// Copyright 2019 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // ----------------------------------------------------------------------------- // File: inlined_vector.h // ----------------------------------------------------------------------------- // // This header file contains the declaration and definition of an "inlined // vector" which behaves in an equivalent fashion to a `std::vector`, except // that storage for small sequences of the vector are provided inline without // requiring any heap allocation. // // An `absl::InlinedVector` specifies the default capacity `N` as one of // its template parameters. Instances where `size() <= N` hold contained // elements in inline space. Typically `N` is very small so that sequences that // are expected to be short do not require allocations. // // An `absl::InlinedVector` does not usually require a specific allocator. If // the inlined vector grows beyond its initial constraints, it will need to // allocate (as any normal `std::vector` would). This is usually performed with // the default allocator (defined as `std::allocator`). Optionally, a custom // allocator type may be specified as `A` in `absl::InlinedVector`. #ifndef ABSL_CONTAINER_INLINED_VECTOR_H_ #define ABSL_CONTAINER_INLINED_VECTOR_H_ #include #include #include #include #include #include #include #include #include #include "absl/algorithm/algorithm.h" #include "absl/base/internal/throw_delegate.h" #include "absl/base/macros.h" #include "absl/base/optimization.h" #include "absl/base/port.h" #include "absl/container/internal/inlined_vector.h" #include "absl/memory/memory.h" #include "absl/meta/type_traits.h" namespace absl { ABSL_NAMESPACE_BEGIN // ----------------------------------------------------------------------------- // InlinedVector // ----------------------------------------------------------------------------- // // An `absl::InlinedVector` is designed to be a drop-in replacement for // `std::vector` for use cases where the vector's size is sufficiently small // that it can be inlined. If the inlined vector does grow beyond its estimated // capacity, it will trigger an initial allocation on the heap, and will behave // as a `std::vector`. The API of the `absl::InlinedVector` within this file is // designed to cover the same API footprint as covered by `std::vector`. template > class InlinedVector { static_assert(N > 0, "`absl::InlinedVector` requires an inlined capacity."); using Storage = inlined_vector_internal::Storage; template using AllocatorTraits = inlined_vector_internal::AllocatorTraits; template using MoveIterator = inlined_vector_internal::MoveIterator; template using IsMoveAssignOk = inlined_vector_internal::IsMoveAssignOk; template using IteratorValueAdapter = inlined_vector_internal::IteratorValueAdapter; template using CopyValueAdapter = inlined_vector_internal::CopyValueAdapter; template using DefaultValueAdapter = inlined_vector_internal::DefaultValueAdapter; template using EnableIfAtLeastForwardIterator = absl::enable_if_t< inlined_vector_internal::IsAtLeastForwardIterator::value, int>; template using DisableIfAtLeastForwardIterator = absl::enable_if_t< !inlined_vector_internal::IsAtLeastForwardIterator::value, int>; using MemcpyPolicy = typename Storage::MemcpyPolicy; using ElementwiseAssignPolicy = typename Storage::ElementwiseAssignPolicy; using ElementwiseConstructPolicy = typename Storage::ElementwiseConstructPolicy; using MoveAssignmentPolicy = typename Storage::MoveAssignmentPolicy; public: using allocator_type = A; using value_type = inlined_vector_internal::ValueType; using pointer = inlined_vector_internal::Pointer; using const_pointer = inlined_vector_internal::ConstPointer; using size_type = inlined_vector_internal::SizeType; using difference_type = inlined_vector_internal::DifferenceType; using reference = inlined_vector_internal::Reference; using const_reference = inlined_vector_internal::ConstReference; using iterator = inlined_vector_internal::Iterator; using const_iterator = inlined_vector_internal::ConstIterator; using reverse_iterator = inlined_vector_internal::ReverseIterator; using const_reverse_iterator = inlined_vector_internal::ConstReverseIterator; // --------------------------------------------------------------------------- // InlinedVector Constructors and Destructor // --------------------------------------------------------------------------- // Creates an empty inlined vector with a value-initialized allocator. InlinedVector() noexcept(noexcept(allocator_type())) : storage_() {} // Creates an empty inlined vector with a copy of `allocator`. explicit InlinedVector(const allocator_type& allocator) noexcept : storage_(allocator) {} // Creates an inlined vector with `n` copies of `value_type()`. explicit InlinedVector(size_type n, const allocator_type& allocator = allocator_type()) : storage_(allocator) { storage_.Initialize(DefaultValueAdapter(), n); } // Creates an inlined vector with `n` copies of `v`. InlinedVector(size_type n, const_reference v, const allocator_type& allocator = allocator_type()) : storage_(allocator) { storage_.Initialize(CopyValueAdapter(std::addressof(v)), n); } // Creates an inlined