// Copyright 2024 The Abseil Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef ABSL_DEBUGGING_INTERNAL_BOUNDED_UTF8_LENGTH_SEQUENCE_H_ #define ABSL_DEBUGGING_INTERNAL_BOUNDED_UTF8_LENGTH_SEQUENCE_H_ #include #include "absl/base/config.h" #include "absl/numeric/bits.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace debugging_internal { // A sequence of up to max_elements integers between 1 and 4 inclusive, whose // insertion operation computes the sum of all the elements before the insertion // point. This is useful in decoding Punycode, where one needs to know where in // a UTF-8 byte stream the n-th code point begins. // // BoundedUtf8LengthSequence is async-signal-safe and suitable for use in // symbolizing stack traces in a signal handler, provided max_elements is not // improvidently large. For inputs of lengths accepted by the Rust demangler, // up to a couple hundred code points, InsertAndReturnSumOfPredecessors should // run in a few dozen clock cycles, on par with the other arithmetic required // for Punycode decoding. template class BoundedUtf8LengthSequence { public: // Constructs an empty sequence. BoundedUtf8LengthSequence() = default; // Inserts `utf_length` at position `index`, shifting any existing elements at // or beyond `index` one position to the right. If the sequence is already // full, the rightmost element is discarded. // // Returns the sum of the elements at positions 0 to `index - 1` inclusive. // If `index` is greater than the number of elements already inserted, the // excess positions in the range count 1 apiece. // // REQUIRES: index < max_elements and 1 <= utf8_length <= 4. uint32_t InsertAndReturnSumOfPredecessors( uint32_t index, uint32_t utf8_length) { // The caller shouldn't pass out-of-bounds inputs, but if it does happen, // clamp the values and try to continue. If we're being called from a // signal handler, the last thing we want to do is crash. Emitting // malformed UTF-8 is a lesser evil. if (index >= max_elements) index = max_elements - 1; if (utf8_length == 0 || utf8_length > 4) utf8_length = 1; const uint32_t word_index = index/32; const uint32_t bit_index = 2 * (index % 32); const uint64_t ones_bit = uint64_t{1} << bit_index; // Compute the sum of predecessors. // - Each value from 1 to 4 is represented by a bit field with value from // 0 to 3, so the desired sum is index plus the sum of the // representations actually stored. // - For each bit field, a set low bit should contribute 1 to the sum, and // a set high bit should contribute 2. // - Another way to say the same thing is that each set bit contributes 1, // and each set high bit contributes an additional 1. // - So the sum we want is index + popcount(everything) + popcount(bits in // odd positions). const uint64_t odd_bits_mask = 0xaaaaaaaaaaaaaaaa; const uint64_t lower_seminibbles_mask = ones_bit - 1; const uint64_t higher_seminibbles_mask = ~lower_seminibbles_mask; const uint64_t same_word_bits_below_insertion = rep_[word_index] & lower_seminibbles_mask; int full_popcount = absl::popcount(same_word_bits_below_insertion); int odd_popcount = absl::popcount(same_word_bits_below_insertion & odd_bits_mask); for (uint32_t j = word_index; j > 0; --j) { const uint64_t word_below_insertion = rep_[j - 1]; full_popcount += absl::popcount(word_below_insertion); odd_popcount += absl::popcount(word_below_insertion & odd_bits_mask); } const uint32_t sum_of_predecessors = index + static_cast(full_popcount + odd_popcount); // Now insert utf8_length's representation, shifting successors up one // place. for (uint32_t j = max_elements/32 - 1; j > word_index; --j) { rep_[j] = (rep_[j] << 2) | (rep_[j - 1] >> 62); } rep_[word_index] = (rep_[word_index] & lower_seminibbles_mask) | (uint64_t{utf8_length - 1} << bit_index) | ((rep_[word_index] & higher_seminibbles_mask) << 2); return sum_of_predecessors; } private: // If the (32 * i + j)-th element of the represented sequence has the value k // (0 <= j < 32, 1 <= k <= 4), then bits 2 * j and 2 * j + 1 of rep_[i] // contain the seminibble (k - 1). // // In particular, the zero-initialization of rep_ makes positions not holding // any inserted element count as 1 in InsertAndReturnSumOfPredecessors. // // Example: rep_ = {0xb1, ... the rest zeroes ...} represents the sequence // (2, 1, 4, 3, ... the rest 1's ...). Constructing the sequence of Unicode // code points "Àa🂻中" = {U+00C0, U+0061, U+1F0BB, U+4E2D} (among many // other examples) would yield this value of rep_. static_assert(max_elements > 0 && max_elements % 32 == 0, "max_elements must be a positive multiple of 32"); uint64_t rep_[max_elements/32] = {}; }; } // namespace debugging_internal ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_DEBUGGING_INTERNAL_BOUNDED_UTF8_LENGTH_SEQUENCE_H_