred:$p)>; def: NEONInstAlias<"vacle${p}.f16 $Vd, $Vn, $Vm", (VACGEhd DPR:$Vd, DPR:$Vm, DPR:$Vn, pred:$p)>; def: NEONInstAlias<"vacle${p}.f16 $Vd, $Vn, $Vm", (VACGEhq QPR:$Vd, QPR:$Vm, QPR:$Vn, pred:$p)>; } // +fp16fml Floating Point Multiplication Variants let Predicates = [HasNEON, HasFP16FML], DecoderNamespace= "VFPV8" in { class N3VCP8F16Q1 op1, bits<2> op2, bit op3> : N3VCP8; class N3VCP8F16Q0 op1, bits<2> op2, bit op3> : N3VCP8Q0; // Vd, Vs, Vs[0-15], Idx[0-1] class VFMD S> : N3VLaneCP8<0, S, 0, 1, (outs DPR:$Vd), (ins SPR:$Vn, SPR_8:$Vm, VectorIndex32:$idx), IIC_VMACD, opc, type, "$Vd, $Vn, $Vm$idx", "", []> { bit idx; let Inst{3} = idx; let Inst{19-16} = Vn{4-1}; let Inst{7} = Vn{0}; let Inst{5} = Vm{0}; let Inst{2-0} = Vm{3-1}; } // Vq, Vd, Vd[0-7], Idx[0-3] class VFMQ S> : N3VLaneCP8<0, S, 1, 1, (outs QPR:$Vd), (ins DPR:$Vn, DPR_8:$Vm, VectorIndex16:$idx), IIC_VMACD, opc, type, "$Vd, $Vn, $Vm$idx", "", []> { bits<2> idx; let Inst{5} = idx{1}; let Inst{3} = idx{0}; } // op1 op2 op3 def VFMALD : N3VCP8F16Q0<"vfmal", DPR, SPR, SPR, 0b00, 0b10, 1>; def VFMSLD : N3VCP8F16Q0<"vfmsl", DPR, SPR, SPR, 0b01, 0b10, 1>; def VFMALQ : N3VCP8F16Q1<"vfmal", QPR, DPR, DPR, 0b00, 0b10, 1>; def VFMSLQ : N3VCP8F16Q1<"vfmsl", QPR, DPR, DPR, 0b01, 0b10, 1>; def VFMALDI : VFMD<"vfmal", "f16", 0b00>; def VFMSLDI : VFMD<"vfmsl", "f16", 0b01>; def VFMALQI : VFMQ<"vfmal", "f16", 0b00>; def VFMSLQI : VFMQ<"vfmsl", "f16", 0b01>; } // HasNEON, HasFP16FML def: NEONInstAlias<"vaclt${p}.f32 $Vd, $Vm", (VACGTfd DPR:$Vd, DPR:$Vm, DPR:$Vd, pred:$p)>; def: NEONInstAlias<"vaclt${p}.f32 $Vd, $Vm", (VACGTfq QPR:$Vd, QPR:$Vm, QPR:$Vd, pred:$p)>; def: NEONInstAlias<"vacle${p}.f32 $Vd, $Vm", (VACGEfd DPR:$Vd, DPR:$Vm, DPR:$Vd, pred:$p)>; def: NEONInstAlias<"vacle${p}.f32 $Vd, $Vm", (VACGEfq QPR:$Vd, QPR:$Vm, QPR:$Vd, pred:$p)>; let Predicates = [HasNEON, HasFullFP16] in { def: NEONInstAlias<"vaclt${p}.f16 $Vd, $Vm", (VACGThd DPR:$Vd, DPR:$Vm, DPR:$Vd, pred:$p)>; def: NEONInstAlias<"vaclt${p}.f16 $Vd, $Vm", (VACGThq QPR:$Vd, QPR:$Vm, QPR:$Vd, pred:$p)>; def: NEONInstAlias<"vacle${p}.f16 $Vd, $Vm", (VACGEhd DPR:$Vd, DPR:$Vm, DPR:$Vd, pred:$p)>; def: NEONInstAlias<"vacle${p}.f16 $Vd, $Vm", (VACGEhq QPR:$Vd, QPR:$Vm, QPR:$Vd, pred:$p)>; } // Vector Bitwise Operations. def vnotd : PatFrag<(ops node:$in), (xor node:$in, ARMimmAllOnesD)>; def vnotq : PatFrag<(ops node:$in), (xor node:$in, ARMimmAllOnesV)>; // VAND : Vector Bitwise AND def VANDd : N3VDX<0, 0, 0b00, 0b0001, 1, IIC_VBINiD, "vand", v2i32, v2i32, and, 1>; def VANDq : N3VQX<0, 0, 0b00, 0b0001, 1, IIC_VBINiQ, "vand", v4i32, v4i32, and, 1>; // VEOR : Vector Bitwise Exclusive OR def VEORd : N3VDX<1, 0, 0b00, 0b0001, 1, IIC_VBINiD, "veor", v2i32, v2i32, xor, 1>; def VEORq : N3VQX<1, 0, 0b00, 0b0001, 1, IIC_VBINiQ, "veor", v4i32, v4i32, xor, 1>; // VORR : Vector Bitwise OR def VORRd : N3VDX<0, 0, 0b10, 0b0001, 1, IIC_VBINiD, "vorr", v2i32, v2i32, or, 1>; def VORRq : N3VQX<0, 0, 0b10, 0b0001, 1, IIC_VBINiQ, "vorr", v4i32, v4i32, or, 1>; multiclass BitwisePatterns { def : Pat<(v8i8 (OpNodeD DPR:$LHS, DPR:$RHS)), (!cast(Name#"d") DPR:$LHS, DPR:$RHS)>; def : Pat<(v4i16 (OpNodeD DPR:$LHS, DPR:$RHS)), (!cast(Name#"d") DPR:$LHS, DPR:$RHS)>; def : Pat<(v1i64 (OpNodeD DPR:$LHS, DPR:$RHS)), (!cast(Name#"d") DPR:$LHS, DPR:$RHS)>; def : Pat<(v16i8 (OpNodeQ QPR:$LHS, QPR:$RHS)), (!cast(Name#"q") QPR:$LHS, QPR:$RHS)>; def : Pat<(v8i16 (OpNodeQ QPR:$LHS, QPR:$RHS)), (!cast(Name#"q") QPR:$LHS, QPR:$RHS)>; def : Pat<(v2i64 (OpNodeQ QPR:$LHS, QPR:$RHS)), (!cast(Name#"q") QPR:$LHS, QPR:$RHS)>; } let Predicates = [HasNEON] in { defm : BitwisePatterns<"VAND", and, and>; defm : BitwisePatterns<"VORR", or, or>; defm : BitwisePatterns<"VEOR", xor, xor>; } def VORRiv4i16 : N1ModImm<1, 0b000, {1,0,?,1}, 0, 0, 0, 1, (outs DPR:$Vd), (ins nImmSplatI16:$SIMM, DPR:$src), IIC_VMOVImm, "vorr", "i16", "$Vd, $SIMM", "$src = $Vd", [(set DPR:$Vd, (v4i16 (ARMvorrImm DPR:$src, timm:$SIMM)))]> { let Inst{9} = SIMM{9}; } def VORRiv2i32 : N1ModImm<1, 0b000, {0,?,?,1}, 0, 0, 0, 1, (outs DPR:$Vd), (ins nImmSplatI32:$SIMM, DPR:$src), IIC_VMOVImm, "vorr", "i32", "$Vd, $SIMM", "$src = $Vd", [(set DPR:$Vd, (v2i32 (ARMvorrImm DPR:$src, timm:$SIMM)))]> { let Inst{10-9} = SIMM{10-9}; } def VORRiv8i16 : N1ModImm<1, 0b000, {1,0,?,1}, 0, 1, 0, 1, (outs QPR:$Vd), (ins nImmSplatI16:$SIMM, QPR:$src), IIC_VMOVImm, "vorr", "i16", "$Vd, $SIMM", "$src = $Vd", [(set QPR:$Vd, (v8i16 (ARMvorrImm QPR:$src, timm:$SIMM)))]> { let Inst{9} = SIMM{9}; } def VORRiv4i32 : N1ModImm<1, 0b000, {0,?,?,1}, 0, 1, 0, 1, (outs QPR:$Vd), (ins nImmSplatI32:$SIMM, QPR:$src), IIC_VMOVImm, "vorr", "i32", "$Vd, $SIMM", "$src = $Vd", [(set QPR:$Vd, (v4i32 (ARMvorrImm QPR:$src, timm:$SIMM)))]> { let Inst{10-9} = SIMM{10-9}; } // VBIC : Vector Bitwise Bit Clear (AND NOT) let TwoOperandAliasConstraint = "$Vn = $Vd" in { def VBICd : N3VX<0, 0, 0b01, 0b0001, 0, 1, (outs DPR:$Vd), (ins DPR:$Vn, DPR:$Vm), N3RegFrm, IIC_VBINiD, "vbic", "$Vd, $Vn, $Vm", "", [(set DPR:$Vd, (v2i32 (and DPR:$Vn, (vnotd DPR:$Vm))))]>; def VBICq : N3VX<0, 0, 0b01, 0b0001, 1, 1, (outs QPR:$Vd), (ins QPR:$Vn, QPR:$Vm), N3RegFrm, IIC_VBINiQ, "vbic", "$Vd, $Vn, $Vm", "", [(set QPR:$Vd, (v4i32 (and QPR:$Vn, (vnotq QPR:$Vm))))]>; } let Predicates = [HasNEON] in { defm : BitwisePatterns<"VBIC", BinOpFrag<(and node:$LHS, (vnotd node:$RHS))>, BinOpFrag<(and node:$LHS, (vnotq node:$RHS))>>; } def VBICiv4i16 : N1ModImm<1, 0b000, {1,0,?,1}, 0, 0, 1, 1, (outs DPR:$Vd), (ins nImmSplatI16:$SIMM, DPR:$src), IIC_VMOVImm, "vbic", "i16", "$Vd, $SIMM", "$src = $Vd", [(set DPR:$Vd, (v4i16 (ARMvbicImm DPR:$src, timm:$SIMM)))]> { let Inst{9} = SIMM{9}; } def VBICiv2i32 : N1ModImm<1, 0b000, {0,?,?,1}, 0, 0, 1, 1, (outs DPR:$Vd), (ins nImmSplatI32:$SIMM, DPR:$src), IIC_VMOVImm, "vbic", "i32", "$Vd, $SIMM", "$src = $Vd", [(set DPR:$Vd, (v2i32 (ARMvbicImm DPR:$src, timm:$SIMM)))]> { let Inst{10-9} = SIMM{10-9}; } def VBICiv8i16 : N1ModImm<1, 0b000, {1,0,?,1}, 0, 1, 1, 1, (outs QPR:$Vd), (ins nImmSplatI16:$SIMM, QPR:$src), IIC_VMOVImm, "vbic", "i16", "$Vd, $SIMM", "$src = $Vd", [(set QPR:$Vd, (v8i16 (ARMvbicImm QPR:$src, timm:$SIMM)))]> { let Inst{9} = SIMM{9}; } def VBICiv4i32 : N1ModImm<1, 0b000, {0,?,?,1}, 0, 1, 1, 1, (outs QPR:$Vd), (ins nImmSplatI32:$SIMM, QPR:$src), IIC_VMOVImm, "vbic", "i32", "$Vd, $SIMM", "$src = $Vd", [(set QPR:$Vd, (v4i32 (ARMvbicImm QPR:$src, timm:$SIMM)))]> { let Inst{10-9} = SIMM{10-9}; } // VORN : Vector Bitwise OR NOT def VORNd : N3VX<0, 0, 0b11, 0b0001, 0, 1, (outs DPR:$Vd), (ins DPR:$Vn, DPR:$Vm), N3RegFrm, IIC_VBINiD, "vorn", "$Vd, $Vn, $Vm", "", [(set DPR:$Vd, (v2i32 (or DPR:$Vn, (vnotd DPR:$Vm))))]>; def VORNq : N3VX<0, 0, 0b11, 0b0001, 1, 1, (outs QPR:$Vd), (ins QPR:$Vn, QPR:$Vm), N3RegFrm, IIC_VBINiQ, "vorn", "$Vd, $Vn, $Vm", "", [(set QPR:$Vd, (v4i32 (or QPR:$Vn, (vnotq QPR:$Vm))))]>; let Predicates = [HasNEON] in { defm : BitwisePatterns<"VORN", BinOpFrag<(or node:$LHS, (vnotd node:$RHS))>, BinOpFrag<(or node:$LHS, (vnotq node:$RHS))>>; } // VMVN : Vector Bitwise NOT (Immediate) let isReMaterializable = 1 in { def VMVNv4i16 : N1ModImm<1, 0b000, {1,0,?,0}, 0, 0, 1, 1, (outs DPR:$Vd), (ins nImmSplatI16:$SIMM), IIC_VMOVImm, "vmvn", "i16", "$Vd, $SIMM", "", [(set DPR:$Vd, (v4i16 (ARMvmvnImm timm:$SIMM)))]> { let Inst{9} = SIMM{9}; } def VMVNv8i16 : N1ModImm<1, 0b000, {1,0,?,0}, 0, 1, 1, 1, (outs QPR:$Vd), (ins nImmSplatI16:$SIMM), IIC_VMOVImm, "vmvn", "i16", "$Vd, $SIMM", "", [(set QPR:$Vd, (v8i16 (ARMvmvnImm timm:$SIMM)))]> { let Inst{9} = SIMM{9}; } def VMVNv2i32 : N1ModImm<1, 0b000, {?,?,?,?}, 0, 0, 1, 1, (outs DPR:$Vd), (ins nImmVMOVI32:$SIMM), IIC_VMOVImm, "vmvn", "i32", "$Vd, $SIMM", "", [(set DPR:$Vd, (v2i32 (ARMvmvnImm timm:$SIMM)))]> { let Inst{11-8} = SIMM{11-8}; } def VMVNv4i32 : N1ModImm<1, 0b000, {?,?,?,?}, 0, 1, 1, 1, (outs QPR:$Vd), (ins nImmVMOVI32:$SIMM), IIC_VMOVImm, "vmvn", "i32", "$Vd, $SIMM", "", [(set QPR:$Vd, (v4i32 (ARMvmvnImm timm:$SIMM)))]> { let Inst{11-8} = SIMM{11-8}; } } // VMVN : Vector Bitwise NOT def VMVNd : N2VX<0b11, 0b11, 0b00, 0b00, 0b01011, 0, 0, (outs DPR:$Vd), (ins DPR:$Vm), IIC_VSUBiD, "vmvn", "$Vd, $Vm", "", [(set DPR:$Vd, (v2i32 (vnotd DPR:$Vm)))]>; def VMVNq : N2VX<0b11, 0b11, 0b00, 0b00, 0b01011, 1, 0, (outs QPR:$Vd), (ins QPR:$Vm), IIC_VSUBiD, "vmvn", "$Vd, $Vm", "", [(set QPR:$Vd, (v4i32 (vnotq QPR:$Vm)))]>; let Predicates = [HasNEON] in { def : Pat<(v1i64 (vnotd DPR:$src)), (VMVNd DPR:$src)>; def : Pat<(v4i16 (vnotd DPR:$src)), (VMVNd DPR:$src)>; def : Pat<(v8i8 (vnotd DPR:$src)), (VMVNd DPR:$src)>; def : Pat<(v2i64 (vnotq QPR:$src)), (VMVNq QPR:$src)>; def : Pat<(v8i16 (vnotq QPR:$src)), (VMVNq QPR:$src)>; def : Pat<(v16i8 (vnotq QPR:$src)), (VMVNq QPR:$src)>; } // The TwoAddress pass will not go looking for equivalent operations // with different register constraints; it just inserts copies. // That is why pseudo VBSP implemented. Is is expanded later into // VBIT/VBIF/VBSL taking into account register constraints to avoid copies. def VBSPd : PseudoNeonI<(outs DPR:$Vd), (ins DPR:$src1, DPR:$Vn, DPR:$Vm), IIC_VBINiD, "", [(set DPR:$Vd, (v2i32 (NEONvbsp DPR:$src1, DPR:$Vn, DPR:$Vm)))]>; let Predicates = [HasNEON] in { def : Pat<(v8i8 (int_arm_neon_vbsl (v8i8 DPR:$src1), (v8i8 DPR:$Vn), (v8i8 DPR:$Vm))), (VBSPd DPR:$src1, DPR:$Vn, DPR:$Vm)>; def : Pat<(v4i16 (int_arm_neon_vbsl (v4i16 DPR:$src1), (v4i16 DPR:$Vn), (v4i16 DPR:$Vm))), (VBSPd DPR:$src1, DPR:$Vn, DPR:$Vm)>; def : Pat<(v2i32 (int_arm_neon_vbsl (v2i32 DPR:$src1), (v2i32 DPR:$Vn), (v2i32 DPR:$Vm))), (VBSPd DPR:$src1, DPR:$Vn, DPR:$Vm)>; def : Pat<(v2f32 (int_arm_neon_vbsl (v2f32 DPR:$src1), (v2f32 DPR:$Vn), (v2f32 DPR:$Vm))), (VBSPd DPR:$src1, DPR:$Vn, DPR:$Vm)>; def : Pat<(v1i64 (int_arm_neon_vbsl (v1i64 DPR:$src1), (v1i64 DPR:$Vn), (v1i64 DPR:$Vm))), (VBSPd DPR:$src1, DPR:$Vn, DPR:$Vm)>; def : Pat<(v8i8 (or (and DPR:$Vn, DPR:$Vd), (and DPR:$Vm, (vnotd DPR:$Vd)))), (VBSPd DPR:$Vd, DPR:$Vn, DPR:$Vm)>; def : Pat<(v4i16 (or (and DPR:$Vn, DPR:$Vd), (and DPR:$Vm, (vnotd DPR:$Vd)))), (VBSPd DPR:$Vd, DPR:$Vn, DPR:$Vm)>; def : Pat<(v2i32 (or (and DPR:$Vn, DPR:$Vd), (and DPR:$Vm, (vnotd DPR:$Vd)))), (VBSPd DPR:$Vd, DPR:$Vn, DPR:$Vm)>; def : Pat<(v1i64 (or (and DPR:$Vn, DPR:$Vd), (and DPR:$Vm, (vnotd DPR:$Vd)))), (VBSPd DPR:$Vd, DPR:$Vn, DPR:$Vm)>; } def VBSPq : PseudoNeonI<(outs QPR:$Vd), (ins QPR:$src1, QPR:$Vn, QPR:$Vm), IIC_VBINiQ, "", [(set QPR:$Vd, (v4i32 (NEONvbsp QPR:$src1, QPR:$Vn, QPR:$Vm)))]>; let Predicates = [HasNEON] in { def : Pat<(v16i8 (int_arm_neon_vbsl (v16i8 QPR:$src1), (v16i8 QPR:$Vn), (v16i8 QPR:$Vm))), (VBSPq QPR:$src1, QPR:$Vn, QPR:$Vm)>; def : Pat<(v8i16 (int_arm_neon_vbsl (v8i16 QPR:$src1), (v8i16 QPR:$Vn), (v8i16 QPR:$Vm))), (VBSPq QPR:$src1, QPR:$Vn, QPR:$Vm)>; def : Pat<(v4i32 (int_arm_neon_vbsl (v4i32 QPR:$src1), (v4i32 QPR:$Vn), (v4i32 QPR:$Vm))), (VBSPq QPR:$src1, QPR:$Vn, QPR:$Vm)>; def : Pat<(v4f32 (int_arm_neon_vbsl (v4f32 QPR:$src1), (v4f32 QPR:$Vn), (v4f32 QPR:$Vm))), (VBSPq QPR:$src1, QPR:$Vn, QPR:$Vm)>; def : Pat<(v2i64 (int_arm_neon_vbsl (v2i64 QPR:$src1), (v2i64 QPR:$Vn), (v2i64 QPR:$Vm))), (VBSPq QPR:$src1, QPR:$Vn, QPR:$Vm)>; def : Pat<(v16i8 (or (and QPR:$Vn, QPR:$Vd), (and QPR:$Vm, (vnotq QPR:$Vd)))), (VBSPq QPR:$Vd, QPR:$Vn, QPR:$Vm)>; def : Pat<(v8i16 (or (and QPR:$Vn, QPR:$Vd), (and QPR:$Vm, (vnotq QPR:$Vd)))), (VBSPq QPR:$Vd, QPR:$Vn, QPR:$Vm)>; def : Pat<(v4i32 (or (and QPR:$Vn, QPR:$Vd), (and QPR:$Vm, (vnotq QPR:$Vd)))), (VBSPq QPR:$Vd, QPR:$Vn, QPR:$Vm)>; def : Pat<(v2i64 (or (and QPR:$Vn, QPR:$Vd), (and QPR:$Vm, (vnotq QPR:$Vd)))), (VBSPq QPR:$Vd, QPR:$Vn, QPR:$Vm)>; } // VBSL : Vector Bitwise Select def VBSLd : N3VX<1, 0, 0b01, 0b0001, 0, 1, (outs DPR:$Vd), (ins DPR:$src1, DPR:$Vn, DPR:$Vm), N3RegFrm, IIC_VBINiD, "vbsl", "$Vd, $Vn, $Vm", "$src1 = $Vd", []>; def VBSLq : N3VX<1, 0, 0b01, 0b0001, 1, 1, (outs QPR:$Vd), (ins QPR:$src1, QPR:$Vn, QPR:$Vm), N3RegFrm, IIC_VBINiQ, "vbsl", "$Vd, $Vn, $Vm", "$src1 = $Vd", []>; // VBIF : Vector Bitwise Insert if False // like VBSL but with: "vbif $dst, $src3, $src1", "$src2 = $dst", def VBIFd : N3VX<1, 0, 0b11, 0b0001, 0, 1, (outs DPR:$Vd), (ins DPR:$src1, DPR:$Vn, DPR:$Vm), N3RegFrm, IIC_VBINiD, "vbif", "$Vd, $Vn, $Vm", "$src1 = $Vd", []>; def VBIFq : N3VX<1, 0, 0b11, 0b0001, 1, 1, (outs QPR:$Vd), (ins QPR:$src1, QPR:$Vn, QPR:$Vm), N3RegFrm, IIC_VBINiQ, "vbif", "$Vd, $Vn, $Vm", "$src1 = $Vd", []>; // VBIT : Vector Bitwise Insert if True // like VBSL but with: "vbit $dst, $src2, $src1", "$src3 = $dst", def VBITd : N3VX<1, 0, 0b10, 0b0001, 0, 1, (outs DPR:$Vd), (ins DPR:$src1, DPR:$Vn, DPR:$Vm), N3RegFrm, IIC_VBINiD, "vbit", "$Vd, $Vn, $Vm", "$src1 = $Vd", []>; def VBITq : N3VX<1, 0, 0b10, 0b0001, 1, 1, (outs QPR:$Vd), (ins QPR:$src1, QPR:$Vn, QPR:$Vm), N3RegFrm, IIC_VBINiQ, "vbit", "$Vd, $Vn, $Vm", "$src1 = $Vd", []>; // Vector Absolute Differences. // VABD : Vector Absolute Difference defm VABDs : N3VInt_QHS<0, 0, 0b0111, 0, N3RegFrm, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q, "vabd", "s", int_arm_neon_vabds, 1>; defm VABDu : N3VInt_QHS<1, 0, 0b0111, 0, N3RegFrm, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q, "vabd", "u", int_arm_neon_vabdu, 1>; def VABDfd : N3VDInt<1, 0, 0b10, 0b1101, 0, N3RegFrm, IIC_VBIND, "vabd", "f32", v2f32, v2f32, int_arm_neon_vabds, 1>; def VABDfq : N3VQInt<1, 0, 0b10, 0b1101, 0, N3RegFrm, IIC_VBINQ, "vabd", "f32", v4f32, v4f32, int_arm_neon_vabds, 1>; def VABDhd : N3VDInt<1, 0, 0b11, 0b1101, 0, N3RegFrm, IIC_VBIND, "vabd", "f16", v4f16, v4f16, int_arm_neon_vabds, 1>, Requires<[HasNEON, HasFullFP16]>; def VABDhq : N3VQInt<1, 0, 0b11, 0b1101, 0, N3RegFrm, IIC_VBINQ, "vabd", "f16", v8f16, v8f16, int_arm_neon_vabds, 1>, Requires<[HasNEON, HasFullFP16]>; // VABDL : Vector Absolute Difference Long (Q = | D - D |) defm VABDLs : N3VLIntExt_QHS<0,1,0b0111,0, IIC_VSUBi4Q, "vabdl", "s", int_arm_neon_vabds, zext, 1>; defm VABDLu : N3VLIntExt_QHS<1,1,0b0111,0, IIC_VSUBi4Q, "vabdl", "u", int_arm_neon_vabdu, zext, 1>; let Predicates = [HasNEON] in { def : Pat<(v8i16 (abs (sub (zext (v8i8 DPR:$opA)), (zext (v8i8 DPR:$opB))))), (VABDLuv8i16 DPR:$opA, DPR:$opB)>; def : Pat<(v4i32 (abs (sub (zext (v4i16 DPR:$opA)), (zext (v4i16 DPR:$opB))))), (VABDLuv4i32 DPR:$opA, DPR:$opB)>; } // ISD::ABS is not legal for v2i64, so VABDL needs to be matched from the // shift/xor pattern for ABS. def abd_shr : PatFrag<(ops node:$in1, node:$in2, node:$shift), (ARMvshrsImm (sub (zext node:$in1), (zext node:$in2)), (i32 $shift))>; let Predicates = [HasNEON] in { def : Pat<(xor (v2i64 (abd_shr (v2i32 DPR:$opA), (v2i32 DPR:$opB), 63)), (v2i64 (add (sub (zext (v2i32 DPR:$opA)), (zext (v2i32 DPR:$opB))), (abd_shr (v2i32 DPR:$opA), (v2i32 DPR:$opB), 63)))), (VABDLuv2i64 DPR:$opA, DPR:$opB)>; } // VABA : Vector Absolute Difference and Accumulate defm VABAs : N3VIntOp_QHS<0,0,0b0111,1, IIC_VABAD, IIC_VABAQ, "vaba", "s", int_arm_neon_vabds, add>; defm VABAu : N3VIntOp_QHS<1,0,0b0111,1, IIC_VABAD, IIC_VABAQ, "vaba", "u", int_arm_neon_vabdu, add>; // VABAL : Vector Absolute Difference and Accumulate Long (Q += | D - D |) defm VABALs : N3VLIntExtOp_QHS<0,1,0b0101,0, IIC_VABAD, "vabal", "s", int_arm_neon_vabds, zext, add>; defm VABALu : N3VLIntExtOp_QHS<1,1,0b0101,0, IIC_VABAD, "vabal", "u", int_arm_neon_vabdu, zext, add>; // Vector Maximum and Minimum. // VMAX : Vector Maximum defm VMAXs : N3VInt_QHS<0, 0, 0b0110, 0, N3RegFrm, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q, "vmax", "s", smax, 1>; defm VMAXu : N3VInt_QHS<1, 0, 0b0110, 0, N3RegFrm, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q, "vmax", "u", umax, 1>; def VMAXfd : N3VDInt<0, 0, 0b00, 0b1111, 0, N3RegFrm, IIC_VBIND, "vmax", "f32", v2f32, v2f32, fmaximum, 1>; def VMAXfq : N3VQInt<0, 0, 0b00, 0b1111, 0, N3RegFrm, IIC_VBINQ, "vmax", "f32", v4f32, v4f32, fmaximum, 1>; def VMAXhd : N3VDInt<0, 0, 0b01, 0b1111, 0, N3RegFrm, IIC_VBIND, "vmax", "f16", v4f16, v4f16, fmaximum, 1>, Requires<[HasNEON, HasFullFP16]>; def VMAXhq : N3VQInt<0, 0, 0b01, 0b1111, 0, N3RegFrm, IIC_VBINQ, "vmax", "f16", v8f16, v8f16, fmaximum, 1>, Requires<[HasNEON, HasFullFP16]>; // VMAXNM let PostEncoderMethod = "NEONThumb2V8PostEncoder", DecoderNamespace = "v8NEON" in { def NEON_VMAXNMNDf : N3VDIntnp<0b00110, 0b00, 0b1111, 0, 1, N3RegFrm, NoItinerary, "vmaxnm", "f32", v2f32, v2f32, fmaxnum, 1>, Requires<[HasV8, HasNEON]>; def NEON_VMAXNMNQf : N3VQIntnp<0b00110, 0b00, 0b1111, 1, 1, N3RegFrm, NoItinerary, "vmaxnm", "f32", v4f32, v4f32, fmaxnum, 1>, Requires<[HasV8, HasNEON]>; def NEON_VMAXNMNDh : N3VDIntnp<0b00110, 0b01, 0b1111, 0, 1, N3RegFrm, NoItinerary, "vmaxnm", "f16", v4f16, v4f16, fmaxnum, 1>, Requires<[HasV8, HasNEON, HasFullFP16]>; def NEON_VMAXNMNQh : N3VQIntnp<0b00110, 0b01, 0b1111, 1, 1, N3RegFrm, NoItinerary, "vmaxnm", "f16", v8f16, v8f16, fmaxnum, 1>, Requires<[HasV8, HasNEON, HasFullFP16]>; } // VMIN : Vector Minimum defm VMINs : N3VInt_QHS<0, 0, 0b0110, 1, N3RegFrm, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q, "vmin", "s", smin, 1>; defm VMINu : N3VInt_QHS<1, 0, 0b0110, 1, N3RegFrm, IIC_VSUBi4D, IIC_VSUBi4D, IIC_VSUBi4Q, IIC_VSUBi4Q, "vmin", "u", umin, 1>; def VMINfd : N3VDInt<0, 0, 0b10, 0b1111, 0, N3RegFrm, IIC_VBIND, "vmin", "f32", v2f32, v2f32, fminimum, 1>; def VMINfq : N3VQInt<0, 0, 0b10, 0b1111, 0, N3RegFrm, IIC_VBINQ, "vmin", "f32", v4f32, v4f32, fminimum, 1>; def VMINhd : N3VDInt<0, 0, 0b11, 0b1111, 0, N3RegFrm, IIC_VBIND, "vmin", "f16", v4f16, v4f16, fminimum, 1>, Requires<[HasNEON, HasFullFP16]>; def VMINhq : N3VQInt<0, 0, 0b11, 0b1111, 0, N3RegFrm, IIC_VBINQ, "vmin", "f16", v8f16, v8f16, fminimum, 1>, Requires<[HasNEON, HasFullFP16]>; // VMINNM let PostEncoderMethod = "NEONThumb2V8PostEncoder", DecoderNamespace = "v8NEON" in { def NEON_VMINNMNDf : N3VDIntnp<0b00110, 0b10, 0b1111, 0, 1, N3RegFrm, NoItinerary, "vminnm", "f32", v2f32, v2f32, fminnum, 1>, Requires<[HasV8, HasNEON]>; def NEON_VMINNMNQf : N3VQIntnp<0b00110, 0b10, 0b1111, 1, 1, N3RegFrm, NoItinerary, "vminnm", "f32", v4f32, v4f32, fminnum, 1>, Requires<[HasV8, HasNEON]>; def NEON_VMINNMNDh : N3VDIntnp<0b00110, 0b11, 0b1111, 0, 1, N3RegFrm, NoItinerary, "vminnm", "f16", v4f16, v4f16, fminnum, 1>, Requires<[HasV8, HasNEON, HasFullFP16]>; def NEON_VMINNMNQh : N3VQIntnp<0b00110, 0b11, 0b1111, 1, 1, N3RegFrm, NoItinerary, "vminnm", "f16", v8f16, v8f16, fminnum, 1>, Requires<[HasV8, HasNEON, HasFullFP16]>; } // Vector Pairwise Operations. // VPADD : Vector Pairwise Add def VPADDi8 : N3VDInt<0, 0, 0b00, 0b1011, 1, N3RegFrm, IIC_VSHLiD, "vpadd", "i8", v8i8, v8i8, int_arm_neon_vpadd, 0>; def VPADDi16 : N3VDInt<0, 0, 0b01, 0b1011, 1, N3RegFrm, IIC_VSHLiD, "vpadd", "i16", v4i16, v4i16, int_arm_neon_vpadd, 0>; def VPADDi32 : N3VDInt<0, 0, 0b10, 0b1011, 1, N3RegFrm, IIC_VSHLiD, "vpadd", "i32", v2i32, v2i32, int_arm_neon_vpadd, 0>; def VPADDf : N3VDInt<1, 0, 0b00, 0b1101, 0, N3RegFrm, IIC_VPBIND, "vpadd", "f32", v2f32, v2f32, int_arm_neon_vpadd, 0>; def VPADDh : N3VDInt<1, 0, 0b01, 0b1101, 0, N3RegFrm, IIC_VPBIND, "vpadd", "f16", v4f16, v4f16, int_arm_neon_vpadd, 0>, Requires<[HasNEON, HasFullFP16]>; // VPADDL : Vector Pairwise Add Long defm VPADDLs : N2VPLInt_QHS<0b11, 0b11, 0b00, 0b00100, 0, "vpaddl", "s", int_arm_neon_vpaddls>; defm VPADDLu : N2VPLInt_QHS<0b11, 0b11, 0b00, 0b00101, 0, "vpaddl", "u", int_arm_neon_vpaddlu>; // VPADAL : Vector Pairwise Add and Accumulate Long defm VPADALs : N2VPLInt2_QHS<0b11, 0b11, 0b00, 0b01100, 0, "vpadal", "s", int_arm_neon_vpadals>; defm VPADALu : N2VPLInt2_QHS<0b11, 0b11, 0b00, 0b01101, 0, "vpadal", "u", int_arm_neon_vpadalu>; // VPMAX : Vector Pairwise Maximum def VPMAXs8 : N3VDInt<0, 0, 0b00, 0b1010, 0, N3RegFrm, IIC_VSUBi4D, "vpmax", "s8", v8i8, v8i8, int_arm_neon_vpmaxs, 0>; def VPMAXs16 : N3VDInt<0, 0, 0b01, 0b1010, 0, N3RegFrm, IIC_VSUBi4D, "vpmax", "s16", v4i16, v4i16, int_arm_neon_vpmaxs, 0>; def VPMAXs32 : N3VDInt<0, 0, 0b10, 0b1010, 0, N3RegFrm, IIC_VSUBi4D, "vpmax", "s32", v2i32, v2i32, int_arm_neon_vpmaxs, 0>; def VPMAXu8 : N3VDInt<1, 0, 0b00, 0b1010, 0, N3RegFrm, IIC_VSUBi4D, "vpmax", "u8", v8i8, v8i8, int_arm_neon_vpmaxu, 