// Copyright 2022 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // ----------------------------------------------------------------------------- // File: any_invocable.h // ----------------------------------------------------------------------------- // // This header file defines an `absl::AnyInvocable` type that assumes ownership // and wraps an object of an invocable type. (Invocable types adhere to the // concept specified in https://en.cppreference.com/w/cpp/concepts/invocable.) // // In general, prefer `absl::AnyInvocable` when you need a type-erased // function parameter that needs to take ownership of the type. // // NOTE: `absl::AnyInvocable` is similar to the C++23 `std::move_only_function` // abstraction, but has a slightly different API and is not designed to be a // drop-in replacement or C++11-compatible backfill of that type. // // Credits to Matt Calabrese (https://github.com/mattcalabrese) for the original // implementation. #ifndef ABSL_FUNCTIONAL_ANY_INVOCABLE_H_ #define ABSL_FUNCTIONAL_ANY_INVOCABLE_H_ #include #include #include #include #include #include "absl/base/config.h" #include "absl/functional/internal/any_invocable.h" #include "absl/meta/type_traits.h" #include "absl/utility/utility.h" namespace absl { ABSL_NAMESPACE_BEGIN // absl::AnyInvocable // // `absl::AnyInvocable` is a functional wrapper type, like `std::function`, that // assumes ownership of an invocable object. Unlike `std::function`, an // `absl::AnyInvocable` is more type-safe and provides the following additional // benefits: // // * Properly adheres to const correctness of the underlying type // * Is move-only so avoids concurrency problems with copied invocables and // unnecessary copies in general. // * Supports reference qualifiers allowing it to perform unique actions (noted // below). // // `absl::AnyInvocable` is a template, and an `absl::AnyInvocable` instantiation // may wrap any invocable object with a compatible function signature, e.g. // having arguments and return types convertible to types matching the // `absl::AnyInvocable` signature, and also matching any stated reference // qualifiers, as long as that type is moveable. It therefore provides broad // type erasure for functional objects. // // An `absl::AnyInvocable` is typically used as a type-erased function parameter // for accepting various functional objects: // // // Define a function taking an AnyInvocable parameter. // void my_func(absl::AnyInvocable f) { // ... // }; // // // That function can accept any invocable type: // // // Accept a function reference. We don't need to move a reference. // int func1() { return 0; }; // my_func(func1); // // // Accept a lambda. We use std::move here because otherwise my_func would // // copy the lambda. // auto lambda = []() { return 0; }; // my_func(std::move(lambda)); // // // Accept a function pointer. We don't need to move a function pointer. // func2 = &func1; // my_func(func2); // // // Accept an std::function by moving it. Note that the lambda is copyable // // (satisfying std::function requirements) and moveable (satisfying // // absl::AnyInvocable requirements). // std::function func6 = []() { return 0; }; // my_func(std::move(func6)); // // `AnyInvocable` also properly respects `const` qualifiers, reference // qualifiers, and the `noexcept` specification (only in C++ 17 and beyond) as // part of the user-specified function type (e.g. // `AnyInvocable`). These qualifiers will be applied // to the `AnyInvocable` object's `operator()`, and the underlying invocable // must be compatible with those qualifiers. // // Comparison of const and non-const function types: // // // Store a closure inside of `func` with the function type `int()`. // // Note that we have made `func` itself `const`. // const AnyInvocable func = [](){ return 0; }; // // func(); // Compile-error: the passed type `int()` isn't `const`. // // // Store a closure inside of `const_func` with the function type // // `int() const`. // // Note that we have also made `const_func` itself `const`. // const AnyInvocable const_func = [](){ return 0; }; // // const_func(); // Fine: `int() const` is `const`. // // In the above example, the call `func()` would have compiled if // `std::function` were used even though the types are not const compatible. // This is a bug, and using `absl::AnyInvocable` properly detects that bug. // // In addition to affecting the signature of `operator()`, the `const` and // reference qualifiers of the function type also appropriately constrain which // kinds of invocable objects you are allowed to place into the `AnyInvocable` // instance. If you specify a function type that is const-qualified, then // anything that you attempt to put into the `AnyInvocable` must be callable on // a `const` instance of that type. // // Constraint example: // // // Fine because the lambda is callable when `const`. // AnyInvocable func = [=](){ return 0; }; // // // This is a compile-error because the lambda isn't callable when `const`. // AnyInvocable error = [=]() mutable { return 0; }; // // An `&&` qualifier can be used to express that an `absl::AnyInvocable` // instance should be invoked at most once: // // // Invokes `continuation` with the logical result of an operation when // // that operation completes (common in asynchronous code). // void CallOnCompletion(AnyInvocable continuation) { // int result_of_foo = foo(); // // // `std::move` is required