0>; def VPMAXu16 : N3VDInt<1, 0, 0b01, 0b1010, 0, N3RegFrm, IIC_VSUBi4D, "vpmax", "u16", v4i16, v4i16, int_arm_neon_vpmaxu, 0>; def VPMAXu32 : N3VDInt<1, 0, 0b10, 0b1010, 0, N3RegFrm, IIC_VSUBi4D, "vpmax", "u32", v2i32, v2i32, int_arm_neon_vpmaxu, 0>; def VPMAXf : N3VDInt<1, 0, 0b00, 0b1111, 0, N3RegFrm, IIC_VPBIND, "vpmax", "f32", v2f32, v2f32, int_arm_neon_vpmaxs, 0>; def VPMAXh : N3VDInt<1, 0, 0b01, 0b1111, 0, N3RegFrm, IIC_VPBIND, "vpmax", "f16", v4f16, v4f16, int_arm_neon_vpmaxs, 0>, Requires<[HasNEON, HasFullFP16]>; // VPMIN : Vector Pairwise Minimum def VPMINs8 : N3VDInt<0, 0, 0b00, 0b1010, 1, N3RegFrm, IIC_VSUBi4D, "vpmin", "s8", v8i8, v8i8, int_arm_neon_vpmins, 0>; def VPMINs16 : N3VDInt<0, 0, 0b01, 0b1010, 1, N3RegFrm, IIC_VSUBi4D, "vpmin", "s16", v4i16, v4i16, int_arm_neon_vpmins, 0>; def VPMINs32 : N3VDInt<0, 0, 0b10, 0b1010, 1, N3RegFrm, IIC_VSUBi4D, "vpmin", "s32", v2i32, v2i32, int_arm_neon_vpmins, 0>; def VPMINu8 : N3VDInt<1, 0, 0b00, 0b1010, 1, N3RegFrm, IIC_VSUBi4D, "vpmin", "u8", v8i8, v8i8, int_arm_neon_vpminu, 0>; def VPMINu16 : N3VDInt<1, 0, 0b01, 0b1010, 1, N3RegFrm, IIC_VSUBi4D, "vpmin", "u16", v4i16, v4i16, int_arm_neon_vpminu, 0>; def VPMINu32 : N3VDInt<1, 0, 0b10, 0b1010, 1, N3RegFrm, IIC_VSUBi4D, "vpmin", "u32", v2i32, v2i32, int_arm_neon_vpminu, 0>; def VPMINf : N3VDInt<1, 0, 0b10, 0b1111, 0, N3RegFrm, IIC_VPBIND, "vpmin", "f32", v2f32, v2f32, int_arm_neon_vpmins, 0>; def VPMINh : N3VDInt<1, 0, 0b11, 0b1111, 0, N3RegFrm, IIC_VPBIND, "vpmin", "f16", v4f16, v4f16, int_arm_neon_vpmins, 0>, Requires<[HasNEON, HasFullFP16]>; // Vector Reciprocal and Reciprocal Square Root Estimate and Step. // VRECPE : Vector Reciprocal Estimate def VRECPEd : N2VDInt<0b11, 0b11, 0b10, 0b11, 0b01000, 0, IIC_VUNAD, "vrecpe", "u32", v2i32, v2i32, int_arm_neon_vrecpe>; def VRECPEq : N2VQInt<0b11, 0b11, 0b10, 0b11, 0b01000, 0, IIC_VUNAQ, "vrecpe", "u32", v4i32, v4i32, int_arm_neon_vrecpe>; def VRECPEfd : N2VDInt<0b11, 0b11, 0b10, 0b11, 0b01010, 0, IIC_VUNAD, "vrecpe", "f32", v2f32, v2f32, int_arm_neon_vrecpe>; def VRECPEfq : N2VQInt<0b11, 0b11, 0b10, 0b11, 0b01010, 0, IIC_VUNAQ, "vrecpe", "f32", v4f32, v4f32, int_arm_neon_vrecpe>; def VRECPEhd : N2VDInt<0b11, 0b11, 0b01, 0b11, 0b01010, 0, IIC_VUNAD, "vrecpe", "f16", v4f16, v4f16, int_arm_neon_vrecpe>, Requires<[HasNEON, HasFullFP16]>; def VRECPEhq : N2VQInt<0b11, 0b11, 0b01, 0b11, 0b01010, 0, IIC_VUNAQ, "vrecpe", "f16", v8f16, v8f16, int_arm_neon_vrecpe>, Requires<[HasNEON, HasFullFP16]>; // VRECPS : Vector Reciprocal Step def VRECPSfd : N3VDInt<0, 0, 0b00, 0b1111, 1, N3RegFrm, IIC_VRECSD, "vrecps", "f32", v2f32, v2f32, int_arm_neon_vrecps, 1>; def VRECPSfq : N3VQInt<0, 0, 0b00, 0b1111, 1, N3RegFrm, IIC_VRECSQ, "vrecps", "f32", v4f32, v4f32, int_arm_neon_vrecps, 1>; def VRECPShd : N3VDInt<0, 0, 0b01, 0b1111, 1, N3RegFrm, IIC_VRECSD, "vrecps", "f16", v4f16, v4f16, int_arm_neon_vrecps, 1>, Requires<[HasNEON, HasFullFP16]>; def VRECPShq : N3VQInt<0, 0, 0b01, 0b1111, 1, N3RegFrm, IIC_VRECSQ, "vrecps", "f16", v8f16, v8f16, int_arm_neon_vrecps, 1>, Requires<[HasNEON, HasFullFP16]>; // VRSQRTE : Vector Reciprocal Square Root Estimate def VRSQRTEd : N2VDInt<0b11, 0b11, 0b10, 0b11, 0b01001, 0, IIC_VUNAD, "vrsqrte", "u32", v2i32, v2i32, int_arm_neon_vrsqrte>; def VRSQRTEq : N2VQInt<0b11, 0b11, 0b10, 0b11, 0b01001, 0, IIC_VUNAQ, "vrsqrte", "u32", v4i32, v4i32, int_arm_neon_vrsqrte>; def VRSQRTEfd : N2VDInt<0b11, 0b11, 0b10, 0b11, 0b01011, 0, IIC_VUNAD, "vrsqrte", "f32", v2f32, v2f32, int_arm_neon_vrsqrte>; def VRSQRTEfq : N2VQInt<0b11, 0b11, 0b10, 0b11, 0b01011, 0, IIC_VUNAQ, "vrsqrte", "f32", v4f32, v4f32, int_arm_neon_vrsqrte>; def VRSQRTEhd : N2VDInt<0b11, 0b11, 0b01, 0b11, 0b01011, 0, IIC_VUNAD, "vrsqrte", "f16", v4f16, v4f16, int_arm_neon_vrsqrte>, Requires<[HasNEON, HasFullFP16]>; def VRSQRTEhq : N2VQInt<0b11, 0b11, 0b01, 0b11, 0b01011, 0, IIC_VUNAQ, "vrsqrte", "f16", v8f16, v8f16, int_arm_neon_vrsqrte>, Requires<[HasNEON, HasFullFP16]>; // VRSQRTS : Vector Reciprocal Square Root Step def VRSQRTSfd : N3VDInt<0, 0, 0b10, 0b1111, 1, N3RegFrm, IIC_VRECSD, "vrsqrts", "f32", v2f32, v2f32, int_arm_neon_vrsqrts, 1>; def VRSQRTSfq : N3VQInt<0, 0, 0b10, 0b1111, 1, N3RegFrm, IIC_VRECSQ, "vrsqrts", "f32", v4f32, v4f32, int_arm_neon_vrsqrts, 1>; def VRSQRTShd : N3VDInt<0, 0, 0b11, 0b1111, 1, N3RegFrm, IIC_VRECSD, "vrsqrts", "f16", v4f16, v4f16, int_arm_neon_vrsqrts, 1>, Requires<[HasNEON, HasFullFP16]>; def VRSQRTShq : N3VQInt<0, 0, 0b11, 0b1111, 1, N3RegFrm, IIC_VRECSQ, "vrsqrts", "f16", v8f16, v8f16, int_arm_neon_vrsqrts, 1>, Requires<[HasNEON, HasFullFP16]>; // Vector Shifts. // VSHL : Vector Shift defm VSHLs : N3VInt_QHSDSh<0, 0, 0b0100, 0, N3RegVShFrm, IIC_VSHLiD, IIC_VSHLiD, IIC_VSHLiQ, IIC_VSHLiQ, "vshl", "s", int_arm_neon_vshifts>; defm VSHLu : N3VInt_QHSDSh<1, 0, 0b0100, 0, N3RegVShFrm, IIC_VSHLiD, IIC_VSHLiD, IIC_VSHLiQ, IIC_VSHLiQ, "vshl", "u", int_arm_neon_vshiftu>; let Predicates = [HasNEON] in { def : Pat<(v8i8 (ARMvshls (v8i8 DPR:$Dn), (v8i8 DPR:$Dm))), (VSHLsv8i8 DPR:$Dn, DPR:$Dm)>; def : Pat<(v4i16 (ARMvshls (v4i16 DPR:$Dn), (v4i16 DPR:$Dm))), (VSHLsv4i16 DPR:$Dn, DPR:$Dm)>; def : Pat<(v2i32 (ARMvshls (v2i32 DPR:$Dn), (v2i32 DPR:$Dm))), (VSHLsv2i32 DPR:$Dn, DPR:$Dm)>; def : Pat<(v1i64 (ARMvshls (v1i64 DPR:$Dn), (v1i64 DPR:$Dm))), (VSHLsv1i64 DPR:$Dn, DPR:$Dm)>; def : Pat<(v16i8 (ARMvshls (v16i8 QPR:$Dn), (v16i8 QPR:$Dm))), (VSHLsv16i8 QPR:$Dn, QPR:$Dm)>; def : Pat<(v8i16 (ARMvshls (v8i16 QPR:$Dn), (v8i16 QPR:$Dm))), (VSHLsv8i16 QPR:$Dn, QPR:$Dm)>; def : Pat<(v4i32 (ARMvshls (v4i32 QPR:$Dn), (v4i32 QPR:$Dm))), (VSHLsv4i32 QPR:$Dn, QPR:$Dm)>; def : Pat<(v2i64 (ARMvshls (v2i64 QPR:$Dn), (v2i64 QPR:$Dm))), (VSHLsv2i64 QPR:$Dn, QPR:$Dm)>; def : Pat<(v8i8 (ARMvshlu (v8i8 DPR:$Dn), (v8i8 DPR:$Dm))), (VSHLuv8i8 DPR:$Dn, DPR:$Dm)>; def : Pat<(v4i16 (ARMvshlu (v4i16 DPR:$Dn), (v4i16 DPR:$Dm))), (VSHLuv4i16 DPR:$Dn, DPR:$Dm)>; def : Pat<(v2i32 (ARMvshlu (v2i32 DPR:$Dn), (v2i32 DPR:$Dm))), (VSHLuv2i32 DPR:$Dn, DPR:$Dm)>; def : Pat<(v1i64 (ARMvshlu (v1i64 DPR:$Dn), (v1i64 DPR:$Dm))), (VSHLuv1i64 DPR:$Dn, DPR:$Dm)>; def : Pat<(v16i8 (ARMvshlu (v16i8 QPR:$Dn), (v16i8 QPR:$Dm))), (VSHLuv16i8 QPR:$Dn, QPR:$Dm)>; def : Pat<(v8i16 (ARMvshlu (v8i16 QPR:$Dn), (v8i16 QPR:$Dm))), (VSHLuv8i16 QPR:$Dn, QPR:$Dm)>; def : Pat<(v4i32 (ARMvshlu (v4i32 QPR:$Dn), (v4i32 QPR:$Dm))), (VSHLuv4i32 QPR:$Dn, QPR:$Dm)>; def : Pat<(v2i64 (ARMvshlu (v2i64 QPR:$Dn), (v2i64 QPR:$Dm))), (VSHLuv2i64 QPR:$Dn, QPR:$Dm)>; } // VSHL : Vector Shift Left (Immediate) defm VSHLi : N2VShL_QHSD<0, 1, 0b0101, 1, IIC_VSHLiD, "vshl", "i", ARMvshlImm>; // VSHR : Vector Shift Right (Immediate) defm VSHRs : N2VShR_QHSD<0, 1, 0b0000, 1, IIC_VSHLiD, "vshr", "s", ARMvshrsImm>; defm VSHRu : N2VShR_QHSD<1, 1, 0b0000, 1, IIC_VSHLiD, "vshr", "u", ARMvshruImm>; // VSHLL : Vector Shift Left Long defm VSHLLs : N2VLSh_QHS<0, 1, 0b1010, 0, 0, 1, "vshll", "s", PatFrag<(ops node:$LHS, node:$RHS), (ARMvshlImm (sext node:$LHS), node:$RHS)>>; defm VSHLLu : N2VLSh_QHS<1, 1, 0b1010, 0, 0, 1, "vshll", "u", PatFrag<(ops node:$LHS, node:$RHS), (ARMvshlImm (zext node:$LHS), node:$RHS)>>; // VSHLL : Vector Shift Left Long (with maximum shift count) class N2VLShMax op21_16, bits<4> op11_8, bit op7, bit op6, bit op4, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, Operand ImmTy> : N2VLSh { let Inst{21-16} = op21_16; let DecoderMethod = "DecodeVSHLMaxInstruction"; } def VSHLLi8 : N2VLShMax<1, 1, 0b110010, 0b0011, 0, 0, 0, "vshll", "i8", v8i16, v8i8, imm8>; def VSHLLi16 : N2VLShMax<1, 1, 0b110110, 0b0011, 0, 0, 0, "vshll", "i16", v4i32, v4i16, imm16>; def VSHLLi32 : N2VLShMax<1, 1, 0b111010, 0b0011, 0, 0, 0, "vshll", "i32", v2i64, v2i32, imm32>; let Predicates = [HasNEON] in { def : Pat<(v8i16 (ARMvshlImm (zext (v8i8 DPR:$Rn)), (i32 8))), (VSHLLi8 DPR:$Rn, 8)>; def : Pat<(v4i32 (ARMvshlImm (zext (v4i16 DPR:$Rn)), (i32 16))), (VSHLLi16 DPR:$Rn, 16)>; def : Pat<(v2i64 (ARMvshlImm (zext (v2i32 DPR:$Rn)), (i32 32))), (VSHLLi32 DPR:$Rn, 32)>; def : Pat<(v8i16 (ARMvshlImm (sext (v8i8 DPR:$Rn)), (i32 8))), (VSHLLi8 DPR:$Rn, 8)>; def : Pat<(v4i32 (ARMvshlImm (sext (v4i16 DPR:$Rn)), (i32 16))), (VSHLLi16 DPR:$Rn, 16)>; def : Pat<(v2i64 (ARMvshlImm (sext (v2i32 DPR:$Rn)), (i32 32))), (VSHLLi32 DPR:$Rn, 32)>; def : Pat<(v8i16 (ARMvshlImm (anyext (v8i8 DPR:$Rn)), (i32 8))), (VSHLLi8 DPR:$Rn, 8)>; def : Pat<(v4i32 (ARMvshlImm (anyext (v4i16 DPR:$Rn)), (i32 16))), (VSHLLi16 DPR:$Rn, 16)>; def : Pat<(v2i64 (ARMvshlImm (anyext (v2i32 DPR:$Rn)), (i32 32))), (VSHLLi32 DPR:$Rn, 32)>; } // VSHRN : Vector Shift Right and Narrow defm VSHRN : N2VNSh_HSD<0,1,0b1000,0,0,1, IIC_VSHLiD, "vshrn", "i", PatFrag<(ops node:$Rn, node:$amt), (trunc (ARMvshrsImm node:$Rn, node:$amt))>>; let Predicates = [HasNEON] in { def : Pat<(v8i8 (trunc (ARMvshruImm (v8i16 QPR:$Vn), shr_imm8:$amt))), (VSHRNv8i8 QPR:$Vn, shr_imm8:$amt)>; def : Pat<(v4i16 (trunc (ARMvshruImm (v4i32 QPR:$Vn), shr_imm16:$amt))), (VSHRNv4i16 QPR:$Vn, shr_imm16:$amt)>; def : Pat<(v2i32 (trunc (ARMvshruImm (v2i64 QPR:$Vn), shr_imm32:$amt))), (VSHRNv2i32 QPR:$Vn, shr_imm32:$amt)>; } // VRSHL : Vector Rounding Shift defm VRSHLs : N3VInt_QHSDSh<0, 0, 0b0101, 0, N3RegVShFrm, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q, IIC_VSHLi4Q, "vrshl", "s", int_arm_neon_vrshifts>; defm VRSHLu : N3VInt_QHSDSh<1, 0, 0b0101, 0, N3RegVShFrm, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q, IIC_VSHLi4Q, "vrshl", "u", int_arm_neon_vrshiftu>; // VRSHR : Vector Rounding Shift Right defm VRSHRs : N2VShR_QHSD<0,1,0b0010,1, IIC_VSHLi4D, "vrshr", "s", NEONvrshrsImm>; defm VRSHRu : N2VShR_QHSD<1,1,0b0010,1, IIC_VSHLi4D, "vrshr", "u", NEONvrshruImm>; // VRSHRN : Vector Rounding Shift Right and Narrow defm VRSHRN : N2VNSh_HSD<0, 1, 0b1000, 0, 1, 1, IIC_VSHLi4D, "vrshrn", "i", NEONvrshrnImm>; // VQSHL : Vector Saturating Shift defm VQSHLs : N3VInt_QHSDSh<0, 0, 0b0100, 1, N3RegVShFrm, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q, IIC_VSHLi4Q, "vqshl", "s", int_arm_neon_vqshifts>; defm VQSHLu : N3VInt_QHSDSh<1, 0, 0b0100, 1, N3RegVShFrm, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q, IIC_VSHLi4Q, "vqshl", "u", int_arm_neon_vqshiftu>; // VQSHL : Vector Saturating Shift Left (Immediate) defm VQSHLsi : N2VShL_QHSD<0,1,0b0111,1, IIC_VSHLi4D, "vqshl", "s",NEONvqshlsImm>; defm VQSHLui : N2VShL_QHSD<1,1,0b0111,1, IIC_VSHLi4D, "vqshl", "u",NEONvqshluImm>; // VQSHLU : Vector Saturating Shift Left (Immediate, Unsigned) defm VQSHLsu : N2VShL_QHSD<1,1,0b0110,1, IIC_VSHLi4D,"vqshlu","s",NEONvqshlsuImm>; // VQSHRN : Vector Saturating Shift Right and Narrow defm VQSHRNs : N2VNSh_HSD<0, 1, 0b1001, 0, 0, 1, IIC_VSHLi4D, "vqshrn", "s", NEONvqshrnsImm>; defm VQSHRNu : N2VNSh_HSD<1, 1, 0b1001, 0, 0, 1, IIC_VSHLi4D, "vqshrn", "u", NEONvqshrnuImm>; // VQSHRUN : Vector Saturating Shift Right and Narrow (Unsigned) defm VQSHRUN : N2VNSh_HSD<1, 1, 0b1000, 0, 0, 1, IIC_VSHLi4D, "vqshrun", "s", NEONvqshrnsuImm>; // VQRSHL : Vector Saturating Rounding Shift defm VQRSHLs : N3VInt_QHSDSh<0, 0, 0b0101, 1, N3RegVShFrm, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q, IIC_VSHLi4Q, "vqrshl", "s", int_arm_neon_vqrshifts>; defm VQRSHLu : N3VInt_QHSDSh<1, 0, 0b0101, 1, N3RegVShFrm, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q, IIC_VSHLi4Q, "vqrshl", "u", int_arm_neon_vqrshiftu>; // VQRSHRN : Vector Saturating Rounding Shift Right and Narrow defm VQRSHRNs : N2VNSh_HSD<0, 1, 0b1001, 0, 1, 1, IIC_VSHLi4D, "vqrshrn", "s", NEONvqrshrnsImm>; defm VQRSHRNu : N2VNSh_HSD<1, 1, 0b1001, 0, 1, 1, IIC_VSHLi4D, "vqrshrn", "u", NEONvqrshrnuImm>; // VQRSHRUN : Vector Saturating Rounding Shift Right and Narrow (Unsigned) defm VQRSHRUN : N2VNSh_HSD<1, 1, 0b1000, 0, 1, 1, IIC_VSHLi4D, "vqrshrun", "s", NEONvqrshrnsuImm>; // VSRA : Vector Shift Right and Accumulate defm VSRAs : N2VShAdd_QHSD<0, 1, 0b0001, 1, "vsra", "s", ARMvshrsImm>; defm VSRAu : N2VShAdd_QHSD<1, 1, 0b0001, 1, "vsra", "u", ARMvshruImm>; // VRSRA : Vector Rounding Shift Right and Accumulate defm VRSRAs : N2VShAdd_QHSD<0, 1, 0b0011, 1, "vrsra", "s", NEONvrshrsImm>; defm VRSRAu : N2VShAdd_QHSD<1, 1, 0b0011, 1, "vrsra", "u", NEONvrshruImm>; // VSLI : Vector Shift Left and Insert defm VSLI : N2VShInsL_QHSD<1, 1, 0b0101, 1, "vsli">; // VSRI : Vector Shift Right and Insert defm VSRI : N2VShInsR_QHSD<1, 1, 0b0100, 1, "vsri">; // Vector Absolute and Saturating Absolute. // VABS : Vector Absolute Value defm VABS : N2VInt_QHS<0b11, 0b11, 0b01, 0b00110, 0, IIC_VUNAiD, IIC_VUNAiQ, "vabs", "s", abs>; def VABSfd : N2VD<0b11, 0b11, 0b10, 0b01, 0b01110, 0, "vabs", "f32", v2f32, v2f32, fabs>; def VABSfq : N2VQ<0b11, 0b11, 0b10, 0b01, 0b01110, 0, "vabs", "f32", v4f32, v4f32, fabs>; def VABShd : N2VD<0b11, 0b11, 0b01, 0b01, 0b01110, 0, "vabs", "f16", v4f16, v4f16, fabs>, Requires<[HasNEON, HasFullFP16]>; def VABShq : N2VQ<0b11, 0b11, 0b01, 0b01, 0b01110, 0, "vabs", "f16", v8f16, v8f16, fabs>, Requires<[HasNEON, HasFullFP16]>; // VQABS : Vector Saturating Absolute Value defm VQABS : N2VInt_QHS<0b11, 0b11, 0b00, 0b01110, 0, IIC_VQUNAiD, IIC_VQUNAiQ, "vqabs", "s", int_arm_neon_vqabs>; // Vector Negate. def vnegd : PatFrag<(ops node:$in), (sub ARMimmAllZerosD, node:$in)>; def vnegq : PatFrag<(ops node:$in), (sub ARMimmAllZerosV, node:$in)>; class VNEGD size, string OpcodeStr, string Dt, ValueType Ty> : N2V<0b11, 0b11, size, 0b01, 0b00111, 0, 0, (outs DPR:$Vd), (ins DPR:$Vm), IIC_VSHLiD, OpcodeStr, Dt, "$Vd, $Vm", "", [(set DPR:$Vd, (Ty (vnegd DPR:$Vm)))]>; class VNEGQ size, string OpcodeStr, string Dt, ValueType Ty> : N2V<0b11, 0b11, size, 0b01, 0b00111, 1, 0, (outs QPR:$Vd), (ins QPR:$Vm), IIC_VSHLiQ, OpcodeStr, Dt, "$Vd, $Vm", "", [(set QPR:$Vd, (Ty (vnegq QPR:$Vm)))]>; // VNEG : Vector Negate (integer) def VNEGs8d : VNEGD<0b00, "vneg", "s8", v8i8>; def VNEGs16d : VNEGD<0b01, "vneg", "s16", v4i16>; def VNEGs32d : VNEGD<0b10, "vneg", "s32", v2i32>; def VNEGs8q : VNEGQ<0b00, "vneg", "s8", v16i8>; def VNEGs16q : VNEGQ<0b01, "vneg", "s16", v8i16>; def VNEGs32q : VNEGQ<0b10, "vneg", "s32", v4i32>; // VNEG : Vector Negate (floating-point) def VNEGfd : N2V<0b11, 0b11, 0b10, 0b01, 0b01111, 0, 0, (outs DPR:$Vd), (ins DPR:$Vm), IIC_VUNAD, "vneg", "f32", "$Vd, $Vm", "", [(set DPR:$Vd, (v2f32 (fneg DPR:$Vm)))]>; def VNEGf32q : N2V<0b11, 0b11, 0b10, 0b01, 0b01111, 1, 0, (outs QPR:$Vd), (ins QPR:$Vm), IIC_VUNAQ, "vneg", "f32", "$Vd, $Vm", "", [(set QPR:$Vd, (v4f32 (fneg QPR:$Vm)))]>; def VNEGhd : N2V<0b11, 0b11, 0b01, 0b01, 0b01111, 0, 0, (outs DPR:$Vd), (ins DPR:$Vm), IIC_VUNAD, "vneg", "f16", "$Vd, $Vm", "", [(set DPR:$Vd, (v4f16 (fneg DPR:$Vm)))]>, Requires<[HasNEON, HasFullFP16]>; def VNEGhq : N2V<0b11, 0b11, 0b01, 0b01, 0b01111, 1, 0, (outs QPR:$Vd), (ins QPR:$Vm), IIC_VUNAQ, "vneg", "f16", "$Vd, $Vm", "", [(set QPR:$Vd, (v8f16 (fneg QPR:$Vm)))]>, Requires<[HasNEON, HasFullFP16]>; let Predicates = [HasNEON] in { def : Pat<(v8i8 (vnegd DPR:$src)), (VNEGs8d DPR:$src)>; def : Pat<(v4i16 (vnegd DPR:$src)), (VNEGs16d DPR:$src)>; def : Pat<(v2i32 (vnegd DPR:$src)), (VNEGs32d DPR:$src)>; def : Pat<(v16i8 (vnegq QPR:$src)), (VNEGs8q QPR:$src)>; def : Pat<(v8i16 (vnegq QPR:$src)), (VNEGs16q QPR:$src)>; def : Pat<(v4i32 (vnegq QPR:$src)), (VNEGs32q QPR:$src)>; } // VQNEG : Vector Saturating Negate defm VQNEG : N2VInt_QHS<0b11, 0b11, 0b00, 0b01111, 0, IIC_VQUNAiD, IIC_VQUNAiQ, "vqneg", "s", int_arm_neon_vqneg>; // Vector Bit Counting Operations. // VCLS : Vector Count Leading Sign Bits defm VCLS : N2VInt_QHS<0b11, 0b11, 0b00, 0b01000, 0, IIC_VCNTiD, IIC_VCNTiQ, "vcls", "s", int_arm_neon_vcls>; // VCLZ : Vector Count Leading Zeros defm VCLZ : N2VInt_QHS<0b11, 0b11, 0b00, 0b01001, 0, IIC_VCNTiD, IIC_VCNTiQ, "vclz", "i", ctlz>; // VCNT : Vector Count One Bits def VCNTd : N2VDInt<0b11, 0b11, 0b00, 0b00, 0b01010, 0, IIC_VCNTiD, "vcnt", "8", v8i8, v8i8, ctpop>; def VCNTq : N2VQInt<0b11, 0b11, 0b00, 0b00, 0b01010, 0, IIC_VCNTiQ, "vcnt", "8", v16i8, v16i8, ctpop>; // Vector Swap def VSWPd : N2VX<0b11, 0b11, 0b00, 0b10, 0b00000, 0, 0, (outs DPR:$Vd, DPR:$Vm), (ins DPR:$in1, DPR:$in2), NoItinerary, "vswp", "$Vd, $Vm", "$in1 = $Vd, $in2 = $Vm", []>; def VSWPq : N2VX<0b11, 0b11, 0b00, 0b10, 0b00000, 1, 0, (outs QPR:$Vd, QPR:$Vm), (ins QPR:$in1, QPR:$in2), NoItinerary, "vswp", "$Vd, $Vm", "$in1 = $Vd, $in2 = $Vm", []>; // Vector Move Operations. // VMOV : Vector Move (Register) def : NEONInstAlias<"vmov${p} $Vd, $Vm", (VORRd DPR:$Vd, DPR:$Vm, DPR:$Vm, pred:$p)>; def : NEONInstAlias<"vmov${p} $Vd, $Vm", (VORRq QPR:$Vd, QPR:$Vm, QPR:$Vm, pred:$p)>; // VMOV : Vector Move (Immediate) // Although VMOVs are not strictly speaking cheap, they are as expensive // as their copies counterpart (VORR), so we should prefer rematerialization // over splitting when it applies. let isReMaterializable = 1, isAsCheapAsAMove=1 in { def VMOVv8i8 : N1ModImm<1, 0b000, 0b1110, 0, 0, 0, 1, (outs DPR:$Vd), (ins nImmSplatI8:$SIMM), IIC_VMOVImm, "vmov", "i8", "$Vd, $SIMM", "", [(set DPR:$Vd, (v8i8 (ARMvmovImm timm:$SIMM)))]>; def VMOVv16i8 : N1ModImm<1, 0b000, 0b1110, 0, 1, 0, 1, (outs QPR:$Vd), (ins nImmSplatI8:$SIMM), IIC_VMOVImm, "vmov", "i8", "$Vd, $SIMM", "", [(set QPR:$Vd, (v16i8 (ARMvmovImm timm:$SIMM)))]>; def VMOVv4i16 : N1ModImm<1, 0b000, {1,0,?,0}, 0, 0, 0, 1, (outs DPR:$Vd), (ins nImmSplatI16:$SIMM), IIC_VMOVImm, "vmov", "i16", "$Vd, $SIMM", "", [(set DPR:$Vd, (v4i16 (ARMvmovImm timm:$SIMM)))]> { let Inst{9} = SIMM{9}; } def VMOVv8i16 : N1ModImm<1, 0b000, {1,0,?,0}, 0, 1, 0, 1, (outs QPR:$Vd), (ins nImmSplatI16:$SIMM), IIC_VMOVImm, "vmov", "i16", "$Vd, $SIMM", "", [(set QPR:$Vd, (v8i16 (ARMvmovImm timm:$SIMM)))]> { let Inst{9} = SIMM{9}; } def VMOVv2i32 : N1ModImm<1, 0b000, {?,?,?,?}, 0, 0, 0, 1, (outs DPR:$Vd), (ins nImmVMOVI32:$SIMM), IIC_VMOVImm, "vmov", "i32", "$Vd, $SIMM", "", [(set DPR:$Vd, (v2i32 (ARMvmovImm timm:$SIMM)))]> { let Inst{11-8} = SIMM{11-8}; } def VMOVv4i32 : N1ModImm<1, 0b000, {?,?,?,?}, 0, 1, 0, 1, (outs QPR:$Vd), (ins nImmVMOVI32:$SIMM), IIC_VMOVImm, "vmov", "i32", "$Vd, $SIMM", "", [(set QPR:$Vd, (v4i32 (ARMvmovImm timm:$SIMM)))]> { let Inst{11-8} = SIMM{11-8}; } def VMOVv1i64 : N1ModImm<1, 0b000, 0b1110, 0, 0, 1, 1, (outs DPR:$Vd), (ins nImmSplatI64:$SIMM), IIC_VMOVImm, "vmov", "i64", "$Vd, $SIMM", "", [(set DPR:$Vd, (v1i64 (ARMvmovImm timm:$SIMM)))]>; def VMOVv2i64 : N1ModImm<1, 0b000, 0b1110, 0, 1, 1, 1, (outs QPR:$Vd), (ins nImmSplatI64:$SIMM), IIC_VMOVImm, "vmov", "i64", "$Vd, $SIMM", "", [(set QPR:$Vd, (v2i64 (ARMvmovImm timm:$SIMM)))]>; def VMOVv2f32 : N1ModImm<1, 0b000, 0b1111, 0, 0, 0, 1, (outs DPR:$Vd), (ins nImmVMOVF32:$SIMM), IIC_VMOVImm, "vmov", "f32", "$Vd, $SIMM", "", [(set DPR:$Vd, (v2f32 (ARMvmovFPImm timm:$SIMM)))]>; def VMOVv4f32 : N1ModImm<1, 0b000, 0b1111, 0, 1, 0, 1, (outs QPR:$Vd), (ins nImmVMOVF32:$SIMM), IIC_VMOVImm, "vmov", "f32", "$Vd, $SIMM", "", [(set QPR:$Vd, (v4f32 (ARMvmovFPImm timm:$SIMM)))]>; } // isReMaterializable, isAsCheapAsAMove // Add support for bytes replication feature, so it could be GAS compatible. multiclass NEONImmReplicateI8InstAlias { // E.g. instructions below: // "vmov.i32 d0, #0xffffffff" // "vmov.i32 d0, #0xabababab" // "vmov.i16 d0, #0xabab" // are incorrect, but we could deal with such cases. // For last two instructions, for example, it should emit: // "vmov.i8 d0, #0xab" def : NEONInstAlias<"vmov${p}.i" # To.Size # " $Vd, $Vm", (VMOVv8i8 DPR:$Vd, nImmVMOVIReplicate:$Vm, pred:$p)>; def : NEONInstAlias<"vmov${p}.i" # To.Size # " $Vd, $Vm", (VMOVv16i8 QPR:$Vd, nImmVMOVIReplicate:$Vm, pred:$p)>; // Also add same support for VMVN instructions. So instruction: // "vmvn.i32 d0, #0xabababab" // actually means: // "vmov.i8 d0, #0x54" def : NEONInstAlias<"vmvn${p}.i" # To.Size # " $Vd, $Vm", (VMOVv8i8 DPR:$Vd, nImmVINVIReplicate:$Vm, pred:$p)>; def : NEONInstAlias<"vmvn${p}.i" # To.Size # " $Vd, $Vm", (VMOVv16i8 QPR:$Vd, nImmVINVIReplicate:$Vm, pred:$p)>; } defm : NEONImmReplicateI8InstAlias; defm : NEONImmReplicateI8InstAlias; defm : NEONImmReplicateI8InstAlias; // Similar to above for types other than i8, e.g.: // "vmov.i32 d0, #0xab00ab00" -> "vmov.i16 d0, #0xab00" // "vmvn.i64 q0, #0xab000000ab000000" -> "vmvn.i32 q0, #0xab000000" // In this case we do not canonicalize VMVN to VMOV multiclass NEONImmReplicateInstAlias { def : NEONInstAlias<"vmov${p}.i" # To.Size # " $Vd, $Vm", (V8 DPR:$Vd, nImmVMOVIReplicate:$Vm, pred:$p)>; def : NEONInstAlias<"vmov${p}.i" # To.Size # " $Vd, $Vm", (V16 QPR:$Vd, nImmVMOVIReplicate:$Vm, pred:$p)>; def : NEONInstAlias<"vmvn${p}.i" # To.Size # " $Vd, $Vm", (NV8 DPR:$Vd, nImmVMOVIReplicate:$Vm, pred:$p)>; def : NEONInstAlias<"vmvn${p}.i" # To.Size # " $Vd, $Vm", (NV16 QPR:$Vd, nImmVMOVIReplicate:$Vm, pred:$p)>; } defm : NEONImmReplicateInstAlias; defm : NEONImmReplicateInstAlias; defm : NEONImmReplicateInstAlias; // TODO: add "VMOV <-> VMVN" conversion for cases like // "vmov.i32 d0, #0xffaaffaa" -> "vmvn.i16 d0, #0x55" // "vmvn.i32 d0, #0xaaffaaff" -> "vmov.i16 d0, #0xff00" // On some CPUs the two instructions "vmov.i32 dD, #0" and "vmov.i32 qD, #0" // require zero cycles to execute so they should be used wherever possible for // setting a register to zero. // Even without these pseudo-insts we would probably end up with the correct // instruction, but we could not mark the general ones with "isAsCheapAsAMove" // since they are sometimes rather expensive (in general). let AddedComplexity = 50, isAsCheapAsAMove = 1, isReMaterializable = 1 in { def VMOVD0 : ARMPseudoExpand<(outs DPR:$Vd), (ins), 4, IIC_VMOVImm, [(set DPR:$Vd, (v2i32 ARMimmAllZerosD))], (VMOVv2i32 DPR:$Vd, 0, (ops 14, zero_reg))>, Requires<[HasZCZ]>; def VMOVQ0 : ARMPseudoExpand<(outs QPR:$Vd), (ins), 4, IIC_VMOVImm, [(set QPR:$Vd, (v4i32 ARMimmAllZerosV))], (VMOVv4i32 QPR:$Vd, 0, (ops 14, zero_reg))>, Requires<[HasZCZ]>; } // VMOV : Vector Get Lane (move scalar to ARM core register) def VGETLNs8 : NVGetLane<{1,1,1,0,0,1,?,1}, 0b1011, {?,?}, (outs GPR:$R), (ins DPR:$V, VectorIndex8:$lane), IIC_VMOVSI, "vmov", "s8", "$R, $V$lane", [(set GPR:$R, (ARMvgetlanes (v8i8 DPR:$V), imm:$lane))]> { let Inst{21} = lane{2}; let Inst{6-5} = lane{1-0}; } def VGETLNs16 : NVGetLane<{1,1,1,0,0,0,?,1}, 0b1011, {?,1}, (outs GPR:$R), (ins DPR:$V, VectorIndex16:$lane), IIC_VMOVSI, "vmov", "s16", "$R, $V$lane", [(set GPR:$R, (ARMvgetlanes (v4i16 DPR:$V), imm:$lane))]> { let Inst{21} = lane{1}; let Inst{6} = lane{0}; } def VGETLNu8 : NVGetLane<{1,1,1,0,1,1,?,1}, 0b1011, {?,?}, (outs GPR:$R), (ins DPR:$V, VectorIndex8:$lane), IIC_VMOVSI, "vmov", "u8", "$R, $V$lane", [(set GPR:$R, (ARMvgetlaneu (v8i8 DPR:$V), imm:$lane))]> { let Inst{21} = lane{2}; let Inst{6-5} = lane{1-0}; } def VGETLNu16 : NVGetLane<{1,1,1,0,1,0,?,1}, 0b1011, {?,1}, (outs GPR:$R), (ins DPR:$V, VectorIndex16:$lane), IIC_VMOVSI, "vmov", "u16", "$R, $V$lane", [(set GPR:$R, (ARMvgetlaneu (v4i16 DPR:$V), imm:$lane))]> { let Inst{21} = lane{1}; let Inst{6} = lane{0}; } def VGETLNi32 : NVGetLane<{1,1,1,0,0,0,?,1}, 0b1011, 0b00, (outs GPR:$R), (ins DPR:$V, VectorIndex32:$lane), IIC_VMOVSI, "vmov", "32", "$R, $V$lane", [(set GPR:$R, (extractelt (v2i32 DPR:$V), imm:$lane))]>, Requires<[HasFPRegs, HasFastVGETLNi32]> { let Inst{21} = lane{0}; } let Predicates = [HasNEON] in { // def VGETLNf32: see FMRDH and FMRDL in ARMInstrVFP.td def : Pat<(ARMvgetlanes (v16i8 QPR:$src), imm:$lane), (VGETLNs8 (v8i8 (EXTRACT_SUBREG QPR:$src, (DSubReg_i8_reg imm:$lane))), (SubReg_i8_lane imm:$lane))>; def : Pat<(ARMvgetlanes (v8i16 QPR:$src), imm:$lane), (VGETLNs16 (v4i16 (EXTRACT_SUBREG QPR:$src, (DSubReg_i16_reg imm:$lane))), (SubReg_i16_lane imm:$lane))>; def : Pat<(ARMvgetlaneu (v16i8 QPR:$src), imm:$lane), (VGETLNu8 (v8i8 (EXTRACT_SUBREG QPR:$src, (DSubReg_i8_reg imm:$lane))), (SubReg_i8_lane imm:$lane))>; def : Pat<(ARMvgetlaneu (v8i16 QPR:$src), imm:$lane), (VGETLNu16 (v4i16 (EXTRACT_SUBREG QPR:$src, (DSubReg_i16_reg imm:$lane))), (SubReg_i16_lane imm:$lane))>; def : Pat<(ARMvgetlaneu (v8f16 QPR:$src), imm:$lane), (VGETLNu16 (v4f16 (EXTRACT_SUBREG QPR:$src, (DSubReg_i16_reg imm:$lane))), (SubReg_i16_lane imm:$lane))>; def : Pat<(ARMvgetlaneu (v4f16 DPR:$src), imm:$lane), (VGETLNu16 (v4f16 DPR:$src), imm:$lane)>; def : Pat<(ARMvgetlaneu (v8bf16 QPR:$src), imm:$lane), (VGETLNu16 (v4bf16 (EXTRACT_SUBREG QPR:$src, (DSubReg_i16_reg imm:$lane))), (SubReg_i16_lane imm:$lane))>; def : Pat<(ARMvgetlaneu (v4bf16 DPR:$src), imm:$lane), (VGETLNu16 (v4bf16 DPR:$src), imm:$lane)>; } def : Pat<(extractelt (v4i32 QPR:$src), imm:$lane), (VGETLNi32 (v2i32 (EXTRACT_SUBREG QPR:$src, (DSubReg_i32_reg imm:$lane))), (SubReg_i32_lane imm:$lane))>, Requires<[HasNEON, HasFastVGETLNi32]>; def : Pat<(extractelt (v2i32 DPR:$src), imm:$lane), (COPY_TO_REGCLASS (i32 (EXTRACT_SUBREG DPR:$src, (SSubReg_f32_reg imm:$lane))), GPR)>, Requires<[HasNEON, HasSlowVGETLNi32]>; def : Pat<(extractelt (v4i32 QPR:$src), imm:$lane), (COPY_TO_REGCLASS (i32 (EXTRACT_SUBREG QPR:$src, (SSubReg_f32_reg imm:$lane))), GPR)>, Requires<[HasNEON, HasSlowVGETLNi32]>; let Predicates = [HasNEON] in { def : Pat<(extractelt (v2f32 DPR:$src1), imm:$src2), (EXTRACT_SUBREG (v2f32 (COPY_TO_REGCLASS (v2f32 DPR:$src1),DPR_VFP2)), (SSubReg_f32_reg imm:$src2))>; def : Pat<(extractelt (v4f32 QPR:$src1), imm:$src2), (EXTRACT_SUBREG (v4f32 (COPY_TO_REGCLASS (v4f32 QPR:$src1),QPR_VFP2)), (SSubReg_f32_reg imm:$src2))>; //def : Pat<(extractelt (v2i64 QPR:$src1), imm:$src2), // (EXTRACT_SUBREG QPR:$src1, (DSubReg_f64_reg imm:$src2))>; def : Pat<(extractelt (v2f64 QPR:$src1), imm:$src2), (EXTRACT_SUBREG QPR:$src1, (DSubReg_f64_reg imm:$src2))>; } multiclass ExtractEltEvenF16 { def : Pat<(extractelt (VT4 DPR:$src), imm_even:$lane), (EXTRACT_SUBREG (v2f32 (COPY_TO_REGCLASS (VT4 DPR:$src), DPR_VFP2)), (SSubReg_f16_reg imm_even:$lane))>; def : Pat<(extractelt (VT8 QPR:$src), imm_even:$lane), (EXTRACT_SUBREG (v4f32 (COPY_TO_REGCLASS (VT8 QPR:$src), QPR_VFP2)), (SSubReg_f16_reg imm_even:$lane))>; } multiclass ExtractEltOddF16VMOVH { def : Pat<(extractelt (VT4 DPR:$src), imm_odd:$lane), (COPY_TO_REGCLASS (VMOVH (EXTRACT_SUBREG (v2f32 (COPY_TO_REGCLASS (VT4 DPR:$src), DPR_VFP2)), (SSubReg_f16_reg imm_odd:$lane))), HPR)>; def : Pat<(extractelt (VT8 QPR:$src), imm_odd:$lane), (COPY_TO_REGCLASS (VMOVH (EXTRACT_SUBREG (v4f32 (COPY_TO_REGCLASS (VT8 QPR:$src), QPR_VFP2)), (SSubReg_f16_reg imm_odd:$lane))), HPR)>; } let Predicates = [HasNEON] in { defm : ExtractEltEvenF16; defm : ExtractEltOddF16VMOVH; } let AddedComplexity = 1, Predicates = [HasNEON, HasBF16, HasFullFP16] in { // If VMOVH (vmovx.f16) is available use it to extract BF16 from the odd lanes defm : ExtractEltOddF16VMOVH; } let Predicates = [HasBF16, HasNEON] in { defm : ExtractEltEvenF16; // Otherwise, if VMOVH is not available resort to extracting the odd lane // into a GPR and then moving to HPR def : Pat<(extractelt (v4bf16 DPR:$src), imm_odd:$lane), (COPY_TO_REGCLASS (VGETLNu16 (v4bf16 DPR:$src), imm:$lane), HPR)>; def : Pat<(extractelt (v8bf16 QPR:$src), imm_odd:$lane), (COPY_TO_REGCLASS (VGETLNu16 (v4i16 (EXTRACT_SUBREG QPR:$src, (DSubReg_i16_reg imm:$lane))), (SubReg_i16_lane imm:$lane)), HPR)>; } // VMOV : Vector Set Lane (move ARM core register to scalar) let Constraints = "$src1 = $V" in { def VSETLNi8 : NVSetLane<{1,1,1,0,0,1,?,0}, 0b1011, {?,?}, (outs DPR:$V), (ins DPR:$src1, GPR:$R, VectorIndex8:$lane), IIC_VMOVISL, "vmov", "8", "$V$lane, $R", [(set DPR:$V, (vector_insert (v8i8 DPR:$src1), GPR:$R, imm:$lane))]> { let Inst{21} = lane{2}; let Inst{6-5} = lane{1-0}; } def VSETLNi16 : NVSetLane<{1,1,1,0,0,0,?,0}, 0b1011, {?,1}, (outs DPR:$V), (ins DPR:$src1, GPR:$R, VectorIndex16:$lane), IIC_VMOVISL, "vmov", "16", "$V$lane, $R", [(set DPR:$V, (vector_insert (v4i16 DPR:$src1), GPR:$R, imm:$lane))]> { let Inst{21} = lane{1}; let Inst{6} = lane{0}; } def VSETLNi32 : NVSetLane<{1,1,1,0,0,0,?,0}, 0b1011, 0b00, (outs DPR:$V), (ins DPR:$src1, GPR:$R, VectorIndex32:$lane), IIC_VMOVISL, "vmov", "32", "$V$lane, $R", [(set DPR:$V, (insertelt (v2i32 DPR:$src1), GPR:$R, imm:$lane))]>, Requires<[HasVFP2]> { let Inst{21} = lane{0}; // This instruction is equivalent as // $V = INSERT_SUBREG $src1, $R, translateImmToSubIdx($imm) let isInsertSubreg = 1; } } // TODO: for odd lanes we could optimize this a bit by using the VINS // FullFP16 instruction when it is available multiclass InsertEltF16 { def : Pat<(insertelt (VT4 DPR:$src1), (VTScalar HPR:$src2), imm:$lane), (VT4 (VSETLNi16 DPR:$src1, (COPY_TO_REGCLASS HPR:$src2, GPR), imm:$lane))>; def : Pat<(insertelt (VT8 QPR:$src1), (VTScalar HPR:$src2), imm:$lane), (VT8 (INSERT_SUBREG QPR:$src1, (v4i16 (VSETLNi16 (v4i16 (EXTRACT_SUBREG QPR:$src1, (DSubReg_i16_reg imm:$lane))), (COPY_TO_REGCLASS HPR:$src2, GPR), (SubReg_i16_lane imm:$lane))), (DSubReg_i16_reg imm:$lane)))>; } let Predicates = [HasNEON] in { def : Pat<(vector_insert (v16i8 QPR:$src1), GPR:$src2, imm:$lane), (v16i8 (INSERT_SUBREG QPR:$src1, (v8i8 (VSETLNi8 (v8i8 (EXTRACT_SUBREG QPR:$src1, (DSubReg_i8_reg imm:$lane))), GPR:$src2, (SubReg_i8_lane imm:$lane))), (DSubReg_i8_reg imm:$lane)))>; def : Pat<(vector_insert (v8i16 QPR:$src1), GPR:$src2, imm:$lane), (v8i16 (INSERT_SUBREG QPR:$src1, (v4i16 (VSETLNi16 (v4i16 (EXTRACT_SUBREG QPR:$src1, (DSubReg_i16_reg imm:$lane))), GPR:$src2, (SubReg_i16_lane imm:$lane))), (DSubReg_i16_reg imm:$lane)))>; def : Pat<(insertelt (v4i32 QPR:$src1), GPR:$src2, imm:$lane), (v4i32 (INSERT_SUBREG QPR:$src1, (v2i32 (VSETLNi32 (v2i32 (EXTRACT_SUBREG QPR:$src1, (DSubReg_i32_reg imm:$lane))), GPR:$src2, (SubReg_i32_lane imm:$lane))), (DSubReg_i32_reg imm:$lane)))>; def : Pat<(v2f32 (insertelt DPR:$src1, SPR:$src2, imm:$src3)), (INSERT_SUBREG (v2f32 (COPY_TO_REGCLASS DPR:$src1, DPR_VFP2)), SPR:$src2, (SSubReg_f32_reg imm:$src3))>; def : Pat<(v4f32 (insertelt QPR:$src1, SPR:$src2, imm:$src3)), (INSERT_SUBREG (v4f32 (COPY_TO_REGCLASS QPR:$src1, QPR_VFP2)), SPR:$src2, (SSubReg_f32_reg imm:$src3))>; defm : InsertEltF16; def : Pat<(v2f64 (insertelt QPR:$src1, DPR:$src2, imm:$src3)), (INSERT_SUBREG QPR:$src1, DPR:$src2, (DSubReg_f64_reg imm:$src3))>; def : Pat<(v2f32 (scalar_to_vector SPR:$src)), (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), SPR:$src, ssub_0)>; def : Pat<(v2f64 (scalar_to_vector (f64 DPR:$src))), (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), DPR:$src, dsub_0)>; def : Pat<(v4f32 (scalar_to_vector SPR:$src)), (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), SPR:$src, ssub_0)>; def : Pat<(v4f16 (scalar_to_vector (f16 HPR:$src))), (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), HPR:$src, ssub_0)>; def : Pat<(v8f16 (scalar_to_vector (f16 HPR:$src))), (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), HPR:$src, ssub_0)>; def : Pat<(v8i8 (scalar_to_vector GPR:$src)), (VSETLNi8 (v8i8 (IMPLICIT_DEF)), GPR:$src, (i32 0))>; def : Pat<(v4i16 (scalar_to_vector GPR:$src)), (VSETLNi16 (v4i16 (IMPLICIT_DEF)), GPR:$src, (i32 0))>; def : Pat<(v2i32 (scalar_to_vector GPR:$src)), (VSETLNi32 (v2i32 (IMPLICIT_DEF)), GPR:$src, (i32 0))>; def : Pat<(v16i8 (scalar_to_vector GPR:$src)), (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), (VSETLNi8 (v8i8 (IMPLICIT_DEF)), GPR:$src, (i32 0)), dsub_0)>; def : Pat<(v8i16 (scalar_to_vector GPR:$src)), (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), (VSETLNi16 (v4i16 (IMPLICIT_DEF)), GPR:$src, (i32 0)), dsub_0)>; def : Pat<(v4i32 (scalar_to_vector GPR:$src)), (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), (VSETLNi32 (v2i32 (IMPLICIT_DEF)), GPR:$src, (i32 0)), dsub_0)>; } let Predicates = [HasNEON, HasBF16] in defm : InsertEltF16; // VDUP : Vector Duplicate (from ARM core register to all elements) class VDUPD opcod1, bits<2> opcod3, string Dt, ValueType Ty> : NVDup; class VDUPQ opcod1, bits<2> opcod3, string Dt, ValueType Ty> : NVDup; def VDUP8d : VDUPD<0b11101100, 0b00, "8", v8i8>; def VDUP16d : VDUPD<0b11101000, 0b01, "16", v4i16>; def VDUP32d : VDUPD<0b11101000, 0b00, "32", v2i32>, Requires<[HasNEON, HasFastVDUP32]>; def VDUP8q : VDUPQ<0b11101110, 0b00, "8", v16i8>; def VDUP16q : VDUPQ<0b11101010, 0b01, "16", v8i16>; def VDUP32q : VDUPQ<0b11101010, 0b00, "32", v4i32>; // ARMvdup patterns for uarchs with fast VDUP.32. def : Pat<(v2f32 (ARMvdup (f32 (bitconvert GPR:$R)))), (VDUP32d GPR:$R)>, Requires<[HasNEON,HasFastVDUP32]>; def : Pat<(v4f32 (ARMvdup (f32 (bitconvert GPR:$R)))), (VDUP32q GPR:$R)>, Requires<[HasNEON]>; // ARMvdup patterns for uarchs with slow VDUP.32 - use VMOVDRR instead. def : Pat<(v2i32 (ARMvdup (i32 GPR:$R))), (VMOVDRR GPR:$R, GPR:$R)>, Requires<[HasNEON,HasSlowVDUP32]>; def : Pat<(v2f32 (ARMvdup (f32 (bitconvert GPR:$R)))), (VMOVDRR GPR:$R, GPR:$R)>, Requires<[HasNEON,HasSlowVDUP32]>; // VDUP : Vector Duplicate Lane (from scalar to all elements) class VDUPLND op19_16, string OpcodeStr, string Dt, ValueType Ty, Operand IdxTy> : NVDupLane; class VDUPLNQ op19_16, string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy, Operand IdxTy> : NVDupLane; // Inst{19-16} is partially specified depending on the element size. def VDUPLN8d : VDUPLND<{?,?,?,1}, "vdup", "8", v8i8, VectorIndex8> { bits<3> lane; let Inst{19-17} = lane{2-0}; } def VDUPLN16d : VDUPLND<{?,?,1,0}, "vdup", "16", v4i16, VectorIndex16> { bits<2> lane; let Inst{19-18} = lane{1-0}; } def VDUPLN32d : VDUPLND<{?,1,0,0}, "vdup", "32", v2i32, VectorIndex32> { bits<1> lane; let Inst{19} = lane{0}; } def VDUPLN8q : VDUPLNQ<{?,?,?,1}, "vdup", "8", v16i8, v8i8, VectorIndex8> { bits<3> lane; let Inst{19-17} = lane{2-0}; } def VDUPLN16q : VDUPLNQ<{?,?,1,0}, "vdup", "16", v8i16, v4i16, VectorIndex16> { bits<2> lane; let Inst{19-18} = lane{1-0}; } def VDUPLN32q : VDUPLNQ<{?,1,0,0}, "vdup", "32", v4i32, v2i32, VectorIndex32> { bits<1> lane; let Inst{19} = lane{0}; } let Predicates = [HasNEON] in { def : Pat<(v4f16 (ARMvduplane (v4f16 DPR:$Vm), imm:$lane)), (VDUPLN32d DPR:$Vm, imm:$lane)>; def : Pat<(v2f32 (ARMvduplane (v2f32 DPR:$Vm), imm:$lane)), (VDUPLN32d DPR:$Vm, imm:$lane)>; def : Pat<(v4f32 (ARMvduplane (v2f32 DPR:$Vm), imm:$lane)), (VDUPLN32q DPR:$Vm, imm:$lane)>; def : Pat<(v16i8 (ARMvduplane (v16i8 QPR:$src), imm:$lane)), (v16i8 (VDUPLN8q (v8i8 (EXTRACT_SUBREG QPR:$src, (DSubReg_i8_reg imm:$lane))), (SubReg_i8_lane imm:$lane)))>; def : Pat<(v8i16 (ARMvduplane (v8i16 QPR:$src), imm:$lane)), (v8i16 (VDUPLN16q (v4i16 (EXTRACT_SUBREG QPR:$src, (DSubReg_i16_reg imm:$lane))), (SubReg_i16_lane imm:$lane)))>; def : Pat<(v8f16 (ARMvduplane (v8f16 QPR:$src), imm:$lane)), (v8f16 (VDUPLN16q (v4f16 (EXTRACT_SUBREG QPR:$src, (DSubReg_i16_reg imm:$lane))), (SubReg_i16_lane imm:$lane)))>; def : Pat<(v4i32 (ARMvduplane (v4i32 QPR:$src), imm:$lane)), (v4i32 (VDUPLN32q (v2i32 (EXTRACT_SUBREG QPR:$src, (DSubReg_i32_reg imm:$lane))), (SubReg_i32_lane imm:$lane)))>; def : Pat<(v4f32 (ARMvduplane (v4f32 QPR:$src), imm:$lane)), (v4f32 (VDUPLN32q (v2f32 (EXTRACT_SUBREG QPR:$src, (DSubReg_i32_reg imm:$lane))), (SubReg_i32_lane imm:$lane)))>; def : Pat<(v4f16 (ARMvdup (f16 HPR:$src))), (v4f16 (VDUPLN16d (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), (f16 HPR:$src), ssub_0), (i32 0)))>; def : Pat<(v2f32 (ARMvdup (f32 SPR:$src))), (v2f32 (VDUPLN32d (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), SPR:$src, ssub_0), (i32 0)))>; def : Pat<(v4f32 (ARMvdup (f32 SPR:$src))), (v4f32 (VDUPLN32q (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), SPR:$src, ssub_0), (i32 0)))>; def : Pat<(v8f16 (ARMvdup (f16 HPR:$src))), (v8f16 (VDUPLN16q (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), (f16 HPR:$src), ssub_0), (i32 0)))>; } let Predicates = [HasNEON, HasBF16] in { def : Pat<(v4bf16 (ARMvduplane (v4bf16 DPR:$Vm), imm:$lane)), (VDUPLN16d DPR:$Vm, imm:$lane)>; def : Pat<(v8bf16 (ARMvduplane (v8bf16 QPR:$src), imm:$lane)), (v8bf16 (VDUPLN16q (v4bf16 (EXTRACT_SUBREG QPR:$src, (DSubReg_i16_reg imm:$lane))), (SubReg_i16_lane imm:$lane)))>; def : Pat<(v4bf16 (ARMvdup (bf16 HPR:$src))), (v4bf16 (VDUPLN16d (INSERT_SUBREG (v4bf16 (IMPLICIT_DEF)), (bf16 HPR:$src), ssub_0), (i32 0)))>; def : Pat<(v8bf16 (ARMvdup (bf16 HPR:$src))), (v8bf16 (VDUPLN16q (INSERT_SUBREG (v4bf16 (IMPLICIT_DEF)), (bf16 HPR:$src), ssub_0), (i32 0)))>; } // VMOVN : Vector Narrowing Move defm VMOVN : N2VN_HSD<0b11,0b11,0b10,0b00100,0,0, IIC_VMOVN, "vmovn", "i", trunc>; // VQMOVN : Vector Saturating Narrowing Move defm VQMOVNs : N2VNInt_HSD<0b11,0b11,0b10,0b00101,0,0, IIC_VQUNAiD, "vqmovn", "s", int_arm_neon_vqmovns>; defm VQMOVNu : N2VNInt_HSD<0b11,0b11,0b10,0b00101,1,0, IIC_VQUNAiD, "vqmovn", "u", int_arm_neon_vqmovnu>; defm VQMOVNsu : N2VNInt_HSD<0b11,0b11,0b10,0b00100,1,0, IIC_VQUNAiD, "vqmovun", "s", int_arm_neon_vqmovnsu>; // VMOVL : Vector Lengthening Move defm VMOVLs : N2VL_QHS<0b01,0b10100,0,1, "vmovl", "s", sext>; defm VMOVLu : N2VL_QHS<0b11,0b10100,0,1, "vmovl", "u", zext>; let Predicates = [HasNEON] in { def : Pat<(v8i16 (anyext (v8i8 DPR:$Vm))), (VMOVLuv8i16 DPR:$Vm)>; def : Pat<(v4i32 (anyext (v4i16 DPR:$Vm))), (VMOVLuv4i32 DPR:$Vm)>; def : Pat<(v2i64 (anyext (v2i32 DPR:$Vm))), (VMOVLuv2i64 DPR:$Vm)>; } // Vector Conversions. // VCVT : Vector Convert Between Floating-Point and Integers def VCVTf2sd : N2VD<0b11, 0b11, 0b10, 0b11, 0b01110, 0, "vcvt", "s32.f32", v2i32, v2f32, fp_to_sint>; def VCVTf2ud : N2VD<0b11, 0b11, 0b10, 0b11, 0b01111, 0, "vcvt", "u32.f32", v2i32, v2f32, fp_to_uint>; def VCVTs2fd : N2VD<0b11, 0b11, 0b10, 0b11, 0b01100, 0, "vcvt", "f32.s32", v2f32, v2i32, sint_to_fp>; def VCVTu2fd : N2VD<0b11, 0b11, 0b10, 0b11, 0b01101, 0, "vcvt", "f32.u32", v2f32, v2i32, uint_to_fp>; def VCVTf2sq : N2VQ<0b11, 0b11, 0b10, 0b11, 0b01110, 0, "vcvt", "s32.f32", v4i32, v4f32, fp_to_sint>; def VCVTf2uq : N2VQ<0b11, 0b11, 0b10, 0b11, 0b01111, 0, "vcvt", "u32.f32", v4i32, v4f32, fp_to_uint>; def VCVTs2fq : N2VQ<0b11, 0b11, 0b10, 0b11, 0b01100, 0, "vcvt", "f32.s32", v4f32, v4i32, sint_to_fp>; def VCVTu2fq : N2VQ<0b11, 0b11, 0b10, 0b11, 0b01101, 0, "vcvt", "f32.u32", v4f32, v4i32, uint_to_fp>; def VCVTh2sd : N2VD<0b11, 0b11, 0b01, 0b11, 0b01110, 0, "vcvt", "s16.f16", v4i16, v4f16, fp_to_sint>, Requires<[HasNEON, HasFullFP16]>; def VCVTh2ud : N2VD<0b11, 0b11, 0b01, 0b11, 0b01111, 0, "vcvt", "u16.f16", v4i16, v4f16, fp_to_uint>, Requires<[HasNEON, HasFullFP16]>; def VCVTs2hd : N2VD<0b11, 0b11, 0b01, 0b11, 0b01100, 0, "vcvt", "f16.s16", v4f16, v4i16, sint_to_fp>, Requires<[HasNEON, HasFullFP16]>; def VCVTu2hd : N2VD<0b11, 0b11, 0b01, 0b11, 0b01101, 0, "vcvt", "f16.u16", v4f16, v4i16, uint_to_fp>, Requires<[HasNEON, HasFullFP16]>; def VCVTh2sq : N2VQ<0b11, 0b11, 0b01, 0b11, 0b01110, 0, "vcvt", "s16.f16", v8i16, v8f16, fp_to_sint>, Requires<[HasNEON, HasFullFP16]>; def VCVTh2uq : N2VQ<0b11, 0b11, 0b01, 0b11, 0b01111, 0, "vcvt", "u16.f16", v8i16, v8f16, fp_to_uint>, Requires<[HasNEON, HasFullFP16]>; def VCVTs2hq : N2VQ<0b11, 0b11, 0b01, 0b11, 0b01100, 0, "vcvt", "f16.s16", v8f16, v8i16, sint_to_fp>, Requires<[HasNEON, HasFullFP16]>; def VCVTu2hq : N2VQ<0b11, 0b11, 0b01, 0b11, 0b01101, 0, "vcvt", "f16.u16", v8f16, v8i16, uint_to_fp>, Requires<[HasNEON, HasFullFP16]>; // VCVT{A, N, P, M} multiclass VCVT_FPI op10_8, SDPatternOperator IntS, SDPatternOperator IntU> { let PostEncoderMethod = "NEONThumb2V8PostEncoder", DecoderNamespace = "v8NEON" in { def SDf : N2VDIntnp<0b10, 0b11, op10_8, 0, NoItinerary, !strconcat("vcvt", op), "s32.f32", v2i32, v2f32, IntS>, Requires<[HasV8, HasNEON]>; def SQf : N2VQIntnp<0b10, 0b11, op10_8, 0, NoItinerary, !strconcat("vcvt", op), "s32.f32", v4i32, v4f32, IntS>, Requires<[HasV8, HasNEON]>; def UDf : N2VDIntnp<0b10, 0b11, op10_8, 1, NoItinerary, !strconcat("vcvt", op), "u32.f32", v2i32, v2f32, IntU>, Requires<[HasV8, HasNEON]>; def UQf : N2VQIntnp<0b10, 0b11, op10_8, 1, NoItinerary, !strconcat("vcvt", op), "u32.f32", v4i32, v4f32, IntU>, Requires<[HasV8, HasNEON]>; def SDh : N2VDIntnp<0b01, 0b11, op10_8, 0, NoItinerary, !strconcat("vcvt", op), "s16.f16", v4i16, v4f16, IntS>, Requires<[HasV8, HasNEON, HasFullFP16]>; def SQh : N2VQIntnp<0b01, 0b11, op10_8, 0, NoItinerary, !strconcat("vcvt", op), "s16.f16", v8i16, v8f16, IntS>, Requires<[HasV8, HasNEON, HasFullFP16]>; def UDh : N2VDIntnp<0b01, 0b11, op10_8, 