because the `operator()` of `continuation` is // // rvalue-reference qualified. // std::move(continuation)(result_of_foo); // } // // Attempting to call `absl::AnyInvocable` multiple times in such a case // results in undefined behavior. // // Invoking an empty `absl::AnyInvocable` results in undefined behavior: // // // Create an empty instance using the default constructor. // AnyInvocable empty; // empty(); // WARNING: Undefined behavior! template class AnyInvocable : private internal_any_invocable::Impl { private: static_assert( std::is_function::value, "The template argument of AnyInvocable must be a function type."); using Impl = internal_any_invocable::Impl; public: // The return type of Sig using result_type = typename Impl::result_type; // Constructors // Constructs the `AnyInvocable` in an empty state. // Invoking it results in undefined behavior. AnyInvocable() noexcept = default; AnyInvocable(std::nullptr_t) noexcept {} // NOLINT // Constructs the `AnyInvocable` from an existing `AnyInvocable` by a move. // Note that `f` is not guaranteed to be empty after move-construction, // although it may be. AnyInvocable(AnyInvocable&& /*f*/) noexcept = default; // Constructs an `AnyInvocable` from an invocable object. // // Upon construction, `*this` is only empty if `f` is a function pointer or // member pointer type and is null, or if `f` is an `AnyInvocable` that is // empty. template ::value>> AnyInvocable(F&& f) // NOLINT : Impl(internal_any_invocable::ConversionConstruct(), std::forward(f)) {} // Constructs an `AnyInvocable` that holds an invocable object of type `T`, // which is constructed in-place from the given arguments. // // Example: // // AnyInvocable func( // absl::in_place_type, arg1, arg2); // template ::value>> explicit AnyInvocable(absl::in_place_type_t, Args&&... args) : Impl(absl::in_place_type>, std::forward(args)...) { static_assert(std::is_same>::value, "The explicit template argument of in_place_type is required " "to be an unqualified object type."); } // Overload of the above constructor to support list-initialization. template &, Args...>::value>> explicit AnyInvocable(absl::in_place_type_t, std::initializer_list ilist, Args&&... args) : Impl(absl::in_place_type>, ilist, std::forward(args)...) { static_assert(std::is_same>::value, "The explicit template argument of in_place_type is required " "to be an unqualified object type."); } // Assignment Operators // Assigns an `AnyInvocable` through move-assignment. // Note that `f` is not guaranteed to be empty after move-assignment // although it may be. AnyInvocable& operator=(AnyInvocable&& /*f*/) noexcept = default; // Assigns an `AnyInvocable` from a nullptr, clearing the `AnyInvocable`. If // not empty, destroys the target, putting `*this` into an empty state. AnyInvocable& operator=(std::nullptr_t) noexcept { this->Clear(); return *this; } // Assigns an `AnyInvocable` from an existing `AnyInvocable` instance. // // Upon assignment, `*this` is only empty if `f` is a function pointer or // member pointer type and is null, or if `f` is an `AnyInvocable` that is // empty. template ::value>> AnyInvocable& operator=(F&& f) { *this = AnyInvocable(std::forward(f)); return *this; } // Assigns an `AnyInvocable` from a reference to an invocable object. // Upon assignment, stores a reference to the invocable object in the // `AnyInvocable` instance. template < class F, typename = absl::enable_if_t< internal_any_invocable::CanAssignReferenceWrapper::value>> AnyInvocable& operator=(std::reference_wrapper f) noexcept { *this = AnyInvocable(f); return *this; } // Destructor // If not empty, destroys the target. ~AnyInvocable() = default; // absl::AnyInvocable::swap() // // Exchanges the targets of `*this` and `other`. void swap(AnyInvocable& other) noexcept { std::swap(*this, other); } // absl::AnyInvocable::operator bool() // // Returns `true` if `*this` is not empty. // // WARNING: An `AnyInvocable` that wraps an empty `std::function` is not // itself empty. This behavior is consistent with the standard equivalent // `std::move_only_function`. // // In other words: // std::function f; // empty // absl::AnyInvocable a = std::move(f); // not empty // // Invoking an empty `AnyInvocable` results in undefined behavior. explicit operator bool() const noexcept { return this->HasValue(); } // Invokes the target object of `*this`. `*this` must not be empty. // // Note: The signature of this function call operator is the same as the // template parameter `Sig`. using Impl::operator(); // Equality operators // Returns `true` if `*this` is empty. friend bool operator==(const AnyInvocable& f, std::nullptr_t) noexcept { return !f.HasValue(); } // Returns `true` if `*this` is empty. friend bool operator==(std::nullptr_t, const AnyInvocable& f) noexcept { return !f.HasValue(); } // Returns `false` if `*this` is empty. friend bool operator!=(const AnyInvocable& f, std::nullptr_t) noexcept { return f.HasValue(); } // Returns `false` if `*this` is empty. friend bool operator!=(std::nullptr_t, const AnyInvocable& f) noexcept { return f.HasValue(); } // swap() // // Exchanges the targets of `f1` and `f2`. friend void swap(AnyInvocable& f1, AnyInvocable& f2) noexcept { f1.swap(f2); } private: // Friending other instantiations is necessary for conversions. template friend class internal_any_invocable::CoreImpl; }; ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_FUNCTIONAL_ANY_INVOCABLE_H_