1, NoItinerary, !strconcat("vcvt", op), "u16.f16", v4i16, v4f16, IntU>, Requires<[HasV8, HasNEON, HasFullFP16]>; def UQh : N2VQIntnp<0b01, 0b11, op10_8, 1, NoItinerary, !strconcat("vcvt", op), "u16.f16", v8i16, v8f16, IntU>, Requires<[HasV8, HasNEON, HasFullFP16]>; } } defm VCVTAN : VCVT_FPI<"a", 0b000, int_arm_neon_vcvtas, int_arm_neon_vcvtau>; defm VCVTNN : VCVT_FPI<"n", 0b001, int_arm_neon_vcvtns, int_arm_neon_vcvtnu>; defm VCVTPN : VCVT_FPI<"p", 0b010, int_arm_neon_vcvtps, int_arm_neon_vcvtpu>; defm VCVTMN : VCVT_FPI<"m", 0b011, int_arm_neon_vcvtms, int_arm_neon_vcvtmu>; // VCVT : Vector Convert Between Floating-Point and Fixed-Point. let DecoderMethod = "DecodeVCVTD" in { def VCVTf2xsd : N2VCvtD<0, 1, 0b1111, 0, 1, "vcvt", "s32.f32", v2i32, v2f32, int_arm_neon_vcvtfp2fxs>; def VCVTf2xud : N2VCvtD<1, 1, 0b1111, 0, 1, "vcvt", "u32.f32", v2i32, v2f32, int_arm_neon_vcvtfp2fxu>; def VCVTxs2fd : N2VCvtD<0, 1, 0b1110, 0, 1, "vcvt", "f32.s32", v2f32, v2i32, int_arm_neon_vcvtfxs2fp>; def VCVTxu2fd : N2VCvtD<1, 1, 0b1110, 0, 1, "vcvt", "f32.u32", v2f32, v2i32, int_arm_neon_vcvtfxu2fp>; let Predicates = [HasNEON, HasFullFP16] in { def VCVTh2xsd : N2VCvtD<0, 1, 0b1101, 0, 1, "vcvt", "s16.f16", v4i16, v4f16, int_arm_neon_vcvtfp2fxs>; def VCVTh2xud : N2VCvtD<1, 1, 0b1101, 0, 1, "vcvt", "u16.f16", v4i16, v4f16, int_arm_neon_vcvtfp2fxu>; def VCVTxs2hd : N2VCvtD<0, 1, 0b1100, 0, 1, "vcvt", "f16.s16", v4f16, v4i16, int_arm_neon_vcvtfxs2fp>; def VCVTxu2hd : N2VCvtD<1, 1, 0b1100, 0, 1, "vcvt", "f16.u16", v4f16, v4i16, int_arm_neon_vcvtfxu2fp>; } // Predicates = [HasNEON, HasFullFP16] } let DecoderMethod = "DecodeVCVTQ" in { def VCVTf2xsq : N2VCvtQ<0, 1, 0b1111, 0, 1, "vcvt", "s32.f32", v4i32, v4f32, int_arm_neon_vcvtfp2fxs>; def VCVTf2xuq : N2VCvtQ<1, 1, 0b1111, 0, 1, "vcvt", "u32.f32", v4i32, v4f32, int_arm_neon_vcvtfp2fxu>; def VCVTxs2fq : N2VCvtQ<0, 1, 0b1110, 0, 1, "vcvt", "f32.s32", v4f32, v4i32, int_arm_neon_vcvtfxs2fp>; def VCVTxu2fq : N2VCvtQ<1, 1, 0b1110, 0, 1, "vcvt", "f32.u32", v4f32, v4i32, int_arm_neon_vcvtfxu2fp>; let Predicates = [HasNEON, HasFullFP16] in { def VCVTh2xsq : N2VCvtQ<0, 1, 0b1101, 0, 1, "vcvt", "s16.f16", v8i16, v8f16, int_arm_neon_vcvtfp2fxs>; def VCVTh2xuq : N2VCvtQ<1, 1, 0b1101, 0, 1, "vcvt", "u16.f16", v8i16, v8f16, int_arm_neon_vcvtfp2fxu>; def VCVTxs2hq : N2VCvtQ<0, 1, 0b1100, 0, 1, "vcvt", "f16.s16", v8f16, v8i16, int_arm_neon_vcvtfxs2fp>; def VCVTxu2hq : N2VCvtQ<1, 1, 0b1100, 0, 1, "vcvt", "f16.u16", v8f16, v8i16, int_arm_neon_vcvtfxu2fp>; } // Predicates = [HasNEON, HasFullFP16] } def : NEONInstAlias<"vcvt${p}.s32.f32 $Dd, $Dm, #0", (VCVTf2sd DPR:$Dd, DPR:$Dm, pred:$p)>; def : NEONInstAlias<"vcvt${p}.u32.f32 $Dd, $Dm, #0", (VCVTf2ud DPR:$Dd, DPR:$Dm, pred:$p)>; def : NEONInstAlias<"vcvt${p}.f32.s32 $Dd, $Dm, #0", (VCVTs2fd DPR:$Dd, DPR:$Dm, pred:$p)>; def : NEONInstAlias<"vcvt${p}.f32.u32 $Dd, $Dm, #0", (VCVTu2fd DPR:$Dd, DPR:$Dm, pred:$p)>; def : NEONInstAlias<"vcvt${p}.s32.f32 $Qd, $Qm, #0", (VCVTf2sq QPR:$Qd, QPR:$Qm, pred:$p)>; def : NEONInstAlias<"vcvt${p}.u32.f32 $Qd, $Qm, #0", (VCVTf2uq QPR:$Qd, QPR:$Qm, pred:$p)>; def : NEONInstAlias<"vcvt${p}.f32.s32 $Qd, $Qm, #0", (VCVTs2fq QPR:$Qd, QPR:$Qm, pred:$p)>; def : NEONInstAlias<"vcvt${p}.f32.u32 $Qd, $Qm, #0", (VCVTu2fq QPR:$Qd, QPR:$Qm, pred:$p)>; def : NEONInstAlias<"vcvt${p}.s16.f16 $Dd, $Dm, #0", (VCVTh2sd DPR:$Dd, DPR:$Dm, pred:$p)>; def : NEONInstAlias<"vcvt${p}.u16.f16 $Dd, $Dm, #0", (VCVTh2ud DPR:$Dd, DPR:$Dm, pred:$p)>; def : NEONInstAlias<"vcvt${p}.f16.s16 $Dd, $Dm, #0", (VCVTs2hd DPR:$Dd, DPR:$Dm, pred:$p)>; def : NEONInstAlias<"vcvt${p}.f16.u16 $Dd, $Dm, #0", (VCVTu2hd DPR:$Dd, DPR:$Dm, pred:$p)>; def : NEONInstAlias<"vcvt${p}.s16.f16 $Qd, $Qm, #0", (VCVTh2sq QPR:$Qd, QPR:$Qm, pred:$p)>; def : NEONInstAlias<"vcvt${p}.u16.f16 $Qd, $Qm, #0", (VCVTh2uq QPR:$Qd, QPR:$Qm, pred:$p)>; def : NEONInstAlias<"vcvt${p}.f16.s16 $Qd, $Qm, #0", (VCVTs2hq QPR:$Qd, QPR:$Qm, pred:$p)>; def : NEONInstAlias<"vcvt${p}.f16.u16 $Qd, $Qm, #0", (VCVTu2hq QPR:$Qd, QPR:$Qm, pred:$p)>; // VCVT : Vector Convert Between Half-Precision and Single-Precision. def VCVTf2h : N2VNInt<0b11, 0b11, 0b01, 0b10, 0b01100, 0, 0, IIC_VUNAQ, "vcvt", "f16.f32", v4i16, v4f32, int_arm_neon_vcvtfp2hf>, Requires<[HasNEON, HasFP16]>; def VCVTh2f : N2VLInt<0b11, 0b11, 0b01, 0b10, 0b01110, 0, 0, IIC_VUNAQ, "vcvt", "f32.f16", v4f32, v4i16, int_arm_neon_vcvthf2fp>, Requires<[HasNEON, HasFP16]>; // Vector Reverse. // VREV64 : Vector Reverse elements within 64-bit doublewords class VREV64D op19_18, string OpcodeStr, string Dt, ValueType Ty> : N2V<0b11, 0b11, op19_18, 0b00, 0b00000, 0, 0, (outs DPR:$Vd), (ins DPR:$Vm), IIC_VMOVD, OpcodeStr, Dt, "$Vd, $Vm", "", [(set DPR:$Vd, (Ty (ARMvrev64 (Ty DPR:$Vm))))]>; class VREV64Q op19_18, string OpcodeStr, string Dt, ValueType Ty> : N2V<0b11, 0b11, op19_18, 0b00, 0b00000, 1, 0, (outs QPR:$Vd), (ins QPR:$Vm), IIC_VMOVQ, OpcodeStr, Dt, "$Vd, $Vm", "", [(set QPR:$Vd, (Ty (ARMvrev64 (Ty QPR:$Vm))))]>; def VREV64d8 : VREV64D<0b00, "vrev64", "8", v8i8>; def VREV64d16 : VREV64D<0b01, "vrev64", "16", v4i16>; def VREV64d32 : VREV64D<0b10, "vrev64", "32", v2i32>; let Predicates = [HasNEON] in { def : Pat<(v2f32 (ARMvrev64 (v2f32 DPR:$Vm))), (VREV64d32 DPR:$Vm)>; } def VREV64q8 : VREV64Q<0b00, "vrev64", "8", v16i8>; def VREV64q16 : VREV64Q<0b01, "vrev64", "16", v8i16>; def VREV64q32 : VREV64Q<0b10, "vrev64", "32", v4i32>; let Predicates = [HasNEON] in { def : Pat<(v4f32 (ARMvrev64 (v4f32 QPR:$Vm))), (VREV64q32 QPR:$Vm)>; def : Pat<(v8f16 (ARMvrev64 (v8f16 QPR:$Vm))), (VREV64q16 QPR:$Vm)>; def : Pat<(v4f16 (ARMvrev64 (v4f16 DPR:$Vm))), (VREV64d16 DPR:$Vm)>; } // VREV32 : Vector Reverse elements within 32-bit words class VREV32D op19_18, string OpcodeStr, string Dt, ValueType Ty> : N2V<0b11, 0b11, op19_18, 0b00, 0b00001, 0, 0, (outs DPR:$Vd), (ins DPR:$Vm), IIC_VMOVD, OpcodeStr, Dt, "$Vd, $Vm", "", [(set DPR:$Vd, (Ty (ARMvrev32 (Ty DPR:$Vm))))]>; class VREV32Q op19_18, string OpcodeStr, string Dt, ValueType Ty> : N2V<0b11, 0b11, op19_18, 0b00, 0b00001, 1, 0, (outs QPR:$Vd), (ins QPR:$Vm), IIC_VMOVQ, OpcodeStr, Dt, "$Vd, $Vm", "", [(set QPR:$Vd, (Ty (ARMvrev32 (Ty QPR:$Vm))))]>; def VREV32d8 : VREV32D<0b00, "vrev32", "8", v8i8>; def VREV32d16 : VREV32D<0b01, "vrev32", "16", v4i16>; def VREV32q8 : VREV32Q<0b00, "vrev32", "8", v16i8>; def VREV32q16 : VREV32Q<0b01, "vrev32", "16", v8i16>; let Predicates = [HasNEON] in { def : Pat<(v8f16 (ARMvrev32 (v8f16 QPR:$Vm))), (VREV32q16 QPR:$Vm)>; def : Pat<(v4f16 (ARMvrev32 (v4f16 DPR:$Vm))), (VREV32d16 DPR:$Vm)>; } // VREV16 : Vector Reverse elements within 16-bit halfwords class VREV16D op19_18, string OpcodeStr, string Dt, ValueType Ty> : N2V<0b11, 0b11, op19_18, 0b00, 0b00010, 0, 0, (outs DPR:$Vd), (ins DPR:$Vm), IIC_VMOVD, OpcodeStr, Dt, "$Vd, $Vm", "", [(set DPR:$Vd, (Ty (ARMvrev16 (Ty DPR:$Vm))))]>; class VREV16Q op19_18, string OpcodeStr, string Dt, ValueType Ty> : N2V<0b11, 0b11, op19_18, 0b00, 0b00010, 1, 0, (outs QPR:$Vd), (ins QPR:$Vm), IIC_VMOVQ, OpcodeStr, Dt, "$Vd, $Vm", "", [(set QPR:$Vd, (Ty (ARMvrev16 (Ty QPR:$Vm))))]>; def VREV16d8 : VREV16D<0b00, "vrev16", "8", v8i8>; def VREV16q8 : VREV16Q<0b00, "vrev16", "8", v16i8>; // Other Vector Shuffles. // Aligned extractions: really just dropping registers class AlignedVEXTq : Pat<(DestTy (vector_extract_subvec (SrcTy QPR:$src), (i32 imm:$start))), (EXTRACT_SUBREG (SrcTy QPR:$src), (LaneCVT imm:$start))>, Requires<[HasNEON]>; def : AlignedVEXTq; def : AlignedVEXTq; def : AlignedVEXTq; def : AlignedVEXTq; def : AlignedVEXTq; def : AlignedVEXTq; // v8f16 -> v4f16 // VEXT : Vector Extract // All of these have a two-operand InstAlias. let TwoOperandAliasConstraint = "$Vn = $Vd" in { class VEXTd : N3V<0,1,0b11,{?,?,?,?},0,0, (outs DPR:$Vd), (ins DPR:$Vn, DPR:$Vm, immTy:$index), NVExtFrm, IIC_VEXTD, OpcodeStr, Dt, "$Vd, $Vn, $Vm, $index", "", [(set DPR:$Vd, (Ty (NEONvext (Ty DPR:$Vn), (Ty DPR:$Vm), imm:$index)))]> { bits<3> index; let Inst{11} = 0b0; let Inst{10-8} = index{2-0}; } class VEXTq : N3V<0,1,0b11,{?,?,?,?},1,0, (outs QPR:$Vd), (ins QPR:$Vn, QPR:$Vm, immTy:$index), NVExtFrm, IIC_VEXTQ, OpcodeStr, Dt, "$Vd, $Vn, $Vm, $index", "", [(set QPR:$Vd, (Ty (NEONvext (Ty QPR:$Vn), (Ty QPR:$Vm), imm:$index)))]> { bits<4> index; let Inst{11-8} = index{3-0}; } } def VEXTd8 : VEXTd<"vext", "8", v8i8, imm0_7> { let Inst{10-8} = index{2-0}; } def VEXTd16 : VEXTd<"vext", "16", v4i16, imm0_3> { let Inst{10-9} = index{1-0}; let Inst{8} = 0b0; } let Predicates = [HasNEON] in { def : Pat<(v4f16 (NEONvext (v4f16 DPR:$Vn), (v4f16 DPR:$Vm), (i32 imm:$index))), (VEXTd16 DPR:$Vn, DPR:$Vm, imm:$index)>; } def VEXTd32 : VEXTd<"vext", "32", v2i32, imm0_1> { let Inst{10} = index{0}; let Inst{9-8} = 0b00; } let Predicates = [HasNEON] in { def : Pat<(v2f32 (NEONvext (v2f32 DPR:$Vn), (v2f32 DPR:$Vm), (i32 imm:$index))), (VEXTd32 DPR:$Vn, DPR:$Vm, imm:$index)>; } def VEXTq8 : VEXTq<"vext", "8", v16i8, imm0_15> { let Inst{11-8} = index{3-0}; } def VEXTq16 : VEXTq<"vext", "16", v8i16, imm0_7> { let Inst{11-9} = index{2-0}; let Inst{8} = 0b0; } let Predicates = [HasNEON] in { def : Pat<(v8f16 (NEONvext (v8f16 QPR:$Vn), (v8f16 QPR:$Vm), (i32 imm:$index))), (VEXTq16 QPR:$Vn, QPR:$Vm, imm:$index)>; } def VEXTq32 : VEXTq<"vext", "32", v4i32, imm0_3> { let Inst{11-10} = index{1-0}; let Inst{9-8} = 0b00; } def VEXTq64 : VEXTq<"vext", "64", v2i64, imm0_1> { let Inst{11} = index{0}; let Inst{10-8} = 0b000; } let Predicates = [HasNEON] in { def : Pat<(v4f32 (NEONvext (v4f32 QPR:$Vn), (v4f32 QPR:$Vm), (i32 imm:$index))), (VEXTq32 QPR:$Vn, QPR:$Vm, imm:$index)>; } // VTRN : Vector Transpose def VTRNd8 : N2VDShuffle<0b00, 0b00001, "vtrn", "8">; def VTRNd16 : N2VDShuffle<0b01, 0b00001, "vtrn", "16">; def VTRNd32 : N2VDShuffle<0b10, 0b00001, "vtrn", "32">; def VTRNq8 : N2VQShuffle<0b00, 0b00001, IIC_VPERMQ, "vtrn", "8">; def VTRNq16 : N2VQShuffle<0b01, 0b00001, IIC_VPERMQ, "vtrn", "16">; def VTRNq32 : N2VQShuffle<0b10, 0b00001, IIC_VPERMQ, "vtrn", "32">; // VUZP : Vector Unzip (Deinterleave) def VUZPd8 : N2VDShuffle<0b00, 0b00010, "vuzp", "8">; def VUZPd16 : N2VDShuffle<0b01, 0b00010, "vuzp", "16">; // vuzp.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm. def : NEONInstAlias<"vuzp${p}.32 $Dd, $Dm", (VTRNd32 DPR:$Dd, DPR:$Dm, pred:$p)>; def VUZPq8 : N2VQShuffle<0b00, 0b00010, IIC_VPERMQ3, "vuzp", "8">; def VUZPq16 : N2VQShuffle<0b01, 0b00010, IIC_VPERMQ3, "vuzp", "16">; def VUZPq32 : N2VQShuffle<0b10, 0b00010, IIC_VPERMQ3, "vuzp", "32">; // VZIP : Vector Zip (Interleave) def VZIPd8 : N2VDShuffle<0b00, 0b00011, "vzip", "8">; def VZIPd16 : N2VDShuffle<0b01, 0b00011, "vzip", "16">; // vzip.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm. def : NEONInstAlias<"vzip${p}.32 $Dd, $Dm", (VTRNd32 DPR:$Dd, DPR:$Dm, pred:$p)>; def VZIPq8 : N2VQShuffle<0b00, 0b00011, IIC_VPERMQ3, "vzip", "8">; def VZIPq16 : N2VQShuffle<0b01, 0b00011, IIC_VPERMQ3, "vzip", "16">; def VZIPq32 : N2VQShuffle<0b10, 0b00011, IIC_VPERMQ3, "vzip", "32">; // Vector Table Lookup and Table Extension. // VTBL : Vector Table Lookup let DecoderMethod = "DecodeTBLInstruction" in { def VTBL1 : N3V<1,1,0b11,0b1000,0,0, (outs DPR:$Vd), (ins VecListOneD:$Vn, DPR:$Vm), NVTBLFrm, IIC_VTB1, "vtbl", "8", "$Vd, $Vn, $Vm", "", [(set DPR:$Vd, (v8i8 (NEONvtbl1 VecListOneD:$Vn, DPR:$Vm)))]>; let hasExtraSrcRegAllocReq = 1 in { def VTBL2 : N3V<1,1,0b11,0b1001,0,0, (outs DPR:$Vd), (ins VecListDPair:$Vn, DPR:$Vm), NVTBLFrm, IIC_VTB2, "vtbl", "8", "$Vd, $Vn, $Vm", "", []>; def VTBL3 : N3V<1,1,0b11,0b1010,0,0, (outs DPR:$Vd), (ins VecListThreeD:$Vn, DPR:$Vm), NVTBLFrm, IIC_VTB3, "vtbl", "8", "$Vd, $Vn, $Vm", "", []>; def VTBL4 : N3V<1,1,0b11,0b1011,0,0, (outs DPR:$Vd), (ins VecListFourD:$Vn, DPR:$Vm), NVTBLFrm, IIC_VTB4, "vtbl", "8", "$Vd, $Vn, $Vm", "", []>; } // hasExtraSrcRegAllocReq = 1 def VTBL3Pseudo : PseudoNeonI<(outs DPR:$dst), (ins QQPR:$tbl, DPR:$src), IIC_VTB3, "", []>; def VTBL4Pseudo : PseudoNeonI<(outs DPR:$dst), (ins QQPR:$tbl, DPR:$src), IIC_VTB4, "", []>; // VTBX : Vector Table Extension def VTBX1 : N3V<1,1,0b11,0b1000,1,0, (outs DPR:$Vd), (ins DPR:$orig, VecListOneD:$Vn, DPR:$Vm), NVTBLFrm, IIC_VTBX1, "vtbx", "8", "$Vd, $Vn, $Vm", "$orig = $Vd", [(set DPR:$Vd, (v8i8 (int_arm_neon_vtbx1 DPR:$orig, VecListOneD:$Vn, DPR:$Vm)))]>; let hasExtraSrcRegAllocReq = 1 in { def VTBX2 : N3V<1,1,0b11,0b1001,1,0, (outs DPR:$Vd), (ins DPR:$orig, VecListDPair:$Vn, DPR:$Vm), NVTBLFrm, IIC_VTBX2, "vtbx", "8", "$Vd, $Vn, $Vm", "$orig = $Vd", []>; def VTBX3 : N3V<1,1,0b11,0b1010,1,0, (outs DPR:$Vd), (ins DPR:$orig, VecListThreeD:$Vn, DPR:$Vm), NVTBLFrm, IIC_VTBX3, "vtbx", "8", "$Vd, $Vn, $Vm", "$orig = $Vd", []>; def VTBX4 : N3V<1,1,0b11,0b1011,1,0, (outs DPR:$Vd), (ins DPR:$orig, VecListFourD:$Vn, DPR:$Vm), NVTBLFrm, IIC_VTBX4, "vtbx", "8", "$Vd, $Vn, $Vm", "$orig = $Vd", []>; } // hasExtraSrcRegAllocReq = 1 def VTBX3Pseudo : PseudoNeonI<(outs DPR:$dst), (ins DPR:$orig, QQPR:$tbl, DPR:$src), IIC_VTBX3, "$orig = $dst", []>; def VTBX4Pseudo : PseudoNeonI<(outs DPR:$dst), (ins DPR:$orig, QQPR:$tbl, DPR:$src), IIC_VTBX4, "$orig = $dst", []>; } // DecoderMethod = "DecodeTBLInstruction" let Predicates = [HasNEON] in { def : Pat<(v8i8 (NEONvtbl2 v8i8:$Vn0, v8i8:$Vn1, v8i8:$Vm)), (v8i8 (VTBL2 (REG_SEQUENCE DPair, v8i8:$Vn0, dsub_0, v8i8:$Vn1, dsub_1), v8i8:$Vm))>; def : Pat<(v8i8 (int_arm_neon_vtbx2 v8i8:$orig, v8i8:$Vn0, v8i8:$Vn1, v8i8:$Vm)), (v8i8 (VTBX2 v8i8:$orig, (REG_SEQUENCE DPair, v8i8:$Vn0, dsub_0, v8i8:$Vn1, dsub_1), v8i8:$Vm))>; def : Pat<(v8i8 (int_arm_neon_vtbl3 v8i8:$Vn0, v8i8:$Vn1, v8i8:$Vn2, v8i8:$Vm)), (v8i8 (VTBL3Pseudo (REG_SEQUENCE QQPR, v8i8:$Vn0, dsub_0, v8i8:$Vn1, dsub_1, v8i8:$Vn2, dsub_2, (v8i8 (IMPLICIT_DEF)), dsub_3), v8i8:$Vm))>; def : Pat<(v8i8 (int_arm_neon_vtbx3 v8i8:$orig, v8i8:$Vn0, v8i8:$Vn1, v8i8:$Vn2, v8i8:$Vm)), (v8i8 (VTBX3Pseudo v8i8:$orig, (REG_SEQUENCE QQPR, v8i8:$Vn0, dsub_0, v8i8:$Vn1, dsub_1, v8i8:$Vn2, dsub_2, (v8i8 (IMPLICIT_DEF)), dsub_3), v8i8:$Vm))>; def : Pat<(v8i8 (int_arm_neon_vtbl4 v8i8:$Vn0, v8i8:$Vn1, v8i8:$Vn2, v8i8:$Vn3, v8i8:$Vm)), (v8i8 (VTBL4Pseudo (REG_SEQUENCE QQPR, v8i8:$Vn0, dsub_0, v8i8:$Vn1, dsub_1, v8i8:$Vn2, dsub_2, v8i8:$Vn3, dsub_3), v8i8:$Vm))>; def : Pat<(v8i8 (int_arm_neon_vtbx4 v8i8:$orig, v8i8:$Vn0, v8i8:$Vn1, v8i8:$Vn2, v8i8:$Vn3, v8i8:$Vm)), (v8i8 (VTBX4Pseudo v8i8:$orig, (REG_SEQUENCE QQPR, v8i8:$Vn0, dsub_0, v8i8:$Vn1, dsub_1, v8i8:$Vn2, dsub_2, v8i8:$Vn3, dsub_3), v8i8:$Vm))>; } // VRINT : Vector Rounding multiclass VRINT_FPI op9_7, SDPatternOperator Int> { let PostEncoderMethod = "NEONThumb2V8PostEncoder", DecoderNamespace = "v8NEON" in { def Df : N2VDIntnp<0b10, 0b10, 0b100, 0, NoItinerary, !strconcat("vrint", op), "f32", v2f32, v2f32, Int>, Requires<[HasV8, HasNEON]> { let Inst{9-7} = op9_7; } def Qf : N2VQIntnp<0b10, 0b10, 0b100, 0, NoItinerary, !strconcat("vrint", op), "f32", v4f32, v4f32, Int>, Requires<[HasV8, HasNEON]> { let Inst{9-7} = op9_7; } def Dh : N2VDIntnp<0b01, 0b10, 0b100, 0, NoItinerary, !strconcat("vrint", op), "f16", v4f16, v4f16, Int>, Requires<[HasV8, HasNEON, HasFullFP16]> { let Inst{9-7} = op9_7; } def Qh : N2VQIntnp<0b01, 0b10, 0b100, 0, NoItinerary, !strconcat("vrint", op), "f16", v8f16, v8f16, Int>, Requires<[HasV8, HasNEON, HasFullFP16]> { let Inst{9-7} = op9_7; } } def : NEONInstAlias(NAME#"Df") DPR:$Dd, DPR:$Dm)>; def : NEONInstAlias(NAME#"Qf") QPR:$Qd, QPR:$Qm)>; let Predicates = [HasNEON, HasFullFP16] in { def : NEONInstAlias(NAME#"Dh") DPR:$Dd, DPR:$Dm)>; def : NEONInstAlias(NAME#"Qh") QPR:$Qd, QPR:$Qm)>; } } defm VRINTNN : VRINT_FPI<"n", 0b000, int_arm_neon_vrintn>; defm VRINTXN : VRINT_FPI<"x", 0b001, int_arm_neon_vrintx>; defm VRINTAN : VRINT_FPI<"a", 0b010, int_arm_neon_vrinta>; defm VRINTZN : VRINT_FPI<"z", 0b011, int_arm_neon_vrintz>; defm VRINTMN : VRINT_FPI<"m", 0b101, int_arm_neon_vrintm>; defm VRINTPN : VRINT_FPI<"p", 0b111, int_arm_neon_vrintp>; // Cryptography instructions let PostEncoderMethod = "NEONThumb2DataIPostEncoder", DecoderNamespace = "v8Crypto", hasSideEffects = 0 in { class AES : N2VQIntXnp<0b00, 0b00, 0b011, op6, op7, NoItinerary, !strconcat("aes", op), "8", v16i8, v16i8, Int>; class AES2Op : N2VQIntX2np<0b00, 0b00, 0b011, op6, op7, NoItinerary, !strconcat("aes", op), "8", v16i8, v16i8, Int>; class N2SHA op17_16, bits<3> op10_8, bit op7, bit op6, SDPatternOperator Int> : N2VQIntXnp<0b10, op17_16, op10_8, op6, op7, NoItinerary, !strconcat("sha", op), "32", v4i32, v4i32, Int>; class N2SHA2Op op17_16, bits<3> op10_8, bit op7, bit op6, SDPatternOperator Int> : N2VQIntX2np<0b10, op17_16, op10_8, op6, op7, NoItinerary, !strconcat("sha", op), "32", v4i32, v4i32, Int>; class N3SHA3Op op27_23, bits<2> op21_20, SDPatternOperator Int> : N3VQInt3np; } let Predicates = [HasV8, HasAES] in { def AESD : AES2Op<"d", 0, 1, int_arm_neon_aesd>; def AESE : AES2Op<"e", 0, 0, int_arm_neon_aese>; def AESIMC : AES<"imc", 1, 1, int_arm_neon_aesimc>; def AESMC : AES<"mc", 1, 0, int_arm_neon_aesmc>; } let Predicates = [HasV8, HasSHA2] in { def SHA1H : N2SHA<"1h", 0b01, 0b010, 1, 1, null_frag>; def SHA1SU1 : N2SHA2Op<"1su1", 0b10, 0b011, 1, 0, int_arm_neon_sha1su1>; def SHA256SU0 : N2SHA2Op<"256su0", 0b10, 0b011, 1, 1, int_arm_neon_sha256su0>; def SHA1C : N3SHA3Op<"1c", 0b00100, 0b00, null_frag>; def SHA1M : N3SHA3Op<"1m", 0b00100, 0b10, null_frag>; def SHA1P : N3SHA3Op<"1p", 0b00100, 0b01, null_frag>; def SHA1SU0 : N3SHA3Op<"1su0", 0b00100, 0b11, int_arm_neon_sha1su0>; def SHA256H : N3SHA3Op<"256h", 0b00110, 0b00, int_arm_neon_sha256h>; def SHA256H2 : N3SHA3Op<"256h2", 0b00110, 0b01, int_arm_neon_sha256h2>; def SHA256SU1 : N3SHA3Op<"256su1", 0b00110, 0b10, int_arm_neon_sha256su1>; } let Predicates = [HasNEON] in { def : Pat<(i32 (int_arm_neon_sha1h i32:$Rn)), (COPY_TO_REGCLASS (f32 (EXTRACT_SUBREG (SHA1H (SUBREG_TO_REG (i64 0), (f32 (COPY_TO_REGCLASS i32:$Rn, SPR)), ssub_0)), ssub_0)), GPR)>; def : Pat<(v4i32 (int_arm_neon_sha1c v4i32:$hash_abcd, i32:$hash_e, v4i32:$wk)), (SHA1C v4i32:$hash_abcd, (SUBREG_TO_REG (i64 0), (f32 (COPY_TO_REGCLASS i32:$hash_e, SPR)), ssub_0), v4i32:$wk)>; def : Pat<(v4i32 (int_arm_neon_sha1m v4i32:$hash_abcd, i32:$hash_e, v4i32:$wk)), (SHA1M v4i32:$hash_abcd, (SUBREG_TO_REG (i64 0), (f32 (COPY_TO_REGCLASS i32:$hash_e, SPR)), ssub_0), v4i32:$wk)>; def : Pat<(v4i32 (int_arm_neon_sha1p v4i32:$hash_abcd, i32:$hash_e, v4i32:$wk)), (SHA1P v4i32:$hash_abcd, (SUBREG_TO_REG (i64 0), (f32 (COPY_TO_REGCLASS i32:$hash_e, SPR)), ssub_0), v4i32:$wk)>; } //===----------------------------------------------------------------------===// // NEON instructions for single-precision FP math //===----------------------------------------------------------------------===// class N2VSPat : NEONFPPat<(f32 (OpNode SPR:$a)), (EXTRACT_SUBREG (v2f32 (COPY_TO_REGCLASS (Inst (INSERT_SUBREG (v2f32 (COPY_TO_REGCLASS (v2f32 (IMPLICIT_DEF)), DPR_VFP2)), SPR:$a, ssub_0)), DPR_VFP2)), ssub_0)>; class N3VSPat : NEONFPPat<(f32 (OpNode SPR:$a, SPR:$b)), (EXTRACT_SUBREG (v2f32 (COPY_TO_REGCLASS (Inst (INSERT_SUBREG (v2f32 (COPY_TO_REGCLASS (v2f32 (IMPLICIT_DEF)), DPR_VFP2)), SPR:$a, ssub_0), (INSERT_SUBREG (v2f32 (COPY_TO_REGCLASS (v2f32 (IMPLICIT_DEF)), DPR_VFP2)), SPR:$b, ssub_0)), DPR_VFP2)), ssub_0)>; class N3VSPatFP16 : NEONFPPat<(f16 (OpNode HPR:$a, HPR:$b)), (EXTRACT_SUBREG (v4f16 (COPY_TO_REGCLASS (Inst (INSERT_SUBREG (v4f16 (COPY_TO_REGCLASS (v4f16 (IMPLICIT_DEF)), DPR_VFP2)), HPR:$a, ssub_0), (INSERT_SUBREG (v4f16 (COPY_TO_REGCLASS (v4f16 (IMPLICIT_DEF)), DPR_VFP2)), HPR:$b, ssub_0)), DPR_VFP2)), ssub_0)>; class N3VSMulOpPat : NEONFPPat<(f32 (OpNode SPR:$acc, (f32 (MulNode SPR:$a, SPR:$b)))), (EXTRACT_SUBREG (v2f32 (COPY_TO_REGCLASS (Inst (INSERT_SUBREG (v2f32 (COPY_TO_REGCLASS (v2f32 (IMPLICIT_DEF)), DPR_VFP2)), SPR:$acc, ssub_0), (INSERT_SUBREG (v2f32 (COPY_TO_REGCLASS (v2f32 (IMPLICIT_DEF)), DPR_VFP2)), SPR:$a, ssub_0), (INSERT_SUBREG (v2f32 (COPY_TO_REGCLASS (v2f32 (IMPLICIT_DEF)), DPR_VFP2)), SPR:$b, ssub_0)), DPR_VFP2)), ssub_0)>; class NVCVTIFPat : NEONFPPat<(f32 (OpNode GPR:$a)), (f32 (EXTRACT_SUBREG (v2f32 (Inst (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), (i32 (COPY_TO_REGCLASS GPR:$a, SPR)), ssub_0))), ssub_0))>; class NVCVTFIPat : NEONFPPat<(i32 (OpNode SPR:$a)), (i32 (EXTRACT_SUBREG (v2f32 (Inst (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), SPR:$a, ssub_0))), ssub_0))>; def : N3VSPat; def : N3VSPat; def : N3VSPat; def : N3VSMulOpPat, Requires<[HasNEON, UseNEONForFP, UseFPVMLx]>; def : N3VSMulOpPat, Requires<[HasNEON, UseNEONForFP, UseFPVMLx]>; def : N3VSMulOpPat, Requires<[HasVFP4, UseNEONForFP, UseFusedMAC]>; def : N3VSMulOpPat, Requires<[HasVFP4, UseNEONForFP, UseFusedMAC]>; def : N2VSPat; def : N2VSPat; def : N3VSPatFP16, Requires<[HasFullFP16]>; def : N3VSPatFP16, Requires<[HasFullFP16]>; def : N3VSPat, Requires<[HasNEON]>; def : N3VSPat, Requires<[HasNEON]>; def : NVCVTFIPat; def : NVCVTFIPat; def : NVCVTIFPat; def : NVCVTIFPat; // NEON doesn't have any f64 conversions, so provide patterns to make // sure the VFP conversions match when extracting from a vector. def : VFPPat<(f64 (sint_to_fp (extractelt (v2i32 DPR:$src), imm:$lane))), (VSITOD (EXTRACT_SUBREG DPR:$src, (SSubReg_f32_reg imm:$lane)))>; def : VFPPat<(f64 (sint_to_fp (extractelt (v4i32 QPR:$src), imm:$lane))), (VSITOD (EXTRACT_SUBREG QPR:$src, (SSubReg_f32_reg imm:$lane)))>; def : VFPPat<(f64 (uint_to_fp (extractelt (v2i32 DPR:$src), imm:$lane))), (VUITOD (EXTRACT_SUBREG DPR:$src, (SSubReg_f32_reg imm:$lane)))>; def : VFPPat<(f64 (uint_to_fp (extractelt (v4i32 QPR:$src), imm:$lane))), (VUITOD (EXTRACT_SUBREG QPR:$src, (SSubReg_f32_reg imm:$lane)))>; // Prefer VMOVDRR for i32 -> f32 bitcasts, it can write all DPR registers. def : Pat<(f32 (bitconvert GPR:$a)), (EXTRACT_SUBREG (VMOVDRR GPR:$a, GPR:$a), ssub_0)>, Requires<[HasNEON, DontUseVMOVSR]>; def : Pat<(arm_vmovsr GPR:$a), (EXTRACT_SUBREG (VMOVDRR GPR:$a, GPR:$a), ssub_0)>, Requires<[HasNEON, DontUseVMOVSR]>; //===----------------------------------------------------------------------===// // Non-Instruction Patterns or Endianess - Revert Patterns //===----------------------------------------------------------------------===// // bit_convert // 64 bit conversions let Predicates = [HasNEON] in { def : Pat<(f64 (bitconvert (v1i64 DPR:$src))), (f64 DPR:$src)>; def : Pat<(v1i64 (bitconvert (f64 DPR:$src))), (v1i64 DPR:$src)>; def : Pat<(v2f32 (bitconvert (v2i32 DPR:$src))), (v2f32 DPR:$src)>; def : Pat<(v2i32 (bitconvert (v2f32 DPR:$src))), (v2i32 DPR:$src)>; def : Pat<(v4i16 (bitconvert (v4f16 DPR:$src))), (v4i16 DPR:$src)>; def : Pat<(v4f16 (bitconvert (v4i16 DPR:$src))), (v4f16 DPR:$src)>; def : Pat<(v4i16 (bitconvert (v4bf16 DPR:$src))), (v4i16 DPR:$src)>; def : Pat<(v4bf16 (bitconvert (v4i16 DPR:$src))), (v4bf16 DPR:$src)>; // 128 bit conversions def : Pat<(v2f64 (bitconvert (v2i64 QPR:$src))), (v2f64 QPR:$src)>; def : Pat<(v2i64 (bitconvert (v2f64 QPR:$src))), (v2i64 QPR:$src)>; def : Pat<(v4i32 (bitconvert (v4f32 QPR:$src))), (v4i32 QPR:$src)>; def : Pat<(v4f32 (bitconvert (v4i32 QPR:$src))), (v4f32 QPR:$src)>; def : Pat<(v8i16 (bitconvert (v8f16 QPR:$src))), (v8i16 QPR:$src)>; def : Pat<(v8f16 (bitconvert (v8i16 QPR:$src))), (v8f16 QPR:$src)>; def : Pat<(v8i16 (bitconvert (v8bf16 QPR:$src))), (v8i16 QPR:$src)>; def : Pat<(v8bf16 (bitconvert (v8i16 QPR:$src))), (v8bf16 QPR:$src)>; } let Predicates = [IsLE,HasNEON] in { // 64 bit conversions def : Pat<(f64 (bitconvert (v2f32 DPR:$src))), (f64 DPR:$src)>; def : Pat<(f64 (bitconvert (v2i32 DPR:$src))), (f64 DPR:$src)>; def : Pat<(f64 (bitconvert (v4f16 DPR:$src))), (f64 DPR:$src)>; def : Pat<(f64 (bitconvert (v4bf16 DPR:$src))), (f64 DPR:$src)>; def : Pat<(f64 (bitconvert (v4i16 DPR:$src))), (f64 DPR:$src)>; def : Pat<(f64 (bitconvert (v8i8 DPR:$src))), (f64 DPR:$src)>; def : Pat<(v1i64 (bitconvert (v2f32 DPR:$src))), (v1i64 DPR:$src)>; def : Pat<(v1i64 (bitconvert (v2i32 DPR:$src))), (v1i64 DPR:$src)>; def : Pat<(v1i64 (bitconvert (v4f16 DPR:$src))), (v1i64 DPR:$src)>; def : Pat<(v1i64 (bitconvert (v4bf16 DPR:$src))), (v1i64 DPR:$src)>; def : Pat<(v1i64 (bitconvert (v4i16 DPR:$src))), (v1i64 DPR:$src)>; def : Pat<(v1i64 (bitconvert (v8i8 DPR:$src))), (v1i64 DPR:$src)>; def : Pat<(v2f32 (bitconvert (f64 DPR:$src))), (v2f32 DPR:$src)>; def : Pat<(v2f32 (bitconvert (v1i64 DPR:$src))), (v2f32 DPR:$src)>; def : Pat<(v2f32 (bitconvert (v4f16 DPR:$src))), (v2f32 DPR:$src)>; def : Pat<(v2f32 (bitconvert (v4bf16 DPR:$src))), (v2f32 DPR:$src)>; def : Pat<(v2f32 (bitconvert (v4i16 DPR:$src))), (v2f32 DPR:$src)>; def : Pat<(v2f32 (bitconvert (v8i8 DPR:$src))), (v2f32 DPR:$src)>; def : Pat<(v2i32 (bitconvert (f64 DPR:$src))), (v2i32 DPR:$src)>; def : Pat<(v2i32 (bitconvert (v1i64 DPR:$src))), (v2i32 DPR:$src)>; def : Pat<(v2i32 (bitconvert (v4f16 DPR:$src))), (v2i32 DPR:$src)>; def : Pat<(v2i32 (bitconvert (v4bf16 DPR:$src))), (v2i32 DPR:$src)>; def : Pat<(v2i32 (bitconvert (v4i16 DPR:$src))), (v2i32 DPR:$src)>; def : Pat<(v2i32 (bitconvert (v8i8 DPR:$src))), (v2i32 DPR:$src)>; def : Pat<(v4f16 (bitconvert (f64 DPR:$src))), (v4f16 DPR:$src)>; def : Pat<(v4f16 (bitconvert (v1i64 DPR:$src))), (v4f16 DPR:$src)>; def : Pat<(v4f16 (bitconvert (v2f32 DPR:$src))), (v4f16 DPR:$src)>; def : Pat<(v4f16 (bitconvert (v2i32 DPR:$src))), (v4f16 DPR:$src)>; def : Pat<(v4f16 (bitconvert (v8i8 DPR:$src))), (v4f16 DPR:$src)>; def : Pat<(v4bf16 (bitconvert (f64 DPR:$src))), (v4bf16 DPR:$src)>; def : Pat<(v4bf16 (bitconvert (v1i64 DPR:$src))), (v4bf16 DPR:$src)>; def : Pat<(v4bf16 (bitconvert (v2f32 DPR:$src))), (v4bf16 DPR:$src)>; def : Pat<(v4bf16 (bitconvert (v2i32 DPR:$src))), (v4bf16 DPR:$src)>; def : Pat<(v4bf16 (bitconvert (v8i8 DPR:$src))), (v4bf16 DPR:$src)>; def : Pat<(v4i16 (bitconvert (f64 DPR:$src))), (v4i16 DPR:$src)>; def : Pat<(v4i16 (bitconvert (v1i64 DPR:$src))), (v4i16 DPR:$src)>; def : Pat<(v4i16 (bitconvert (v2f32 DPR:$src))), (v4i16 DPR:$src)>; def : Pat<(v4i16 (bitconvert (v2i32 DPR:$src))), (v4i16 DPR:$src)>; def : Pat<(v4i16 (bitconvert (v8i8 DPR:$src))), (v4i16 DPR:$src)>; def : Pat<(v8i8 (bitconvert (f64 DPR:$src))), (v8i8 DPR:$src)>; def : Pat<(v8i8 (bitconvert (v1i64 DPR:$src))), (v8i8 DPR:$src)>; def : Pat<(v8i8 (bitconvert (v2f32 DPR:$src))), (v8i8 DPR:$src)>; def : Pat<(v8i8 (bitconvert (v2i32 DPR:$src))), (v8i8 DPR:$src)>; def : Pat<(v8i8 (bitconvert (v4f16 DPR:$src))), (v8i8 DPR:$src)>; def : Pat<(v8i8 (bitconvert (v4bf16 DPR:$src))), (v8i8 DPR:$src)>; def : Pat<(v8i8 (bitconvert (v4i16 DPR:$src))), (v8i8 DPR:$src)>; // 128 bit conversions def : Pat<(v2f64 (bitconvert (v4f32 QPR:$src))), (v2f64 QPR:$src)>; def : Pat<(v2f64 (bitconvert (v4i32 QPR:$src))), (v2f64 QPR:$src)>; def : Pat<(v2f64 (bitconvert (v8f16 QPR:$src))), (v2f64 QPR:$src)>; def : Pat<(v2f64 (bitconvert (v8bf16 QPR:$src))), (v2f64 QPR:$src)>; def : Pat<(v2f64 (bitconvert (v8i16 QPR:$src))), (v2f64 QPR:$src)>; def : Pat<(v2f64 (bitconvert (v16i8 QPR:$src))), (v2f64 QPR:$src)>; def : Pat<(v2i64 (bitconvert (v4f32 QPR:$src))), (v2i64 QPR:$src)>; def : Pat<(v2i64 (bitconvert (v4i32 QPR:$src))), (v2i64 QPR:$src)>; def : Pat<(v2i64 (bitconvert (v8f16 QPR:$src))), (v2i64 QPR:$src)>; def : Pat<(v2i64 (bitconvert (v8bf16 QPR:$src))), (v2i64 QPR:$src)>; def : Pat<(v2i64 (bitconvert (v8i16 QPR:$src))), (v2i64 QPR:$src)>; def : Pat<(v2i64 (bitconvert (v16i8 QPR:$src))), (v2i64 QPR:$src)>; def : Pat<(v4f32 (bitconvert (v2f64 QPR:$src))), (v4f32 QPR:$src)>; def : Pat<(v4f32 (bitconvert (v2i64 QPR:$src))), (v4f32 QPR:$src)>; def : Pat<(v4f32 (bitconvert (v8f16 QPR:$src))), (v4f32 QPR:$src)>; def : Pat<(v4f32 (bitconvert (v8bf16 QPR:$src))), (v4f32 QPR:$src)>; def : Pat<(v4f32 (bitconvert (v8i16 QPR:$src))), (v4f32 QPR:$src)>; def : Pat<(v4f32 (bitconvert (v16i8 QPR:$src))), (v4f32 QPR:$src)>; def : Pat<(v4i32 (bitconvert (v2f64 QPR:$src))), (v4i32 QPR:$src)>; def : Pat<(v4i32 (bitconvert (v2i64 QPR:$src))), (v4i32 QPR:$src)>; def : Pat<(v4i32 (bitconvert (v8f16 QPR:$src))), (v4i32 QPR:$src)>; def : Pat<(v4i32 (bitconvert (v8bf16 QPR:$src))), (v4i32 QPR:$src)>; def : Pat<(v4i32 (bitconvert (v8i16 QPR:$src))), (v4i32 QPR:$src)>; def : Pat<(v4i32 (bitconvert (v16i8 QPR:$src))), (v4i32 QPR:$src)>; def : Pat<(v8f16 (bitconvert (v2f64 QPR:$src))), (v8f16 QPR:$src)>; def : Pat<(v8f16 (bitconvert (v2i64 QPR:$src))), (v8f16 QPR:$src)>; def : Pat<(v8f16 (bitconvert (v4f32 QPR:$src))), (v8f16 QPR:$src)>; def : Pat<(v8f16 (bitconvert (v4i32 QPR:$src))), (v8f16 QPR:$src)>; def : Pat<(v8f16 (bitconvert (v16i8 QPR:$src))), (v8f16 QPR:$src)>; def : Pat<(v8bf16 (bitconvert (v2f64 QPR:$src))), (v8bf16 QPR:$src)>; def : Pat<(v8bf16 (bitconvert (v2i64 QPR:$src))), (v8bf16 QPR:$src)>; def : Pat<(v8bf16 (bitconvert (v4f32 QPR:$src))), (v8bf16 QPR:$src)>; def : Pat<(v8bf16 (bitconvert (v4i32 QPR:$src))), (v8bf16 QPR:$src)>; def : Pat<(v8bf16 (bitconvert (v16i8 QPR:$src))), (v8bf16 QPR:$src)>; def : Pat<(v8i16 (bitconvert (v2f64 QPR:$src))), (v8i16 QPR:$src)>; def : Pat<(v8i16 (bitconvert (v2i64 QPR:$src))), (v8i16 QPR:$src)>; def : Pat<(v8i16 (bitconvert (v4f32 QPR:$src))), (v8i16 QPR:$src)>; def : Pat<(v8i16 (bitconvert (v4i32 QPR:$src))), (v8i16 QPR:$src)>; def : Pat<(v8i16 (bitconvert (v16i8 QPR:$src))), (v8i16 QPR:$src)>; def : Pat<(v16i8 (bitconvert (v2f64 QPR:$src))), (v16i8 QPR:$src)>; def : Pat<(v16i8 (bitconvert (v2i64 QPR:$src))), (v16i8 QPR:$src)>; def : Pat<(v16i8 (bitconvert (v4f32 QPR:$src))), (v16i8 QPR:$src)>; def : Pat<(v16i8 (bitconvert (v4i32 QPR:$src))), (v16i8 QPR:$src)>; def : Pat<(v16i8 (bitconvert (v8f16 QPR:$src))), (v16i8 QPR:$src)>; def : Pat<(v16i8 (bitconvert (v8bf16 QPR:$src))), (v16i8 QPR:$src)>; def : Pat<(v16i8 (bitconvert (v8i16 QPR:$src))), (v16i8 QPR:$src)>; } let Predicates = [IsBE,HasNEON] in { // 64 bit conversions def : Pat<(f64 (bitconvert (v2f32 DPR:$src))), (VREV64d32 DPR:$src)>; def : Pat<(f64 (bitconvert (v2i32 DPR:$src))), (VREV64d32 DPR:$src)>; def : Pat<(f64 (bitconvert (v4f16 DPR:$src))), (VREV64d16 DPR:$src)>; def : Pat<(f64 (bitconvert (v4bf16 DPR:$src))), (VREV64d16 DPR:$src)>; def : Pat<(f64 (bitconvert (v4i16 DPR:$src))), (VREV64d16 DPR:$src)>; def : Pat<(f64 (bitconvert (v8i8 DPR:$src))), (VREV64d8 DPR:$src)>; def : Pat<(v1i64 (bitconvert (v2f32 DPR:$src))), (VREV64d32 DPR:$src)>; def : Pat<(v1i64 (bitconvert (v2i32 DPR:$src))), (VREV64d32 DPR:$src)>; def : Pat<(v1i64 (bitconvert (v4f16 DPR:$src))), (VREV64d16 DPR:$src)>; def : Pat<(v1i64 (bitconvert (v4bf16 DPR:$src))), (VREV64d16 DPR:$src)>; def : Pat<(v1i64 (bitconvert (v4i16 DPR:$src))), (VREV64d16 DPR:$src)>; def : Pat<(v1i64 (bitconvert (v8i8 DPR:$src))), (VREV64d8 DPR:$src)>; def : Pat<(v2f32 (bitconvert (f64 DPR:$src))), (VREV64d32 DPR:$src)>; def : Pat<(v2f32 (bitconvert (v1i64 DPR:$src))), (VREV64d32 DPR:$src)>; def : Pat<(v2f32 (bitconvert (v4f16 DPR:$src))), (VREV32d16 DPR:$src)>; def : Pat<(v2f32 (bitconvert (v4bf16 DPR:$src))), (VREV32d16 DPR:$src)>; def : Pat<(v2f32 (bitconvert (v4i16 DPR:$src))), (VREV32d16 DPR:$src)>; def : Pat<(v2f32 (bitconvert (v8i8 DPR:$src))), (VREV32d8 DPR:$src)>; def : Pat<(v2i32 (bitconvert (f64 DPR:$src))), (VREV64d32 DPR:$src)>; def : Pat<(v2i32 (bitconvert (v1i64 DPR:$src))), (VREV64d32 DPR:$src)>; def : Pat<(v2i32 (bitconvert (v4f16 DPR:$src))), (VREV32d16 DPR:$src)>; def : Pat<(v2i32 (bitconvert (v4bf16 DPR:$src))), (VREV32d16 DPR:$src)>; def : Pat<(v2i32 (bitconvert (v4i16 DPR:$src))), (VREV32d16 DPR:$src)>; def : Pat<(v2i32 (bitconvert (v8i8 DPR:$src))), (VREV32d8 DPR:$src)>; def : Pat<(v4f16 (bitconvert (f64 DPR:$src))), (VREV64d16 DPR:$src)>; def : Pat<(v4f16 (bitconvert (v1i64 DPR:$src))), (VREV64d16 DPR:$src)>; def : Pat<(v4f16 (bitconvert (v2f32 DPR:$src))), (VREV32d16 DPR:$src)>; def : Pat<(v4f16 (bitconvert (v2i32 DPR:$src))), (VREV32d16 DPR:$src)>; def : Pat<(v4f16 (bitconvert (v8i8 DPR:$src))), (VREV16d8 DPR:$src)>; def : Pat<(v4bf16 (bitconvert (f64 DPR:$src))), (VREV64d16 DPR:$src)>; def : Pat<(v4bf16 (bitconvert (v1i64 DPR:$src))), (VREV64d16 DPR:$src)>; def : Pat<(v4bf16 (bitconvert (v2f32 DPR:$src))), (VREV32d16 DPR:$src)>; def : Pat<(v4bf16 (bitconvert (v2i32 DPR:$src))), (VREV32d16 DPR:$src)>; def : Pat<(v4bf16 (bitconvert (v8i8 DPR:$src))), (VREV16d8 DPR:$src)>; def : Pat<(v4i16 (bitconvert (f64 DPR:$src))), (VREV64d16 DPR:$src)>; def : Pat<(v4i16 (bitconvert (v1i64 DPR:$src))), (VREV64d16 DPR:$src)>; def : Pat<(v4i16 (bitconvert (v2f32 DPR:$src))), (VREV32d16 DPR:$src)>; def : Pat<(v4i16 (bitconvert (v2i32 DPR:$src))), (VREV32d16 DPR:$src)>; def : Pat<(v4i16 (bitconvert (v8i8 DPR:$src))), (VREV16d8 DPR:$src)>; def : Pat<(v8i8 (bitconvert (f64 DPR:$src))), (VREV64d8 DPR:$src)>; def : Pat<(v8i8 (bitconvert (v1i64 DPR:$src))), (VREV64d8 DPR:$src)>; def : Pat<(v8i8 (bitconvert (v2f32 DPR:$src))), (VREV32d8 DPR:$src)>; def : Pat<(v8i8 (bitconvert (v2i32 DPR:$src))), (VREV32d8 DPR:$src)>; def : Pat<(v8i8 (bitconvert (v4f16 DPR:$src))), (VREV16d8 DPR:$src)>; def : Pat<(v8i8 (bitconvert (v4bf16 DPR:$src))), (VREV16d8 DPR:$src)>; def : Pat<(v8i8 (bitconvert (v4i16 DPR:$src))), (VREV16d8 DPR:$src)>; // 128 bit conversions def : Pat<(v2f64 (bitconvert (v4f32 QPR:$src))), (VREV64q32 QPR:$src)>; def : Pat<(v2f64 (bitconvert (v4i32 QPR:$src))), (VREV64q32 QPR:$src)>; def : Pat<(v2f64 (bitconvert (v8f16 QPR:$src))), (VREV64q16 QPR:$src)>; def : Pat<(v2f64 (bitconvert (v8bf16 QPR:$src))), (VREV64q16 QPR:$src)>; def : Pat<(v2f64 (bitconvert (v8i16 QPR:$src))), (VREV64q16 QPR:$src)>; def : Pat<(v2f64 (bitconvert (v16i8 QPR:$src))), (VREV64q8 QPR:$src)>; def : Pat<(v2i64 (bitconvert (v4f32 QPR:$src))), (VREV64q32 QPR:$src)>; def : Pat<(v2i64 (bitconvert (v4i32 QPR:$src))), (VREV64q32 QPR:$src)>; def : Pat<(v2i64 (bitconvert (v8f16 QPR:$src))), (VREV64q16 QPR:$src)>; def : Pat<(v2i64 (bitconvert (v8bf16 QPR:$src))), (VREV64q16 QPR:$src)>; def : Pat<(v2i64 (bitconvert (v8i16 QPR:$src))), (VREV64q16 QPR:$src)>; def : Pat<(v2i64 (bitconvert (v16i8 QPR:$src))), (VREV64q8 QPR:$src)>; def : Pat<(v4f32 (bitconvert (v2f64 QPR:$src))), (VREV64q32 QPR:$src)>; def : Pat<(v4f32 (bitconvert (v2i64 QPR:$src))), (VREV64q32 QPR:$src)>; def : Pat<(v4f32 (bitconvert (v8f16 QPR:$src))), (VREV32q16 QPR:$src)>; def : Pat<(v4f32 (bitconvert (v8bf16 QPR:$src))), (VREV32q16 QPR:$src)>; def : Pat<(v4f32 (bitconvert (v8i16 QPR:$src))), (VREV32q16 QPR:$src)>; def : Pat<(v4f32 (bitconvert (v16i8 QPR:$src))), (VREV32q8 QPR:$src)>; def : Pat<(v4i32 (bitconvert (v2f64 QPR:$src))), (VREV64q32 QPR:$src)>; def : Pat<(v4i32 (bitconvert (v2i64 QPR:$src))), (VREV64q32 QPR:$src)>; def : Pat<(v4i32 (bitconvert (v8f16 QPR:$src))), (VREV32q16 QPR:$src)>; def : Pat<(v4i32 (bitconvert (v8bf16 QPR:$src))), (VREV32q16 QPR:$src)>; def : Pat<(v4i32 (bitconvert (v8i16 QPR:$src))), (VREV32q16 QPR:$src)>; def : Pat<(v4i32 (bitconvert (v16i8 QPR:$src))), (VREV32q8 QPR:$src)>; def : Pat<(v8f16 (bitconvert (v2f64 QPR:$src))), (VREV64q16 QPR:$src)>; def : Pat<(v8f16 (bitconvert (v2i64 QPR:$src))), (VREV64q16 QPR:$src)>; def : Pat<(v8f16 (bitconvert (v4f32 QPR:$src))), (VREV32q16 QPR:$src)>; def : Pat<(v8f16 (bitconvert (v4i32 QPR:$src))), (VREV32q16 QPR:$src)>; def : Pat<(v8f16 (bitconvert (v16i8 QPR:$src))), (VREV16q8 QPR:$src)>; def : Pat<(v8bf16 (bitconvert (v2f64 QPR:$src))), (VREV64q16 QPR:$src)>; def : Pat<(v8bf16 (bitconvert (v2i64 QPR:$src))), (VREV64q16 QPR:$src)>; def : Pat<(v8bf16 (bitconvert (v4f32 QPR:$src))), (VREV32q16 QPR:$src)>; def : Pat<(v8bf16 (bitconvert (v4i32 QPR:$src))), (VREV32q16 QPR:$src)>; def : Pat<(v8bf16 (bitconvert (v16i8 QPR:$src))), (VREV16q8 QPR:$src)>; def : Pat<(v8i16 (bitconvert (v2f64 QPR:$src))), (VREV64q16 QPR:$src)>; def : Pat<(v8i16 (bitconvert (v2i64 QPR:$src))), (VREV64q16 QPR:$src)>; def : Pat<(v8i16 (bitconvert (v4f32 QPR:$src))), (VREV32q16 QPR:$src)>; def : Pat<(v8i16 (bitconvert (v4i32 QPR:$src))), (VREV32q16 QPR:$src)>; def : Pat<(v8i16 (bitconvert (v16i8 QPR:$src))), (VREV16q8 QPR:$src)>; def : Pat<(v16i8 (bitconvert (v2f64 QPR:$src))), (VREV64q8 QPR:$src)>; def : Pat<(v16i8 (bitconvert (v2i64 QPR:$src))), (VREV64q8 QPR:$src)>; def : Pat<(v16i8 (bitconvert (v4f32 QPR:$src))), (VREV32q8 QPR:$src)>; def : Pat<(v16i8 (bitconvert (v4i32 QPR:$src))), (VREV32q8 QPR:$src)>; def : Pat<(v16i8 (bitconvert (v8f16 QPR:$src))), (VREV16q8 QPR:$src)>; def : Pat<(v16i8 (bitconvert (v8bf16 QPR:$src))), (VREV16q8 QPR:$src)>; def : Pat<(v16i8 (bitconvert (v8i16 QPR:$src))), (VREV16q8 QPR:$src)>; } let Predicates = [HasNEON] in { // Here we match the specific SDNode type 'ARMVectorRegCastImpl' // rather than the more general 'ARMVectorRegCast' which would also // match some bitconverts. If we use the latter in cases where the // input and output types are the same, the bitconvert gets elided // and we end up generating a nonsense match of nothing. foreach VT = [ v16i8, v8i16, v8f16, v8bf16, v4i32, v4f32, v2i64, v2f64 ] in foreach VT2 = [ v16i8, v8i16, v8f16, v8bf16, v4i32, v4f32, v2i64, v2f64 ] in def : Pat<(VT (ARMVectorRegCastImpl (VT2 QPR:$src))), (VT QPR:$src)>; foreach VT = [ v8i8, v4i16, v4f16, v4bf16, v2i32, v2f32, v1i64, f64 ] in foreach VT2 = [ v8i8, v4i16, v4f16, v4bf16, v2i32, v2f32, v1i64, f64 ] in def : Pat<(VT (ARMVectorRegCastImpl (VT2 DPR:$src))), (VT DPR:$src)>; } // Use VLD1/VST1 + VREV for non-word-aligned v2f64 load/store on Big Endian let Predicates = [IsBE,HasNEON] in { def : Pat<(v2f64 (byte_alignedload addrmode6:$addr)), (VREV64q8 (VLD1q8 addrmode6:$addr))>; def : Pat<(byte_alignedstore (v2f64 QPR:$value), addrmode6:$addr), (VST1q8 addrmode6:$addr, (VREV64q8 QPR:$value))>; def : Pat<(v2f64 (hword_alignedload addrmode6:$addr)), (VREV64q16 (VLD1q16 addrmode6:$addr))>; def : Pat<(hword_alignedstore (v2f64 QPR:$value), addrmode6:$addr), (VST1q16 addrmode6:$addr, (VREV64q16 QPR:$value))>; } // Fold extracting an element out of a v2i32 into a vfp register. def : Pat<(f32 (bitconvert (i32 (extractelt (v2i32 DPR:$src), imm:$lane)))), (f32 (EXTRACT_SUBREG DPR:$src, (SSubReg_f32_reg imm:$lane)))>, Requires<[HasNEON]>; // Vector lengthening move with load, matching extending loads. // extload, zextload and sextload for a standard lengthening load. Example: // Lengthen_Single<"8", "i16", "8"> = // Pat<(v8i16 (extloadvi8 addrmode6:$addr)) // (VMOVLuv8i16 (VLD1d8 addrmode6:$addr, // (f64 (IMPLICIT_DEF)), (i32 0)))>; multiclass Lengthen_Single { let AddedComplexity = 10 in { def _Any : Pat<(!cast("v" # DestLanes # DestTy) (!cast("extloadvi" # SrcTy) addrmode6:$addr)), (!cast("VMOVLuv" # DestLanes # DestTy) (!cast("VLD1d" # SrcTy) addrmode6:$addr))>, Requires<[HasNEON]>; def _Z : Pat<(!cast("v" # DestLanes # DestTy) (!cast("zextloadvi" # SrcTy) addrmode6:$addr)), (!cast("VMOVLuv" # DestLanes # DestTy) (!cast("VLD1d" # SrcTy) addrmode6:$addr))>, Requires<[HasNEON]>; def _S : Pat<(!cast("v" # DestLanes # DestTy) (!cast("sextloadvi" # SrcTy) addrmode6:$addr)), (!cast("VMOVLsv" # DestLanes # DestTy) (!cast("VLD1d" # SrcTy) addrmode6:$addr))>, Requires<[HasNEON]>; } } // extload, zextload and sextload for a lengthening load which only uses // half the lanes available. Example: // Lengthen_HalfSingle<"4", "i16", "8", "i16", "i8"> = // Pat<(v4i16 (extloadvi8 addrmode6oneL32:$addr)), // (EXTRACT_SUBREG (VMOVLuv8i16 (VLD1LNd32 addrmode6oneL32:$addr, // (f64 (IMPLICIT_DEF)), (i32 0))), // dsub_0)>; multiclass Lengthen_HalfSingle { def _Any : Pat<(!cast("v" # DestLanes # DestTy) (!cast("extloadv" # SrcTy) addrmode6oneL32:$addr)), (EXTRACT_SUBREG (!cast("VMOVLuv" # InsnLanes # InsnTy) (VLD1LNd32 addrmode6oneL32:$addr, (f64 (IMPLICIT_DEF)), (i32 0))), dsub_0)>, Requires<[HasNEON]>; def _Z : Pat<(!cast("v" # DestLanes # DestTy) (!cast("zextloadv" # SrcTy) addrmode6oneL32:$addr)), (EXTRACT_SUBREG (!cast("VMOVLuv" # InsnLanes # InsnTy) (VLD1LNd32 addrmode6oneL32:$addr, (f64 (IMPLICIT_DEF)), (i32 0))), dsub_0)>, Requires<[HasNEON]>; def _S : Pat<(!cast("v" # DestLanes # DestTy) (!cast("sextloadv" # SrcTy) addrmode6oneL32:$addr)), (EXTRACT_SUBREG (!cast("VMOVLsv" # InsnLanes # InsnTy) (VLD1LNd32 addrmode6oneL32:$addr, (f64 (IMPLICIT_DEF)), (i32 0))), dsub_0)>, Requires<[HasNEON]>; } // The following class definition is basically a copy of the // Lengthen_HalfSingle definition above, however with an additional parameter // "RevLanes" to select the correct VREV32dXX instruction. This is to convert // data loaded by VLD1LN into proper vector format in big endian mode. multiclass Lengthen_HalfSingle_Big_Endian { def _Any : Pat<(!cast("v" # DestLanes # DestTy) (!cast("extloadv" # SrcTy) addrmode6oneL32:$addr)), (EXTRACT_SUBREG (!cast("VMOVLuv" # InsnLanes # InsnTy) (!cast("VREV32d" # RevLanes) (VLD1LNd32 addrmode6oneL32:$addr, (f64 (IMPLICIT_DEF)), (i32 0)))), dsub_0)>, Requires<[HasNEON]>; def _Z : Pat<(!cast("v" # DestLanes # DestTy) (!cast("zextloadv" # SrcTy) addrmode6oneL32:$addr)), (EXTRACT_SUBREG (!cast("VMOVLuv" # InsnLanes # InsnTy) (!cast("VREV32d" # RevLanes) (VLD1LNd32 addrmode6oneL32:$addr, (f64 (IMPLICIT_DEF)), (i32 0)))), dsub_0)>, Requires<[HasNEON]>; def _S : Pat<(!cast("v" # DestLanes # DestTy) (!cast("sextloadv" # SrcTy) addrmode6oneL32:$addr)), (EXTRACT_SUBREG (!cast("VMOVLsv" # InsnLanes # InsnTy) (!cast("VREV32d" # RevLanes) (VLD1LNd32 addrmode6oneL32:$addr, (f64 (IMPLICIT_DEF)), (i32 0)))), dsub_0)>, Requires<[HasNEON]>; } // extload, zextload and sextload for a lengthening load followed by another // lengthening load, to quadruple the initial length. // // Lengthen_Double<"4", "i32", "i8", "8", "i16", "4", "i32"> = // Pat<(v4i32 (extloadvi8 addrmode6oneL32:$addr)) // (EXTRACT_SUBREG (VMOVLuv4i32 // (EXTRACT_SUBREG (VMOVLuv8i16 (VLD1LNd32 addrmode6oneL32:$addr, // (f64 (IMPLICIT_DEF)), // (i32 0))), // dsub_0)), // dsub_0)>; multiclass Lengthen_Double { def _Any : Pat<(!cast("v" # DestLanes # DestTy) (!cast("extloadv" # SrcTy) addrmode6oneL32:$addr)), (!cast("VMOVLuv" # Insn2Lanes # Insn2Ty) (EXTRACT_SUBREG (!cast("VMOVLuv" # Insn1Lanes # Insn1Ty) (VLD1LNd32 addrmode6oneL32:$addr, (f64 (IMPLICIT_DEF)), (i32 0))), dsub_0))>, Requires<[HasNEON]>; def _Z : Pat<(!cast("v" # DestLanes # DestTy) (!cast("zextloadv" # SrcTy) addrmode6oneL32:$addr)), (!cast("VMOVLuv" # Insn2Lanes # Insn2Ty) (EXTRACT_SUBREG (!cast("VMOVLuv" # Insn1Lanes # Insn1Ty) (VLD1LNd32 addrmode6oneL32:$addr, (f64 (IMPLICIT_DEF)), (i32 0))), dsub_0))>, Requires<[HasNEON]>; def _S : Pat<(!cast("v" # DestLanes # DestTy) (!cast("sextloadv" # SrcTy) addrmode6oneL32:$addr)), (!cast("VMOVLsv" # Insn2Lanes # Insn2Ty) (EXTRACT_SUBREG (!cast("VMOVLsv" # Insn1Lanes # Insn1Ty) (VLD1LNd32 addrmode6oneL32:$addr, (f64 (IMPLICIT_DEF)), (i32 0))), dsub_0))>, Requires<[HasNEON]>; } // The following class definition is basically a copy of the // Lengthen_Double definition above, however with an additional parameter // "RevLanes" to select the correct VREV32dXX instruction. This is to convert // data loaded by VLD1LN into proper vector format in big endian mode. multiclass Lengthen_Double_Big_Endian { def _Any : Pat<(!cast("v" # DestLanes # DestTy) (!cast("extloadv" # SrcTy) addrmode6oneL32:$addr)), (!cast("VMOVLuv" # Insn2Lanes # Insn2Ty) (EXTRACT_SUBREG (!cast("VMOVLuv" # Insn1Lanes # Insn1Ty) (!cast("VREV32d" # RevLanes) (VLD1LNd32 addrmode6oneL32:$addr, (f64 (IMPLICIT_DEF)), (i32 0)))), dsub_0))>, Requires<[HasNEON]>; def _Z : Pat<(!cast("v" # DestLanes # DestTy) (!cast("zextloadv" # SrcTy) addrmode6oneL32:$addr)), (!cast("VMOVLuv" # Insn2Lanes # Insn2Ty) (EXTRACT_SUBREG (!cast("VMOVLuv" # Insn1Lanes # Insn1Ty) (!cast("VREV32d" # RevLanes) (VLD1LNd32 addrmode6oneL32:$addr, (f64 (IMPLICIT_DEF)), (i32 0)))), dsub_0))>, Requires<[HasNEON]>; def _S : Pat<(!cast("v" # DestLanes # DestTy) (!cast("sextloadv" # SrcTy) addrmode6oneL32:$addr)), (!cast("VMOVLsv" # Insn2Lanes # Insn2Ty) (EXTRACT_SUBREG (!cast("VMOVLsv" # Insn1Lanes # Insn1Ty) (!cast("VREV32d" # RevLanes) (VLD1LNd32 addrmode6oneL32:$addr, (f64 (IMPLICIT_DEF)), (i32 0)))), dsub_0))>, Requires<[HasNEON]>; } // extload, zextload and sextload for a lengthening load followed by another // lengthening load, to quadruple the initial length, but which ends up only // requiring half the available lanes (a 64-bit outcome instead of a 128-bit). // // Lengthen_HalfDouble<"2", "i32", "i8", "8", "i16", "4", "i32"> = // Pat<(v2i32 (extloadvi8 addrmode6:$addr)) // (EXTRACT_SUBREG (VMOVLuv4i32 // (EXTRACT_SUBREG (VMOVLuv8i16 (VLD1LNd16 addrmode6:$addr, // (f64 (IMPLICIT_DEF)), (i32 0))), // dsub_0)), // dsub_0)>; multiclass Lengthen_HalfDouble { def _Any : Pat<(!cast("v" # DestLanes # DestTy) (!cast("extloadv" # SrcTy) addrmode6:$addr)), (EXTRACT_SUBREG (!cast("VMOVLuv" # Insn2Lanes # Insn2Ty) (EXTRACT_SUBREG (!cast("VMOVLuv" # Insn1Lanes # Insn1Ty) (VLD1LNd16 addrmode6:$addr, (f64 (IMPLICIT_DEF)), (i32 0))), dsub_0)), dsub_0)>, Requires<[HasNEON]>; def _Z : Pat<(!cast("v" # DestLanes # DestTy) (!cast("zextloadv" # SrcTy) addrmode6:$addr)), (EXTRACT_SUBREG (!cast("VMOVLuv" # Insn2Lanes # Insn2Ty) (EXTRACT_SUBREG (!cast("VMOVLuv" # Insn1Lanes # Insn1Ty) (VLD1LNd16 addrmode6:$addr, (f64 (IMPLICIT_DEF)), (i32 0))), dsub_0)), dsub_0)>, Requires<[HasNEON]>; def _S : Pat<(!cast("v" # DestLanes # DestTy) (!cast("sextloadv" # SrcTy) addrmode6:$addr)), (EXTRACT_SUBREG (!cast("VMOVLsv" # Insn2Lanes # Insn2Ty) (EXTRACT_SUBREG (!cast("VMOVLsv" # Insn1Lanes # Insn1Ty) (VLD1LNd16 addrmode6:$addr, (f64 (IMPLICIT_DEF)), (i32 0))), dsub_0)), dsub_0)>, Requires<[HasNEON]>; } // The following class definition is basically a copy of the // Lengthen_HalfDouble definition above, however with an additional VREV16d8 // instruction to convert data loaded by VLD1LN into proper vector format // in big endian mode. multiclass Lengthen_HalfDouble_Big_Endian { def _Any : Pat<(!cast("v" # DestLanes # DestTy) (!cast("extloadv" # SrcTy) addrmode6:$addr)), (EXTRACT_SUBREG (!cast("VMOVLuv" # Insn2Lanes # Insn2Ty) (EXTRACT_SUBREG (!cast("VMOVLuv" # Insn1Lanes # Insn1Ty) (!cast("VREV16d8") (VLD1LNd16 addrmode6:$addr, (f64 (IMPLICIT_DEF)), (i32 0)))), dsub_0)), dsub_0)>, Requires<[HasNEON]>; def _Z : Pat<(!cast("v" # DestLanes # DestTy) (!cast("zextloadv" # SrcTy) addrmode6:$addr)), (EXTRACT_SUBREG (!cast("VMOVLuv" # Insn2Lanes # Insn2Ty) (EXTRACT_SUBREG (!cast("VMOVLuv" # Insn1Lanes # Insn1Ty) (!cast("VREV16d8") (VLD1LNd16 addrmode6:$addr, (f64 (IMPLICIT_DEF)), (i32 0)))), dsub_0)), dsub_0)>, Requires<[HasNEON]>; def _S : Pat<(!cast("v" # DestLanes # DestTy) (!cast("sextloadv" # SrcTy) addrmode6:$addr)), (EXTRACT_SUBREG (!cast("VMOVLsv" # Insn2Lanes # Insn2Ty) (EXTRACT_SUBREG (!cast("VMOVLsv" # Insn1Lanes # Insn1Ty) (!cast("VREV16d8") (VLD1LNd16 addrmode6:$addr, (f64 (IMPLICIT_DEF)), (i32 0)))), dsub_0)), dsub_0)>, Requires<[HasNEON]>; } defm : Lengthen_Single<"8", "i16", "8">; // v8i8 -> v8i16 defm : Lengthen_Single<"4", "i32", "16">; // v4i16 -> v4i32 defm : Lengthen_Single<"2", "i64", "32">; // v2i32 -> v2i64 let Predicates = [HasNEON,IsLE] in { defm : Lengthen_HalfSingle<"4", "i16", "i8", "8", "i16">; // v4i8 -> v4i16 defm : Lengthen_HalfSingle<"2", "i32", "i16", "4", "i32">; // v2i16 -> v2i32 // Double lengthening - v4i8 -> v4i16 -> v4i32 defm : Lengthen_Double<"4", "i32", "i8", "8", "i16", "4", "i32">; // v2i8 -> v2i16 -> v2i32 defm : Lengthen_HalfDouble<"2", "i32", "i8", "8", "i16", "4", "i32">; // v2i16 -> v2i32 -> v2i64 defm : Lengthen_Double<"2", "i64", "i16", "4", "i32", "2", "i64">; } let Predicates = [HasNEON,IsBE] in { defm : Lengthen_HalfSingle_Big_Endian<"4", "i16", "i8", "8", "i16", "8">; // v4i8 -> v4i16 defm : Lengthen_HalfSingle_Big_Endian<"2", "i32", "i16", "4", "i32", "16">; // v2i16 -> v2i32 // Double lengthening - v4i8 -> v4i16 -> v4i32 defm : Lengthen_Double_Big_Endian<"4", "i32", "i8", "8", "i16", "4", "i32", "8">; // v2i8 -> v2i16 -> v2i32 defm : Lengthen_HalfDouble_Big_Endian<"2", "i32", "i8", "8", "i16", "4", "i32">; // v2i16 -> v2i32 -> v2i64 defm : Lengthen_Double_Big_Endian<"2", "i64", "i16", "4", "i32", "2", "i64", "16">; } // Triple lengthening - v2i8 -> v2i16 -> v2i32 -> v2i64 let Predicates = [HasNEON,IsLE] in { def : Pat<(v2i64 (extloadvi8 addrmode6:$addr)), (VMOVLuv2i64 (EXTRACT_SUBREG (VMOVLuv4i32 (EXTRACT_SUBREG (VMOVLuv8i16 (VLD1LNd16 addrmode6:$addr, (f64 (IMPLICIT_DEF)), (i32 0))), dsub_0)), dsub_0))>; def : Pat<(v2i64 (zextloadvi8 addrmode6:$addr)), (VMOVLuv2i64 (EXTRACT_SUBREG (VMOVLuv4i32 (EXTRACT_SUBREG (VMOVLuv8i16 (VLD1LNd16 addrmode6:$addr, (f64 (IMPLICIT_DEF)), (i32 0))), dsub_0)), dsub_0))>; def : Pat<(v2i64 (sextloadvi8 addrmode6:$addr)), (VMOVLsv2i64 (EXTRACT_SUBREG (VMOVLsv4i32 (EXTRACT_SUBREG (VMOVLsv8i16 (VLD1LNd16 addrmode6:$addr, (f64 (IMPLICIT_DEF)), (i32 0))), dsub_0)), dsub_0))>; } // The following patterns are basically a copy of the patterns above, // however with an additional VREV16d instruction to convert data // loaded by VLD1LN into proper vector format in big endian mode. let Predicates = [HasNEON,IsBE] in { def : Pat<(v2i64 (extloadvi8 addrmode6:$addr)), (VMOVLuv2i64 (EXTRACT_SUBREG (VMOVLuv4i32 (EXTRACT_SUBREG (VMOVLuv8i16 (!cast("VREV16d8") (VLD1LNd16 addrmode6:$addr, (f64 (IMPLICIT_DEF)), (i32 0)))), dsub_0)), dsub_0))>; def : Pat<(v2i64 (zextloadvi8 addrmode6:$addr)), (VMOVLuv2i64 (EXTRACT_SUBREG (VMOVLuv4i32 (EXTRACT_SUBREG (VMOVLuv8i16 (!cast("VREV16d8") (VLD1LNd16 addrmode6:$addr, (f64 (IMPLICIT_DEF)), (i32 0)))), dsub_0)), dsub_0))>; def : Pat<(v2i64 (sextloadvi8 addrmode6:$addr)), (VMOVLsv2i64 (EXTRACT_SUBREG (VMOVLsv4i32 (EXTRACT_SUBREG (VMOVLsv8i16 (!cast("VREV16d8") (VLD1LNd16 addrmode6:$addr, (f64 (IMPLICIT_DEF)), (i32 0)))), dsub_0)), dsub_0))>; } let Predicates = [HasNEON] in { def : Pat<(v2i64 (concat_vectors DPR:$Dn, DPR:$Dm)), (REG_SEQUENCE QPR, DPR:$Dn, dsub_0, DPR:$Dm, dsub_1)>; def : Pat<(v4i32 (concat_vectors DPR:$Dn, DPR:$Dm)), (REG_SEQUENCE QPR, DPR:$Dn, dsub_0, DPR:$Dm, dsub_1)>; def : Pat<(v8i16 (concat_vectors DPR:$Dn, DPR:$Dm)), (REG_SEQUENCE QPR, DPR:$Dn, dsub_0, DPR:$Dm, dsub_1)>; def : Pat<(v16i8 (concat_vectors DPR:$Dn, DPR:$Dm)), (REG_SEQUENCE QPR, DPR:$Dn, dsub_0, DPR:$Dm, dsub_1)>; def : Pat<(v4f32 (concat_vectors DPR:$Dn, DPR:$Dm)), (REG_SEQUENCE QPR, DPR:$Dn, dsub_0, DPR:$Dm, dsub_1)>; def : Pat<(v8f16 (concat_vectors DPR:$Dn, DPR:$Dm)), (REG_SEQUENCE QPR, DPR:$Dn, dsub_0, DPR:$Dm, dsub_1)>; def : Pat<(v8bf16 (concat_vectors DPR:$Dn, DPR:$Dm)), (REG_SEQUENCE QPR, DPR:$Dn, dsub_0, DPR:$Dm, dsub_1)>; } //===----------------------------------------------------------------------===// // Assembler aliases // def : VFP2InstAlias<"fmdhr${p} $Dd, $Rn", (VSETLNi32 DPR:$Dd, GPR:$Rn, 1, pred:$p)>; def : VFP2InstAlias<"fmdlr${p} $Dd, $Rn", (VSETLNi32 DPR:$Dd, GPR:$Rn, 0, pred:$p)>; // VAND/VBIC/VEOR/VORR accept but do not require a type suffix. defm : NEONDTAnyInstAlias<"vand${p}", "$Vd, $Vn, $Vm", (VANDd DPR:$Vd, DPR:$Vn, DPR:$Vm, pred:$p)>; defm : NEONDTAnyInstAlias<"vand${p}", "$Vd, $Vn, $Vm", (VANDq QPR:$Vd, QPR:$Vn, QPR:$Vm, pred:$p)>; defm : NEONDTAnyInstAlias<"vbic${p}", "$Vd, $Vn, $Vm", (VBICd DPR:$Vd, DPR:$Vn, DPR:$Vm, pred:$p)>; defm : NEONDTAnyInstAlias<"vbic${p}", "$Vd, $Vn, $Vm", (VBICq QPR:$Vd, QPR:$Vn, QPR:$Vm, pred:$p)>; defm : NEONDTAnyInstAlias<"veor${p}", "$Vd, $Vn, $Vm", (VEORd DPR:$Vd, DPR:$Vn, DPR:$Vm, pred:$p)>; defm : NEONDTAnyInstAlias<"veor${p}", "$Vd, $Vn, $Vm", (VEORq QPR:$Vd, QPR:$Vn, QPR:$Vm, pred:$p)>; defm : NEONDTAnyInstAlias<"vorr${p}", "$Vd, $Vn, $Vm", (VORRd DPR:$Vd, DPR:$Vn, DPR:$Vm, pred:$p)>; defm : NEONDTAnyInstAlias<"vorr${p}", "$Vd, $Vn, $Vm", (VORRq QPR:$Vd, QPR:$Vn, QPR:$Vm, pred:$p)>; // ... two-operand aliases defm : NEONDTAnyInstAlias<"vand${p}", "$Vdn, $Vm", (VANDd DPR:$Vdn, DPR:$Vdn, DPR:$Vm, pred:$p)>; defm : NEONDTAnyInstAlias<"vand${p}", "$Vdn, $Vm", (VANDq QPR:$Vdn, QPR:$Vdn, QPR:$Vm, pred:$p)>; defm : NEONDTAnyInstAlias<"veor${p}", "$Vdn, $Vm", (VEORd DPR:$Vdn, DPR:$Vdn, DPR:$Vm, pred:$p)>; defm : NEONDTAnyInstAlias<"veor${p}", "$Vdn, $Vm", (VEORq QPR:$Vdn, QPR:$Vdn, QPR:$Vm, pred:$p)>; defm : NEONDTAnyInstAlias<"vorr${p}", "$Vdn, $Vm", (VORRd DPR:$Vdn, DPR:$Vdn, DPR:$Vm, pred:$p)>; defm : NEONDTAnyInstAlias<"vorr${p}", "$Vdn, $Vm", (VORRq QPR:$Vdn, QPR:$Vdn, QPR:$Vm, pred:$p)>; // ... immediates def : NEONInstAlias<"vand${p}.i16 $Vd, $imm", (VBICiv4i16 DPR:$Vd, nImmSplatNotI16:$imm, pred:$p)>; def : NEONInstAlias<"vand${p}.i32 $Vd, $imm", (VBICiv2i32 DPR:$Vd, nImmSplatNotI32:$imm, pred:$p)>; def : NEONInstAlias<"vand${p}.i16 $Vd, $imm", (VBICiv8i16 QPR:$Vd, nImmSplatNotI16:$imm, pred:$p)>; def : NEONInstAlias<"vand${p}.i32 $Vd, $imm", (VBICiv4i32 QPR:$Vd, nImmSplatNotI32:$imm, pred:$p)>; // VLD1 single-lane pseudo-instructions. These need special handling for // the lane index that an InstAlias can't handle, so we use these instead. def VLD1LNdAsm_8 : NEONDataTypeAsmPseudoInst<"vld1${p}", ".8", "$list, $addr", (ins VecListOneDByteIndexed:$list, addrmode6alignNone:$addr, pred:$p)>; def VLD1LNdAsm_16 : NEONDataTypeAsmPseudoInst<"vld1${p}", ".16", "$list, $addr", (ins VecListOneDHWordIndexed:$list, addrmode6align16:$addr, pred:$p)>; def VLD1LNdAsm_32 : NEONDataTypeAsmPseudoInst<"vld1${p}", ".32", "$list, $addr", (ins VecListOneDWordIndexed:$list, addrmode6align32:$addr, pred:$p)>; def VLD1LNdWB_fixed_Asm_8 : NEONDataTypeAsmPseudoInst<"vld1${p}", ".8", "$list, $addr!", (ins VecListOneDByteIndexed:$list, addrmode6alignNone:$addr, pred:$p)>; def VLD1LNdWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vld1${p}", ".16", "$list, $addr!", (ins VecListOneDHWordIndexed:$list, addrmode6align16:$addr, pred:$p)>; def VLD1LNdWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vld1${p}", ".32", "$list, $addr!", (ins VecListOneDWordIndexed:$list, addrmode6align32:$addr, pred:$p)>; def VLD1LNdWB_register_Asm_8 : NEONDataTypeAsmPseudoInst<"vld1${p}", ".8", "$list, $addr, $Rm", (ins VecListOneDByteIndexed:$list, addrmode6alignNone:$addr, rGPR:$Rm, pred:$p)>; def VLD1LNdWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vld1${p}", ".16", "$list, $addr, $Rm", (ins VecListOneDHWordIndexed:$list, addrmode6align16:$addr, rGPR:$Rm, pred:$p)>; def VLD1LNdWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vld1${p}", ".32", "$list, $addr, $Rm", (ins VecListOneDWordIndexed:$list, addrmode6align32:$addr, rGPR:$Rm, pred:$p)>; // VST1 single-lane pseudo-instructions. These need special handling for // the lane index that an InstAlias can't handle, so we use these instead. def VST1LNdAsm_8 : NEONDataTypeAsmPseudoInst<"vst1${p}", ".8", "$list, $addr", (ins VecListOneDByteIndexed:$list, addrmode6alignNone:$addr, pred:$p)>; def VST1LNdAsm_16 : NEONDataTypeAsmPseudoInst<"vst1${p}", ".16", "$list, $addr", (ins VecListOneDHWordIndexed:$list, addrmode6align16:$addr, pred:$p)>; def VST1LNdAsm_32 : NEONDataTypeAsmPseudoInst<"vst1${p}", ".32", "$list, $addr", (ins VecListOneDWordIndexed:$list, addrmode6align32:$addr, pred:$p)>; def VST1LNdWB_fixed_Asm_8 : NEONDataTypeAsmPseudoInst<"vst1${p}", ".8", "$list, $addr!", (ins VecListOneDByteIndexed:$list, addrmode6alignNone:$addr, pred:$p)>; def VST1LNdWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vst1${p}", ".16", "$list, $addr!", (ins VecListOneDHWordIndexed:$list, addrmode6align16:$addr, pred:$p)>; def VST1LNdWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vst1${p}", ".32", "$list, $addr!", (ins VecListOneDWordIndexed:$list, addrmode6align32:$addr, pred:$p)>; def VST1LNdWB_register_Asm_8 : NEONDataTypeAsmPseudoInst<"vst1${p}", ".8", "$list, $addr, $Rm", (ins VecListOneDByteIndexed:$list, addrmode6alignNone:$addr, rGPR:$Rm, pred:$p)>; def VST1LNdWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vst1${p}", ".16", "$list, $addr, $Rm", (ins VecListOneDHWordIndexed:$list, addrmode6align16:$addr, rGPR:$Rm, pred:$p)>; def VST1LNdWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vst1${p}", ".32", "$list, $addr, $Rm", (ins VecListOneDWordIndexed:$list, addrmode6align32:$addr, rGPR:$Rm, pred:$p)>; // VLD2 single-lane pseudo-instructions. These need special handling for // the lane index that an InstAlias can't handle, so we use these instead. def VLD2LNdAsm_8 : NEONDataTypeAsmPseudoInst<"vld2${p}", ".8", "$list, $addr", (ins VecListTwoDByteIndexed:$list, addrmode6align16:$addr, pred:$p)>; def VLD2LNdAsm_16 : NEONDataTypeAsmPseudoInst<"vld2${p}", ".16", "$list, $addr", (ins VecListTwoDHWordIndexed:$list, addrmode6align32:$addr, pred:$p)>; def VLD2LNdAsm_32 : NEONDataTypeAsmPseudoInst<"vld2${p}", ".32", "$list, $addr", (ins VecListTwoDWordIndexed:$list, addrmode6align64:$addr, pred:$p)>; def VLD2LNqAsm_16 : NEONDataTypeAsmPseudoInst<"vld2${p}", ".16", "$list, $addr", (ins VecListTwoQHWordIndexed:$list, addrmode6align32:$addr, pred:$p)>; def VLD2LNqAsm_32 : NEONDataTypeAsmPseudoInst<"vld2${p}", ".32", "$list, $addr", (ins VecListTwoQWordIndexed:$list, addrmode6align64:$addr, pred:$p)>; def VLD2LNdWB_fixed_Asm_8 : NEONDataTypeAsmPseudoInst<"vld2${p}", ".8", "$list, $addr!", (ins VecListTwoDByteIndexed:$list, addrmode6align16:$addr, pred:$p)>; def VLD2LNdWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vld2${p}", ".16", "$list, $addr!", (ins VecListTwoDHWordIndexed:$list, addrmode6align32:$addr, pred:$p)>; def VLD2LNdWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vld2${p}", ".32", "$list, $addr!", (ins VecListTwoDWordIndexed:$list, addrmode6align64:$addr, pred:$p)>; def VLD2LNqWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vld2${p}", ".16", "$list, $addr!", (ins VecListTwoQHWordIndexed:$list, addrmode6align32:$addr, pred:$p)>; def VLD2LNqWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vld2${p}", ".32", "$list, $addr!", (ins VecListTwoQWordIndexed:$list, addrmode6align64:$addr, pred:$p)>; def VLD2LNdWB_register_Asm_8 : NEONDataTypeAsmPseudoInst<"vld2${p}", ".8", "$list, $addr, $Rm", (ins VecListTwoDByteIndexed:$list, addrmode6align16:$addr, rGPR:$Rm, pred:$p)>; def VLD2LNdWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vld2${p}", ".16", "$list, $addr, $Rm", (ins VecListTwoDHWordIndexed:$list, addrmode6align32:$addr, rGPR:$Rm, pred:$p)>; def VLD2LNdWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vld2${p}", ".32", "$list, $addr, $Rm", (ins VecListTwoDWordIndexed:$list, addrmode6align64:$addr, rGPR:$Rm, pred:$p)>; def VLD2LNqWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vld2${p}", ".16", "$list, $addr, $Rm", (ins VecListTwoQHWordIndexed:$list, addrmode6align32:$addr, rGPR:$Rm, pred:$p)>; def VLD2LNqWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vld2${p}", ".32", "$list, $addr, $Rm", (ins VecListTwoQWordIndexed:$list, addrmode6align64:$addr, rGPR:$Rm, pred:$p)>; // VST2 single-lane pseudo-instructions. These need special handling for // the lane index that an InstAlias can't handle, so we use these instead. def VST2LNdAsm_8 : NEONDataTypeAsmPseudoInst<"vst2${p}", ".8", "$list, $addr", (ins VecListTwoDByteIndexed:$list, addrmode6align16:$addr, pred:$p)>; def VST2LNdAsm_16 : NEONDataTypeAsmPseudoInst<"vst2${p}", ".16", "$list, $addr", (ins VecListTwoDHWordIndexed:$list, addrmode6align32:$addr, pred:$p)>; def VST2LNdAsm_32 : NEONDataTypeAsmPseudoInst<"vst2${p}", ".32", "$list, $addr", (ins VecListTwoDWordIndexed:$list, addrmode6align64:$addr, pred:$p)>; def VST2LNqAsm_16 : NEONDataTypeAsmPseudoInst<"vst2${p}", ".16", "$list, $addr", (ins VecListTwoQHWordIndexed:$list, addrmode6align32:$addr, pred:$p)>; def VST2LNqAsm_32 : NEONDataTypeAsmPseudoInst<"vst2${p}", ".32", "$list, $addr", (ins VecListTwoQWordIndexed:$list, addrmode6align64:$addr, pred:$p)>; def VST2LNdWB_fixed_Asm_8 : NEONDataTypeAsmPseudoInst<"vst2${p}", ".8", "$list, $addr!", (ins VecListTwoDByteIndexed:$list, addrmode6align16:$addr, pred:$p)>; def VST2LNdWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vst2${p}", ".16", "$list, $addr!", (ins VecListTwoDHWordIndexed:$list, addrmode6align32:$addr, pred:$p)>; def VST2LNdWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vst2${p}", ".32", "$list, $addr!", (ins VecListTwoDWordIndexed:$list, addrmode6align64:$addr, pred:$p)>; def VST2LNqWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vst2${p}", ".16", "$list, $addr!", (ins VecListTwoQHWordIndexed:$list, addrmode6align32:$addr, pred:$p)>; def VST2LNqWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vst2${p}", ".32", "$list, $addr!", (ins VecListTwoQWordIndexed:$list, addrmode6align64:$addr, pred:$p)>; def VST2LNdWB_register_Asm_8 : NEONDataTypeAsmPseudoInst<"vst2${p}", ".8", "$list, $addr, $Rm", (ins VecListTwoDByteIndexed:$list, addrmode6align16:$addr, rGPR:$Rm, pred:$p)>; def VST2LNdWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vst2${p}", ".16","$list, $addr, $Rm", (ins VecListTwoDHWordIndexed:$list, addrmode6align32:$addr, rGPR:$Rm, pred:$p)>; def VST2LNdWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vst2${p}", ".32", "$list, $addr, $Rm", (ins VecListTwoDWordIndexed:$list, addrmode6align64:$addr, rGPR:$Rm, pred:$p)>; def VST2LNqWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vst2${p}", ".16","$list, $addr, $Rm", (ins VecListTwoQHWordIndexed:$list, addrmode6align32:$addr, rGPR:$Rm, pred:$p)>; def VST2LNqWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vst2${p}", ".32", "$list, $addr, $Rm", (ins VecListTwoQWordIndexed:$list, addrmode6align64:$addr, rGPR:$Rm, pred:$p)>; // VLD3 all-lanes pseudo-instructions. These need special handling for // the lane index that an InstAlias can't handle, so we use these instead. def VLD3DUPdAsm_8 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr", (ins VecListThreeDAllLanes:$list, addrmode6dupalignNone:$addr, pred:$p)>; def VLD3DUPdAsm_16: NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr", (ins VecListThreeDAllLanes:$list, addrmode6dupalignNone:$addr, pred:$p)>; def VLD3DUPdAsm_32: NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr", (ins VecListThreeDAllLanes:$list, addrmode6dupalignNone:$addr, pred:$p)>; def VLD3DUPqAsm_8 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr", (ins VecListThreeQAllLanes:$list, addrmode6dupalignNone:$addr, pred:$p)>; def VLD3DUPqAsm_16: NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr", (ins VecListThreeQAllLanes:$list, addrmode6dupalignNone:$addr, pred:$p)>; def VLD3DUPqAsm_32: NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr", (ins VecListThreeQAllLanes:$list, addrmode6dupalignNone:$addr, pred:$p)>; def VLD3DUPdWB_fixed_Asm_8 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr!", (ins VecListThreeDAllLanes:$list, addrmode6dupalignNone:$addr, pred:$p)>; def VLD3DUPdWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr!", (ins VecListThreeDAllLanes:$list, addrmode6dupalignNone:$addr, pred:$p)>; def VLD3DUPdWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr!", (ins VecListThreeDAllLanes:$list, addrmode6dupalignNone:$addr, pred:$p)>; def VLD3DUPqWB_fixed_Asm_8 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr!", (ins VecListThreeQAllLanes:$list, addrmode6dupalignNone:$addr, pred:$p)>; def VLD3DUPqWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr!", (ins VecListThreeQAllLanes:$list, addrmode6dupalignNone:$addr, pred:$p)>; def VLD3DUPqWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr!", (ins VecListThreeQAllLanes:$list, addrmode6dupalignNone:$addr, pred:$p)>; def VLD3DUPdWB_register_Asm_8 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr, $Rm", (ins VecListThreeDAllLanes:$list, addrmode6dupalignNone:$addr, rGPR:$Rm, pred:$p)>; def VLD3DUPdWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr, $Rm", (ins VecListThreeDAllLanes:$list, addrmode6dupalignNone:$addr, rGPR:$Rm, pred:$p)>; def VLD3DUPdWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr, $Rm", (ins VecListThreeDAllLanes:$list, addrmode6dupalignNone:$addr, rGPR:$Rm, pred:$p)>; def VLD3DUPqWB_register_Asm_8 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr, $Rm", (ins VecListThreeQAllLanes:$list, addrmode6dupalignNone:$addr, rGPR:$Rm, pred:$p)>; def VLD3DUPqWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr, $Rm", (ins VecListThreeQAllLanes:$list, addrmode6dupalignNone:$addr, rGPR:$Rm, pred:$p)>; def VLD3DUPqWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr, $Rm", (ins VecListThreeQAllLanes:$list, addrmode6dupalignNone:$addr, rGPR:$Rm, pred:$p)>; // VLD3 single-lane pseudo-instructions. These need special handling for // the lane index that an InstAlias can't handle, so we use these instead. def VLD3LNdAsm_8 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr", (ins VecListThreeDByteIndexed:$list, addrmode6alignNone:$addr, pred:$p)>; def VLD3LNdAsm_16 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr", (ins VecListThreeDHWordIndexed:$list, addrmode6alignNone:$addr, pred:$p)>; def VLD3LNdAsm_32 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr", (ins VecListThreeDWordIndexed:$list, addrmode6alignNone:$addr, pred:$p)>; def VLD3LNqAsm_16 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr", (ins VecListThreeQHWordIndexed:$list, addrmode6alignNone:$addr, pred:$p)>; def VLD3LNqAsm_32 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr", (ins VecListThreeQWordIndexed:$list, addrmode6alignNone:$addr, pred:$p)>; def VLD3LNdWB_fixed_Asm_8 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr!", (ins VecListThreeDByteIndexed:$list, addrmode6alignNone:$addr, pred:$p)>; def VLD3LNdWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr!", (ins VecListThreeDHWordIndexed:$list, addrmode6alignNone:$addr, pred:$p)>; def VLD3LNdWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr!", (ins VecListThreeDWordIndexed:$list, addrmode6alignNone:$addr, pred:$p)>; def VLD3LNqWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr!", (ins VecListThreeQHWordIndexed:$list, addrmode6alignNone:$addr, pred:$p)>; def VLD3LNqWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr!", (ins VecListThreeQWordIndexed:$list, addrmode6alignNone:$addr, pred:$p)>; def VLD3LNdWB_register_Asm_8 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr, $Rm", (ins VecListThreeDByteIndexed:$list, addrmode6alignNone:$addr, rGPR:$Rm, pred:$p)>; def VLD3LNdWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr, $Rm", (ins VecListThreeDHWordIndexed:$list, addrmode6alignNone:$addr, rGPR:$Rm, pred:$p)>; def VLD3LNdWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr, $Rm", (ins VecListThreeDWordIndexed:$list, addrmode6alignNone:$addr, rGPR:$Rm, pred:$p)>; def VLD3LNqWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr, $Rm", (ins VecListThreeQHWordIndexed:$list, addrmode6alignNone:$addr, rGPR:$Rm, pred:$p)>; def VLD3LNqWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr, $Rm", (ins VecListThreeQWordIndexed:$list, addrmode6alignNone:$addr, rGPR:$Rm, pred:$p)>; // VLD3 multiple structure pseudo-instructions. These need special handling for // the vector operands that the normal instructions don't yet model. // FIXME: Remove these when the register classes and instructions are updated. def VLD3dAsm_8 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr", (ins VecListThreeD:$list, addrmode6align64:$addr, pred:$p)>; def VLD3dAsm_16 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr", (ins VecListThreeD:$list, addrmode6align64:$addr, pred:$p)>; def VLD3dAsm_32 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr", (ins VecListThreeD:$list, addrmode6align64:$addr, pred:$p)>; def VLD3qAsm_8 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr", (ins VecListThreeQ:$list, addrmode6align64:$addr, pred:$p)>; def VLD3qAsm_16 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr", (ins VecListThreeQ:$list, addrmode6align64:$addr, pred:$p)>; def VLD3qAsm_32 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr", (ins VecListThreeQ:$list, addrmode6align64:$addr, pred:$p)>; def VLD3dWB_fixed_Asm_8 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr!", (ins VecListThreeD:$list, addrmode6align64:$addr, pred:$p)>; def VLD3dWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr!", (ins VecListThreeD:$list, addrmode6align64:$addr, pred:$p)>; def VLD3dWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr!", (ins VecListThreeD:$list, addrmode6align64:$addr, pred:$p)>; def VLD3qWB_fixed_Asm_8 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr!", (ins VecListThreeQ:$list, addrmode6align64:$addr, pred:$p)>; def VLD3qWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr!", (ins VecListThreeQ:$list, addrmode6align64:$addr, pred:$p)>; def VLD3qWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr!", (ins VecListThreeQ:$list, addrmode6align64:$addr, pred:$p)>; def VLD3dWB_register_Asm_8 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr, $Rm", (ins VecListThreeD:$list, addrmode6align64:$addr, rGPR:$Rm, pred:$p)>; def VLD3dWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr, $Rm", (ins VecListThreeD:$list, addrmode6align64:$addr, rGPR:$Rm, pred:$p)>; def VLD3dWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr, $Rm", (ins VecListThreeD:$list, addrmode6align64:$addr, rGPR:$Rm, pred:$p)>; def VLD3qWB_register_Asm_8 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".8", "$list, $addr, $Rm", (ins VecListThreeQ:$list, addrmode6align64:$addr, rGPR:$Rm, pred:$p)>; def VLD3qWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".16", "$list, $addr, $Rm", (ins VecListThreeQ:$list, addrmode6align64:$addr, rGPR:$Rm, pred:$p)>; def VLD3qWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vld3${p}", ".32", "$list, $addr, $Rm", (ins VecListThreeQ:$list, addrmode6align64:$addr, rGPR:$Rm, pred:$p)>; // VST3 single-lane pseudo-instructions. These need special handling for // the lane index that an InstAlias can't handle, so we use these instead. def VST3LNdAsm_8 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".8", "$list, $addr", (ins VecListThreeDByteIndexed:$list, addrmode6alignNone:$addr, pred:$p)>; def VST3LNdAsm_16 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".16", "$list, $addr", (ins VecListThreeDHWordIndexed:$list, addrmode6alignNone:$addr, pred:$p)>; def VST3LNdAsm_32 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".32", "$list, $addr", (ins VecListThreeDWordIndexed:$list, addrmode6alignNone:$addr, pred:$p)>; def VST3LNqAsm_16 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".16", "$list, $addr", (ins VecListThreeQHWordIndexed:$list, addrmode6alignNone:$addr, pred:$p)>; def VST3LNqAsm_32 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".32", "$list, $addr", (ins VecListThreeQWordIndexed:$list, addrmode6alignNone:$addr, pred:$p)>; def VST3LNdWB_fixed_Asm_8 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".8", "$list, $addr!", (ins VecListThreeDByteIndexed:$list, addrmode6alignNone:$addr, pred:$p)>; def VST3LNdWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".16", "$list, $addr!", (ins VecListThreeDHWordIndexed:$list, addrmode6alignNone:$addr, pred:$p)>; def VST3LNdWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".32", "$list, $addr!", (ins VecListThreeDWordIndexed:$list, addrmode6alignNone:$addr, pred:$p)>; def VST3LNqWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".16", "$list, $addr!", (ins VecListThreeQHWordIndexed:$list, addrmode6alignNone:$addr, pred:$p)>; def VST3LNqWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".32", "$list, $addr!", (ins VecListThreeQWordIndexed:$list, addrmode6alignNone:$addr, pred:$p)>; def VST3LNdWB_register_Asm_8 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".8", "$list, $addr, $Rm", (ins VecListThreeDByteIndexed:$list, addrmode6alignNone:$addr, rGPR:$Rm, pred:$p)>; def VST3LNdWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".16", "$list, $addr, $Rm", (ins VecListThreeDHWordIndexed:$list, addrmode6alignNone:$addr, rGPR:$Rm, pred:$p)>; def VST3LNdWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".32", "$list, $addr, $Rm", (ins VecListThreeDWordIndexed:$list, addrmode6alignNone:$addr, rGPR:$Rm, pred:$p)>; def VST3LNqWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".16", "$list, $addr, $Rm", (ins VecListThreeQHWordIndexed:$list, addrmode6alignNone:$addr, rGPR:$Rm, pred:$p)>; def VST3LNqWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".32", "$list, $addr, $Rm", (ins VecListThreeQWordIndexed:$list, addrmode6alignNone:$addr, rGPR:$Rm, pred:$p)>; // VST3 multiple structure pseudo-instructions. These need special handling for // the vector operands that the normal instructions don't yet model. // FIXME: Remove these when the register classes and instructions are updated. def VST3dAsm_8 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".8", "$list, $addr", (ins VecListThreeD:$list, addrmode6align64:$addr, pred:$p)>; def VST3dAsm_16 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".16", "$list, $addr", (ins VecListThreeD:$list, addrmode6align64:$addr, pred:$p)>; def VST3dAsm_32 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".32", "$list, $addr", (ins VecListThreeD:$list, addrmode6align64:$addr, pred:$p)>; def VST3qAsm_8 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".8", "$list, $addr", (ins VecListThreeQ:$list, addrmode6align64:$addr, pred:$p)>; def VST3qAsm_16 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".16", "$list, $addr", (ins VecListThreeQ:$list, addrmode6align64:$addr, pred:$p)>; def VST3qAsm_32 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".32", "$list, $addr", (ins VecListThreeQ:$list, addrmode6align64:$addr, pred:$p)>; def VST3dWB_fixed_Asm_8 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".8", "$list, $addr!", (ins VecListThreeD:$list, addrmode6align64:$addr, pred:$p)>; def VST3dWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".16", "$list, $addr!", (ins VecListThreeD:$list, addrmode6align64:$addr, pred:$p)>; def VST3dWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".32", "$list, $addr!", (ins VecListThreeD:$list, addrmode6align64:$addr, pred:$p)>; def VST3qWB_fixed_Asm_8 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".8", "$list, $addr!", (ins VecListThreeQ:$list, addrmode6align64:$addr, pred:$p)>; def VST3qWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".16", "$list, $addr!", (ins VecListThreeQ:$list, addrmode6align64:$addr, pred:$p)>; def VST3qWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".32", "$list, $addr!", (ins VecListThreeQ:$list, addrmode6align64:$addr, pred:$p)>; def VST3dWB_register_Asm_8 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".8", "$list, $addr, $Rm", (ins VecListThreeD:$list, addrmode6align64:$addr, rGPR:$Rm, pred:$p)>; def VST3dWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".16", "$list, $addr, $Rm", (ins VecListThreeD:$list, addrmode6align64:$addr, rGPR:$Rm, pred:$p)>; def VST3dWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".32", "$list, $addr, $Rm", (ins VecListThreeD:$list, addrmode6align64:$addr, rGPR:$Rm, pred:$p)>; def VST3qWB_register_Asm_8 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".8", "$list, $addr, $Rm", (ins VecListThreeQ:$list, addrmode6align64:$addr, rGPR:$Rm, pred:$p)>; def VST3qWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".16", "$list, $addr, $Rm", (ins VecListThreeQ:$list, addrmode6align64:$addr, rGPR:$Rm, pred:$p)>; def VST3qWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vst3${p}", ".32", "$list, $addr, $Rm", (ins VecListThreeQ:$list, addrmode6align64:$addr, rGPR:$Rm, pred:$p)>; // VLD4 all-lanes pseudo-instructions. These need special handling for // the lane index that an InstAlias can't handle, so we use these instead. def VLD4DUPdAsm_8 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr", (ins VecListFourDAllLanes:$list, addrmode6dupalign32:$addr, pred:$p)>; def VLD4DUPdAsm_16: NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr", (ins VecListFourDAllLanes:$list, addrmode6dupalign64:$addr, pred:$p)>; def VLD4DUPdAsm_32: NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr", (ins VecListFourDAllLanes:$list, addrmode6dupalign64or128:$addr, pred:$p)>; def VLD4DUPqAsm_8 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr", (ins VecListFourQAllLanes:$list, addrmode6dupalign32:$addr, pred:$p)>; def VLD4DUPqAsm_16: NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr", (ins VecListFourQAllLanes:$list, addrmode6dupalign64:$addr, pred:$p)>; def VLD4DUPqAsm_32: NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr", (ins VecListFourQAllLanes:$list, addrmode6dupalign64or128:$addr, pred:$p)>; def VLD4DUPdWB_fixed_Asm_8 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr!", (ins VecListFourDAllLanes:$list, addrmode6dupalign32:$addr, pred:$p)>; def VLD4DUPdWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr!", (ins VecListFourDAllLanes:$list, addrmode6dupalign64:$addr, pred:$p)>; def VLD4DUPdWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr!", (ins VecListFourDAllLanes:$list, addrmode6dupalign64or128:$addr, pred:$p)>; def VLD4DUPqWB_fixed_Asm_8 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr!", (ins VecListFourQAllLanes:$list, addrmode6dupalign32:$addr, pred:$p)>; def VLD4DUPqWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr!", (ins VecListFourQAllLanes:$list, addrmode6dupalign64:$addr, pred:$p)>; def VLD4DUPqWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr!", (ins VecListFourQAllLanes:$list, addrmode6dupalign64or128:$addr, pred:$p)>; def VLD4DUPdWB_register_Asm_8 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr, $Rm", (ins VecListFourDAllLanes:$list, addrmode6dupalign32:$addr, rGPR:$Rm, pred:$p)>; def VLD4DUPdWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr, $Rm", (ins VecListFourDAllLanes:$list, addrmode6dupalign64:$addr, rGPR:$Rm, pred:$p)>; def VLD4DUPdWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr, $Rm", (ins VecListFourDAllLanes:$list, addrmode6dupalign64or128:$addr, rGPR:$Rm, pred:$p)>; def VLD4DUPqWB_register_Asm_8 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr, $Rm", (ins VecListFourQAllLanes:$list, addrmode6dupalign32:$addr, rGPR:$Rm, pred:$p)>; def VLD4DUPqWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr, $Rm", (ins VecListFourQAllLanes:$list, addrmode6dupalign64:$addr, rGPR:$Rm, pred:$p)>; def VLD4DUPqWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr, $Rm", (ins VecListFourQAllLanes:$list, addrmode6dupalign64or128:$addr, rGPR:$Rm, pred:$p)>; // VLD4 single-lane pseudo-instructions. These need special handling for // the lane index that an InstAlias can't handle, so we use these instead. def VLD4LNdAsm_8 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr", (ins VecListFourDByteIndexed:$list, addrmode6align32:$addr, pred:$p)>; def VLD4LNdAsm_16 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr", (ins VecListFourDHWordIndexed:$list, addrmode6align64:$addr, pred:$p)>; def VLD4LNdAsm_32 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr", (ins VecListFourDWordIndexed:$list, addrmode6align64or128:$addr, pred:$p)>; def VLD4LNqAsm_16 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr", (ins VecListFourQHWordIndexed:$list, addrmode6align64:$addr, pred:$p)>; def VLD4LNqAsm_32 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr", (ins VecListFourQWordIndexed:$list, addrmode6align64or128:$addr, pred:$p)>; def VLD4LNdWB_fixed_Asm_8 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr!", (ins VecListFourDByteIndexed:$list, addrmode6align32:$addr, pred:$p)>; def VLD4LNdWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr!", (ins VecListFourDHWordIndexed:$list, addrmode6align64:$addr, pred:$p)>; def VLD4LNdWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr!", (ins VecListFourDWordIndexed:$list, addrmode6align64or128:$addr, pred:$p)>; def VLD4LNqWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr!", (ins VecListFourQHWordIndexed:$list, addrmode6align64:$addr, pred:$p)>; def VLD4LNqWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr!", (ins VecListFourQWordIndexed:$list, addrmode6align64or128:$addr, pred:$p)>; def VLD4LNdWB_register_Asm_8 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr, $Rm", (ins VecListFourDByteIndexed:$list, addrmode6align32:$addr, rGPR:$Rm, pred:$p)>; def VLD4LNdWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr, $Rm", (ins VecListFourDHWordIndexed:$list, addrmode6align64:$addr, rGPR:$Rm, pred:$p)>; def VLD4LNdWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr, $Rm", (ins VecListFourDWordIndexed:$list, addrmode6align64or128:$addr, rGPR:$Rm, pred:$p)>; def VLD4LNqWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr, $Rm", (ins VecListFourQHWordIndexed:$list, addrmode6align64:$addr, rGPR:$Rm, pred:$p)>; def VLD4LNqWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr, $Rm", (ins VecListFourQWordIndexed:$list, addrmode6align64or128:$addr, rGPR:$Rm, pred:$p)>; // VLD4 multiple structure pseudo-instructions. These need special handling for // the vector operands that the normal instructions don't yet model. // FIXME: Remove these when the register classes and instructions are updated. def VLD4dAsm_8 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr", (ins VecListFourD:$list, addrmode6align64or128or256:$addr, pred:$p)>; def VLD4dAsm_16 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr", (ins VecListFourD:$list, addrmode6align64or128or256:$addr, pred:$p)>; def VLD4dAsm_32 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr", (ins VecListFourD:$list, addrmode6align64or128or256:$addr, pred:$p)>; def VLD4qAsm_8 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr", (ins VecListFourQ:$list, addrmode6align64or128or256:$addr, pred:$p)>; def VLD4qAsm_16 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr", (ins VecListFourQ:$list, addrmode6align64or128or256:$addr, pred:$p)>; def VLD4qAsm_32 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr", (ins VecListFourQ:$list, addrmode6align64or128or256:$addr, pred:$p)>; def VLD4dWB_fixed_Asm_8 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr!", (ins VecListFourD:$list, addrmode6align64or128or256:$addr, pred:$p)>; def VLD4dWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr!", (ins VecListFourD:$list, addrmode6align64or128or256:$addr, pred:$p)>; def VLD4dWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr!", (ins VecListFourD:$list, addrmode6align64or128or256:$addr, pred:$p)>; def VLD4qWB_fixed_Asm_8 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr!", (ins VecListFourQ:$list, addrmode6align64or128or256:$addr, pred:$p)>; def VLD4qWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr!", (ins VecListFourQ:$list, addrmode6align64or128or256:$addr, pred:$p)>; def VLD4qWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr!", (ins VecListFourQ:$list, addrmode6align64or128or256:$addr, pred:$p)>; def VLD4dWB_register_Asm_8 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr, $Rm", (ins VecListFourD:$list, addrmode6align64or128or256:$addr, rGPR:$Rm, pred:$p)>; def VLD4dWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr, $Rm", (ins VecListFourD:$list, addrmode6align64or128or256:$addr, rGPR:$Rm, pred:$p)>; def VLD4dWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr, $Rm", (ins VecListFourD:$list, addrmode6align64or128or256:$addr, rGPR:$Rm, pred:$p)>; def VLD4qWB_register_Asm_8 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".8", "$list, $addr, $Rm", (ins VecListFourQ:$list, addrmode6align64or128or256:$addr, rGPR:$Rm, pred:$p)>; def VLD4qWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".16", "$list, $addr, $Rm", (ins VecListFourQ:$list, addrmode6align64or128or256:$addr, rGPR:$Rm, pred:$p)>; def VLD4qWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vld4${p}", ".32", "$list, $addr, $Rm", (ins VecListFourQ:$list, addrmode6align64or128or256:$addr, rGPR:$Rm, pred:$p)>; // VST4 single-lane pseudo-instructions. These need special handling for // the lane index that an InstAlias can't handle, so we use these instead. def VST4LNdAsm_8 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".8", "$list, $addr", (ins VecListFourDByteIndexed:$list, addrmode6align32:$addr, pred:$p)>; def VST4LNdAsm_16 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".16", "$list, $addr", (ins VecListFourDHWordIndexed:$list, addrmode6align64:$addr, pred:$p)>; def VST4LNdAsm_32 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".32", "$list, $addr", (ins VecListFourDWordIndexed:$list, addrmode6align64or128:$addr, pred:$p)>; def VST4LNqAsm_16 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".16", "$list, $addr", (ins VecListFourQHWordIndexed:$list, addrmode6align64:$addr, pred:$p)>; def VST4LNqAsm_32 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".32", "$list, $addr", (ins VecListFourQWordIndexed:$list, addrmode6align64or128:$addr, pred:$p)>; def VST4LNdWB_fixed_Asm_8 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".8", "$list, $addr!", (ins VecListFourDByteIndexed:$list, addrmode6align32:$addr, pred:$p)>; def VST4LNdWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".16", "$list, $addr!", (ins VecListFourDHWordIndexed:$list, addrmode6align64:$addr, pred:$p)>; def VST4LNdWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".32", "$list, $addr!", (ins VecListFourDWordIndexed:$list, addrmode6align64or128:$addr, pred:$p)>; def VST4LNqWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".16", "$list, $addr!", (ins VecListFourQHWordIndexed:$list, addrmode6align64:$addr, pred:$p)>; def VST4LNqWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".32", "$list, $addr!", (ins VecListFourQWordIndexed:$list, addrmode6align64or128:$addr, pred:$p)>; def VST4LNdWB_register_Asm_8 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".8", "$list, $addr, $Rm", (ins VecListFourDByteIndexed:$list, addrmode6align32:$addr, rGPR:$Rm, pred:$p)>; def VST4LNdWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".16", "$list, $addr, $Rm", (ins VecListFourDHWordIndexed:$list, addrmode6align64:$addr, rGPR:$Rm, pred:$p)>; def VST4LNdWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".32", "$list, $addr, $Rm", (ins VecListFourDWordIndexed:$list, addrmode6align64or128:$addr, rGPR:$Rm, pred:$p)>; def VST4LNqWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".16", "$list, $addr, $Rm", (ins VecListFourQHWordIndexed:$list, addrmode6align64:$addr, rGPR:$Rm, pred:$p)>; def VST4LNqWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".32", "$list, $addr, $Rm", (ins VecListFourQWordIndexed:$list, addrmode6align64or128:$addr, rGPR:$Rm, pred:$p)>; // VST4 multiple structure pseudo-instructions. These need special handling for // the vector operands that the normal instructions don't yet model. // FIXME: Remove these when the register classes and instructions are updated. def VST4dAsm_8 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".8", "$list, $addr", (ins VecListFourD:$list, addrmode6align64or128or256:$addr, pred:$p)>; def VST4dAsm_16 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".16", "$list, $addr", (ins VecListFourD:$list, addrmode6align64or128or256:$addr, pred:$p)>; def VST4dAsm_32 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".32", "$list, $addr", (ins VecListFourD:$list, addrmode6align64or128or256:$addr, pred:$p)>; def VST4qAsm_8 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".8", "$list, $addr", (ins VecListFourQ:$list, addrmode6align64or128or256:$addr, pred:$p)>; def VST4qAsm_16 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".16", "$list, $addr", (ins VecListFourQ:$list, addrmode6align64or128or256:$addr, pred:$p)>; def VST4qAsm_32 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".32", "$list, $addr", (ins VecListFourQ:$list, addrmode6align64or128or256:$addr, pred:$p)>; def VST4dWB_fixed_Asm_8 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".8", "$list, $addr!", (ins VecListFourD:$list, addrmode6align64or128or256:$addr, pred:$p)>; def VST4dWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".16", "$list, $addr!", (ins VecListFourD:$list, addrmode6align64or128or256:$addr, pred:$p)>; def VST4dWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".32", "$list, $addr!", (ins VecListFourD:$list, addrmode6align64or128or256:$addr, pred:$p)>; def VST4qWB_fixed_Asm_8 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".8", "$list, $addr!", (ins VecListFourQ:$list, addrmode6align64or128or256:$addr, pred:$p)>; def VST4qWB_fixed_Asm_16 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".16", "$list, $addr!", (ins VecListFourQ:$list, addrmode6align64or128or256:$addr, pred:$p)>; def VST4qWB_fixed_Asm_32 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".32", "$list, $addr!", (ins VecListFourQ:$list, addrmode6align64or128or256:$addr, pred:$p)>; def VST4dWB_register_Asm_8 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".8", "$list, $addr, $Rm", (ins VecListFourD:$list, addrmode6align64or128or256:$addr, rGPR:$Rm, pred:$p)>; def VST4dWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".16", "$list, $addr, $Rm", (ins VecListFourD:$list, addrmode6align64or128or256:$addr, rGPR:$Rm, pred:$p)>; def VST4dWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".32", "$list, $addr, $Rm", (ins VecListFourD:$list, addrmode6align64or128or256:$addr, rGPR:$Rm, pred:$p)>; def VST4qWB_register_Asm_8 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".8", "$list, $addr, $Rm", (ins VecListFourQ:$list, addrmode6align64or128or256:$addr, rGPR:$Rm, pred:$p)>; def VST4qWB_register_Asm_16 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".16", "$list, $addr, $Rm", (ins VecListFourQ:$list, addrmode6align64or128or256:$addr, rGPR:$Rm, pred:$p)>; def VST4qWB_register_Asm_32 : NEONDataTypeAsmPseudoInst<"vst4${p}", ".32", "$list, $addr, $Rm", (ins VecListFourQ:$list, addrmode6align64or128or256:$addr, rGPR:$Rm, pred:$p)>; // VMOV/VMVN takes an optional datatype suffix defm : NEONDTAnyInstAlias<"vmov${p}", "$Vd, $Vm", (VORRd DPR:$Vd, DPR:$Vm, DPR:$Vm, pred:$p)>; defm : NEONDTAnyInstAlias<"vmov${p}", "$Vd, $Vm", (VORRq QPR:$Vd, QPR:$Vm, QPR:$Vm, pred:$p)>; defm : NEONDTAnyInstAlias<"vmvn${p}", "$Vd, $Vm", (VMVNd DPR:$Vd, DPR:$Vm, pred:$p)>; defm : NEONDTAnyInstAlias<"vmvn${p}", "$Vd, $Vm", (VMVNq QPR:$Vd, QPR:$Vm, pred:$p)>; // VCLT (register) is an assembler alias for VCGT w/ the operands reversed. // D-register versions. def : NEONInstAlias<"vcle${p}.s8 $Dd, $Dn, $Dm", (VCGEsv8i8 DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>; def : NEONInstAlias<"vcle${p}.s16 $Dd, $Dn, $Dm", (VCGEsv4i16 DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>; def : NEONInstAlias<"vcle${p}.s32 $Dd, $Dn, $Dm", (VCGEsv2i32 DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>; def : NEONInstAlias<"vcle${p}.u8 $Dd, $Dn, $Dm", (VCGEuv8i8 DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>; def : NEONInstAlias<"vcle${p}.u16 $Dd, $Dn, $Dm", (VCGEuv4i16 DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>; def : NEONInstAlias<"vcle${p}.u32 $Dd, $Dn, $Dm", (VCGEuv2i32 DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>; def : NEONInstAlias<"vcle${p}.f32 $Dd, $Dn, $Dm", (VCGEfd DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>; let Predicates = [HasNEON, HasFullFP16] in def : NEONInstAlias<"vcle${p}.f16 $Dd, $Dn, $Dm", (VCGEhd DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>; // Q-register versions. def : NEONInstAlias<"vcle${p}.s8 $Qd, $Qn, $Qm", (VCGEsv16i8 QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>; def : NEONInstAlias<"vcle${p}.s16 $Qd, $Qn, $Qm", (VCGEsv8i16 QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>; def : NEONInstAlias<"vcle${p}.s32 $Qd, $Qn, $Qm", (VCGEsv4i32 QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>; def : NEONInstAlias<"vcle${p}.u8 $Qd, $Qn, $Qm", (VCGEuv16i8 QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>; def : NEONInstAlias<"vcle${p}.u16 $Qd, $Qn, $Qm", (VCGEuv8i16 QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>; def : NEONInstAlias<"vcle${p}.u32 $Qd, $Qn, $Qm", (VCGEuv4i32 QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>; def : NEONInstAlias<"vcle${p}.f32 $Qd, $Qn, $Qm", (VCGEfq QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>; let Predicates = [HasNEON, HasFullFP16] in def : NEONInstAlias<"vcle${p}.f16 $Qd, $Qn, $Qm", (VCGEhq QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>; // VCLT (register) is an assembler alias for VCGT w/ the operands reversed. // D-register versions. def : NEONInstAlias<"vclt${p}.s8 $Dd, $Dn, $Dm", (VCGTsv8i8 DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>; def : NEONInstAlias<"vclt${p}.s16 $Dd, $Dn, $Dm", (VCGTsv4i16 DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>; def : NEONInstAlias<"vclt${p}.s32 $Dd, $Dn, $Dm", (VCGTsv2i32 DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>; def : NEONInstAlias<"vclt${p}.u8 $Dd, $Dn, $Dm", (VCGTuv8i8 DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>; def : NEONInstAlias<"vclt${p}.u16 $Dd, $Dn, $Dm", (VCGTuv4i16 DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>; def : NEONInstAlias<"vclt${p}.u32 $Dd, $Dn, $Dm", (VCGTuv2i32 DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>; def : NEONInstAlias<"vclt${p}.f32 $Dd, $Dn, $Dm", (VCGTfd DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>; let Predicates = [HasNEON, HasFullFP16] in def : NEONInstAlias<"vclt${p}.f16 $Dd, $Dn, $Dm", (VCGThd DPR:$Dd, DPR:$Dm, DPR:$Dn, pred:$p)>; // Q-register versions. def : NEONInstAlias<"vclt${p}.s8 $Qd, $Qn, $Qm", (VCGTsv16i8 QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>; def : NEONInstAlias<"vclt${p}.s16 $Qd, $Qn, $Qm", (VCGTsv8i16 QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>; def : NEONInstAlias<"vclt${p}.s32 $Qd, $Qn, $Qm", (VCGTsv4i32 QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>; def : NEONInstAlias<"vclt${p}.u8 $Qd, $Qn, $Qm", (VCGTuv16i8 QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>; def : NEONInstAlias<"vclt${p}.u16 $Qd, $Qn, $Qm", (VCGTuv8i16 QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>; def : NEONInstAlias<"vclt${p}.u32 $Qd, $Qn, $Qm", (VCGTuv4i32 QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>; def : NEONInstAlias<"vclt${p}.f32 $Qd, $Qn, $Qm", (VCGTfq QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>; let Predicates = [HasNEON, HasFullFP16] in def : NEONInstAlias<"vclt${p}.f16 $Qd, $Qn, $Qm", (VCGThq QPR:$Qd, QPR:$Qm, QPR:$Qn, pred:$p)>; // VSWP allows, but does not require, a type suffix. defm : NEONDTAnyInstAlias<"vswp${p}", "$Vd, $Vm", (VSWPd DPR:$Vd, DPR:$Vm, pred:$p)>; defm : NEONDTAnyInstAlias<"vswp${p}", "$Vd, $Vm", (VSWPq QPR:$Vd, QPR:$Vm, pred:$p)>; // VBIF, VBIT, and VBSL allow, but do not require, a type suffix. defm : NEONDTAnyInstAlias<"vbif${p}", "$Vd, $Vn, $Vm", (VBIFd DPR:$Vd, DPR:$Vn, DPR:$Vm, pred:$p)>; defm : NEONDTAnyInstAlias<"vbit${p}", "$Vd, $Vn, $Vm", (VBITd DPR:$Vd, DPR:$Vn, DPR:$Vm, pred:$p)>; defm : NEONDTAnyInstAlias<"vbsl${p}", "$Vd, $Vn, $Vm", (VBSLd DPR:$Vd, DPR:$Vn, DPR:$Vm, pred:$p)>; defm : NEONDTAnyInstAlias<"vbif${p}", "$Vd, $Vn, $Vm", (VBIFq QPR:$Vd, QPR:$Vn, QPR:$Vm, pred:$p)>; defm : NEONDTAnyInstAlias<"vbit${p}", "$Vd, $Vn, $Vm", (VBITq QPR:$Vd, QPR:$Vn, QPR:$Vm, pred:$p)>; defm : NEONDTAnyInstAlias<"vbsl${p}", "$Vd, $Vn, $Vm", (VBSLq QPR:$Vd, QPR:$Vn, QPR:$Vm, pred:$p)>; // "vmov Rd, #-imm" can be handled via "vmvn". def : NEONInstAlias<"vmov${p}.i32 $Vd, $imm", (VMVNv2i32 DPR:$Vd, nImmVMOVI32Neg:$imm, pred:$p)>; def : NEONInstAlias<"vmov${p}.i32 $Vd, $imm", (VMVNv4i32 QPR:$Vd, nImmVMOVI32Neg:$imm, pred:$p)>; def : NEONInstAlias<"vmvn${p}.i32 $Vd, $imm", (VMOVv2i32 DPR:$Vd, nImmVMOVI32Neg:$imm, pred:$p)>; def : NEONInstAlias<"vmvn${p}.i32 $Vd, $imm", (VMOVv4i32 QPR:$Vd, nImmVMOVI32Neg:$imm, pred:$p)>; // 'gas' compatibility aliases for quad-word instructions. Strictly speaking, // these should restrict to just the Q register variants, but the register // classes are enough to match correctly regardless, so we keep it simple // and just use MnemonicAlias. def : NEONMnemonicAlias<"vbicq", "vbic">; def : NEONMnemonicAlias<"vandq", "vand">; def : NEONMnemonicAlias<"veorq", "veor">; def : NEONMnemonicAlias<"vorrq", "vorr">; def : NEONMnemonicAlias<"vmovq", "vmov">; def : NEONMnemonicAlias<"vmvnq", "vmvn">; // Explicit versions for floating point so that the FPImm variants get // handled early. The parser gets confused otherwise. def : NEONMnemonicAlias<"vmovq.f32", "vmov.f32">; def : NEONMnemonicAlias<"vmovq.f64", "vmov.f64">; def : NEONMnemonicAlias<"vaddq", "vadd">; def : NEONMnemonicAlias<"vsubq", "vsub">; def : NEONMnemonicAlias<"vminq", "vmin">; def : NEONMnemonicAlias<"vmaxq", "vmax">; def : NEONMnemonicAlias<"vmulq", "vmul">; def : NEONMnemonicAlias<"vabsq", "vabs">; def : NEONMnemonicAlias<"vshlq", "vshl">; def : NEONMnemonicAlias<"vshrq", "vshr">; def : NEONMnemonicAlias<"vcvtq", "vcvt">; def : NEONMnemonicAlias<"vcleq", "vcle">; def : NEONMnemonicAlias<"vceqq", "vceq">; def : NEONMnemonicAlias<"vzipq", "vzip">; def : NEONMnemonicAlias<"vswpq", "vswp">; def : NEONMnemonicAlias<"vrecpeq.f32", "vrecpe.f32">; def : NEONMnemonicAlias<"vrecpeq.u32", "vrecpe.u32">; // Alias for loading floating point immediates that aren't representable // using the vmov.f32 encoding but the bitpattern is representable using // the .i32 encoding. def : NEONInstAlias<"vmov${p}.f32 $Vd, $imm", (VMOVv4i32 QPR:$Vd, nImmVMOVI32:$imm, pred:$p)>; def : NEONInstAlias<"vmov${p}.f32 $Vd, $imm", (VMOVv2i32 DPR:$Vd, nImmVMOVI32:$imm, pred:$p)>; // ARMv8.6a BFloat16 instructions. let Predicates = [HasBF16, HasNEON] in { class BF16VDOT op27_23, bits<2> op21_20, bit op6, dag oops, dag iops, list pattern> : N3Vnp { let DecoderNamespace = "VFPV8"; } class BF16VDOTS : BF16VDOT<0b11000, 0b00, Q, (outs RegTy:$dst), (ins RegTy:$Vd, RegTy:$Vn, RegTy:$Vm), [(set (AccumTy RegTy:$dst), (int_arm_neon_bfdot (AccumTy RegTy:$Vd), (InputTy RegTy:$Vn), (InputTy RegTy:$Vm)))]> { let Constraints = "$dst = $Vd"; let AsmString = !strconcat(opc, ".bf16", "\t$Vd, $Vn, $Vm"); let DecoderNamespace = "VFPV8"; } multiclass BF16VDOTI { def "" : BF16VDOT<0b11100, 0b00, Q, (outs RegTy:$dst), (ins RegTy:$Vd, RegTy:$Vn, DPR_VFP2:$Vm, VectorIndex32:$lane), []> { bit lane; let Inst{5} = lane; let Constraints = "$dst = $Vd"; let AsmString = !strconcat(opc, ".bf16", "\t$Vd, $Vn, $Vm$lane"); let DecoderNamespace = "VFPV8"; } def : Pat< (AccumTy (int_arm_neon_bfdot (AccumTy RegTy:$Vd), (InputTy RegTy:$Vn), (InputTy (bitconvert (AccumTy (ARMvduplane (AccumTy RegTy:$Vm), VectorIndex32:$lane)))))), (!cast(NAME) RegTy:$Vd, RegTy:$Vn, RHS, VectorIndex32:$lane)>; } def BF16VDOTS_VDOTD : BF16VDOTS<0, DPR, "vdot", v2f32, v4bf16>; def BF16VDOTS_VDOTQ : BF16VDOTS<1, QPR, "vdot", v4f32, v8bf16>; defm BF16VDOTI_VDOTD : BF16VDOTI<0, DPR, "vdot", v2f32, v4bf16, (v2f32 DPR_VFP2:$Vm)>; defm BF16VDOTI_VDOTQ : BF16VDOTI<1, QPR, "vdot", v4f32, v8bf16, (EXTRACT_SUBREG QPR:$Vm, dsub_0)>; class BF16MM : N3Vnp<0b11000, 0b00, 0b1100, Q, 0, (outs RegTy:$dst), (ins RegTy:$Vd, RegTy:$Vn, RegTy:$Vm), N3RegFrm, IIC_VDOTPROD, "", "", [(set (v4f32 QPR:$dst), (int_arm_neon_bfmmla (v4f32 QPR:$Vd), (v8bf16 QPR:$Vn), (v8bf16 QPR:$Vm)))]> { let Constraints = "$dst = $Vd"; let AsmString = !strconcat(opc, ".bf16", "\t$Vd, $Vn, $Vm"); let DecoderNamespace = "VFPV8"; } def VMMLA : BF16MM<1, QPR, "vmmla">; class VBF16MALQ : N3VCP8<0b00, 0b11, T, 1, (outs QPR:$dst), (ins QPR:$Vd, QPR:$Vn, QPR:$Vm), NoItinerary, "vfma" # suffix, "bf16", "$Vd, $Vn, $Vm", "", [(set (v4f32 QPR:$dst), (OpNode (v4f32 QPR:$Vd), (v8bf16 QPR:$Vn), (v8bf16 QPR:$Vm)))]> { let Constraints = "$dst = $Vd"; let DecoderNamespace = "VFPV8"; } def VBF16MALTQ: VBF16MALQ<1, "t", int_arm_neon_bfmlalt>; def VBF16MALBQ: VBF16MALQ<0, "b", int_arm_neon_bfmlalb>; multiclass VBF16MALQI { def "" : N3VLaneCP8<0, 0b11, T, 1, (outs QPR:$dst), (ins QPR:$Vd, QPR:$Vn, DPR_8:$Vm, VectorIndex16:$idx), IIC_VMACD, "vfma" # suffix, "bf16", "$Vd, $Vn, $Vm$idx", "", []> { bits<2> idx; let Inst{5} = idx{1}; let Inst{3} = idx{0}; let Constraints = "$dst = $Vd"; let DecoderNamespace = "VFPV8"; } def : Pat< (v4f32 (OpNode (v4f32 QPR:$Vd), (v8bf16 QPR:$Vn), (v8bf16 (ARMvduplane (v8bf16 QPR:$Vm), VectorIndex16:$lane)))), (!cast(NAME) QPR:$Vd, QPR:$Vn, (EXTRACT_SUBREG QPR:$Vm, (DSubReg_i16_reg VectorIndex16:$lane)), (SubReg_i16_lane VectorIndex16:$lane))>; } defm VBF16MALTQI: VBF16MALQI<1, "t", int_arm_neon_bfmlalt>; defm VBF16MALBQI: VBF16MALQI<0, "b", int_arm_neon_bfmlalb>; def BF16_VCVT : N2V<0b11, 0b11, 0b01, 0b10, 0b01100, 1, 0, (outs DPR:$Vd), (ins QPR:$Vm), NoItinerary, "vcvt", "bf16.f32", "$Vd, $Vm", "", []>; } // End of BFloat16 instructions