vector with copies of the elements of `list`. InlinedVector(std::initializer_list list, const allocator_type& allocator = allocator_type()) : InlinedVector(list.begin(), list.end(), allocator) {} // Creates an inlined vector with elements constructed from the provided // forward iterator range [`first`, `last`). // // NOTE: the `enable_if` prevents ambiguous interpretation between a call to // this constructor with two integral arguments and a call to the above // `InlinedVector(size_type, const_reference)` constructor. template = 0> InlinedVector(ForwardIterator first, ForwardIterator last, const allocator_type& allocator = allocator_type()) : storage_(allocator) { storage_.Initialize(IteratorValueAdapter(first), static_cast(std::distance(first, last))); } // Creates an inlined vector with elements constructed from the provided input // iterator range [`first`, `last`). template = 0> InlinedVector(InputIterator first, InputIterator last, const allocator_type& allocator = allocator_type()) : storage_(allocator) { std::copy(first, last, std::back_inserter(*this)); } // Creates an inlined vector by copying the contents of `other` using // `other`'s allocator. InlinedVector(const InlinedVector& other) : InlinedVector(other, other.storage_.GetAllocator()) {} // Creates an inlined vector by copying the contents of `other` using the // provided `allocator`. InlinedVector(const InlinedVector& other, const allocator_type& allocator) : storage_(allocator) { // Fast path: if the other vector is empty, there's nothing for us to do. if (other.empty()) { return; } // Fast path: if the value type is trivially copy constructible, we know the // allocator doesn't do anything fancy, and there is nothing on the heap // then we know it is legal for us to simply memcpy the other vector's // inlined bytes to form our copy of its elements. if (absl::is_trivially_copy_constructible::value && std::is_same>::value && !other.storage_.GetIsAllocated()) { storage_.MemcpyFrom(other.storage_); return; } storage_.InitFrom(other.storage_); } // Creates an inlined vector by moving in the contents of `other` without // allocating. If `other` contains allocated memory, the newly-created inlined // vector will take ownership of that memory. However, if `other` does not // contain allocated memory, the newly-created inlined vector will perform // element-wise move construction of the contents of `other`. // // NOTE: since no allocation is performed for the inlined vector in either // case, the `noexcept(...)` specification depends on whether moving the // underlying objects can throw. It is assumed assumed that... // a) move constructors should only throw due to allocation failure. // b) if `value_type`'s move constructor allocates, it uses the same // allocation function as the inlined vector's allocator. // Thus, the move constructor is non-throwing if the allocator is non-throwing // or `value_type`'s move constructor is specified as `noexcept`. InlinedVector(InlinedVector&& other) noexcept( absl::allocator_is_nothrow::value || std::is_nothrow_move_constructible::value) : storage_(other.storage_.GetAllocator()) { // Fast path: if the value type can be trivially relocated (i.e. moved from // and destroyed), and we know the allocator doesn't do anything fancy, then // it's safe for us to simply adopt the contents of the storage for `other` // and remove its own reference to them. It's as if we had individually // move-constructed each value and then destroyed the original. if (absl::is_trivially_relocatable::value && std::is_same>::value) { storage_.MemcpyFrom(other.storage_); other.storage_.SetInlinedSize(0); return; } // Fast path: if the other vector is on the heap, we can simply take over // its allocation. if (other.storage_.GetIsAllocated()) { storage_.SetAllocation({other.storage_.GetAllocatedData(), other.storage_.GetAllocatedCapacity()}); storage_.SetAllocatedSize(other.storage_.GetSize()); other.storage_.SetInlinedSize(0); return; } // Otherwise we must move each element individually. IteratorValueAdapter> other_values( MoveIterator(other.storage_.GetInlinedData())); inlined_vector_internal::ConstructElements( storage_.GetAllocator(), storage_.GetInlinedData(), other_values, other.storage_.GetSize()); storage_.SetInlinedSize(other.storage_.GetSize()); } // Creates an inlined vector by moving in the contents of `other` with a copy // of `allocator`. // // NOTE: if `other`'s allocator is not equal to `allocator`, even if `other` // contains allocated memory, this move constructor will still allocate. Since // allocation is performed, this constructor can only be `noexcept` if the // specified allocator is also `noexcept`. InlinedVector( InlinedVector&& other, const allocator_type& allocator) noexcept(absl::allocator_is_nothrow::value) : storage_(allocator) { // Fast path: if the value type can be trivially relocated (i.e. moved from // and destroyed), and we know the allocator doesn't do anything fancy, then // it's safe for us to simply adopt the contents of the storage for `other` // and remove its own reference to them. It's as if we had individually // move-constructed each value and then destroyed the original. if (absl::is_trivially_relocatable::value && std::is_same>::value) { storage_.MemcpyFrom(other.storage_); other.storage_.SetInlinedSize(0); return; } // Fast path: if the other vector is on the heap and shared the same // allocator, we can simply take over its allocation. if ((storage_.GetAllocator() == other.storage_.GetAllocator()) && other.storage_.GetIsAllocated()) { storage_.SetAllocation({other.storage_.GetAllocatedData(), other.storage_.GetAllocatedCapacity()}); storage_.SetAllocatedSize(other.storage_.GetSize()); other.storage_.SetInlinedSize(0); return; } // Otherwise we must move each element individually. storage_.Initialize( IteratorValueAdapter>(MoveIterator(other.data())), other.size()); } ~InlinedVector() {} // --------------------------------------------------------------------------- // InlinedVector Member Accessors // --------------------------------------------------------------------------- // `InlinedVector::empty()` // // Returns whether the inlined vector contains no elements. bool empty() const noexcept { return !size(); } // `InlinedVector::size()` // // Returns the number of elements in the inlined vector. size_type size() const noexcept { return storage_.GetSize(); } // `InlinedVector::max_size()` // // Returns the maximum number of elements the inlined vector can hold. size_type max_size() const noexcept { // One bit of the size storage is used to indicate whether the inlined // vector contains allocated memory. As a result, the maximum size that the // inlined vector can express is the minimum of the limit of how many // objects we can allocate and std::numeric_limits::max() / 2. return (std::min)(AllocatorTraits::max_size(storage_.GetAllocator()), (std::numeric_limits::max)() / 2); } // `InlinedVector::capacity()` // // Returns the number of elements that could be stored in the inlined vector // without requiring a reallocation. // // NOTE: for most inlined vectors, `capacity()` should be equal to the // template parameter `N`. For inlined vectors which exceed this capacity, // they will no longer be inlined and `capacity()` will equal the capactity of // the allocated memory. size_type capacity() const noexcept { return storage_.GetIsAllocated() ? storage_.GetAllocatedCapacity() : storage_.GetInlinedCapacity(); } // `InlinedVector::data()` // // Returns a `pointer` to the elements of the inlined vector. This pointer // can be used to access and modify the contained elements. // // NOTE: only elements within [`data()`, `data() + size()`) are valid. pointer data() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { return storage_.GetIsAllocated() ? storage_.GetAllocatedData() : storage_.GetInlinedData(); } // Overload of `InlinedVector::data()` that returns a `const_pointer` to the // elements of the inlined vector. This pointer can be used to access but not // modify the contained elements. // // NOTE: only elements within [`data()`, `data() + size()`) are valid. const_pointer data() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { return storage_.GetIsAllocated() ? storage_.GetAllocatedData() : storage_.GetInlinedData(); } // `InlinedVector::operator[](...)` // // Returns a `reference` to the `i`th element of the inlined vector. reference operator[](size_type i) ABSL_ATTRIBUTE_LIFETIME_BOUND { ABSL_HARDENING_ASSERT(i < size()); return data()[i]; } // Overload of `InlinedVector::operator[](...)` that returns a // `const_reference` to the `i`th element of the inlined vector. const_reference operator[](size_type i) const ABSL_ATTRIBUTE_LIFETIME_BOUND { ABSL_HARDENING_ASSERT(i < size()); return data()[i]; } // `InlinedVector::at(...)` // // Returns a `reference` to the `i`th element of the inlined vector. // // NOTE: if `i` is not within the required range of `InlinedVector::at(...)`, // in both debug and non-debug builds, `std::out_of_range` will be thrown. reference at(size_type i) ABSL_ATTRIBUTE_LIFETIME_BOUND { if (ABSL_PREDICT_FALSE(i >= size())) { base_internal::ThrowStdOutOfRange( "`InlinedVector::at(size_type)` failed bounds check"); } return data()[i]; } // Overload of `InlinedVector::at(...)` that returns a `const_reference` to // the `i`th element of the inlined vector. // // NOTE: if `i` is not within the required range of `InlinedVector::at(...)`, // in both debug and non-debug builds, `std::out_of_range` will be thrown. const_reference at(size_type i) const ABSL_ATTRIBUTE_LIFETIME_BOUND { if (ABSL_PREDICT_FALSE(i >= size())) { base_internal::ThrowStdOutOfRange( "`InlinedVector::at(size_type) const` failed bounds check"); } return data()[i]; } // `InlinedVector::front()` // // Returns a `reference` to the first element of the inlined vector. reference front() ABSL_ATTRIBUTE_LIFETIME_BOUND { ABSL_HARDENING_ASSERT(!empty()); return data()[0]; } // Overload of `InlinedVector::front()` that returns a `const_reference` to // the first element of the inlined vector. const_reference front() const ABSL_ATTRIBUTE_LIFETIME_BOUND { ABSL_HARDENING_ASSERT(!empty()); return data()[0]; } // `InlinedVector::back()` // // Returns a `reference` to the last element of the inlined vector. reference back() ABSL_ATTRIBUTE_LIFETIME_BOUND { ABSL_HARDENING_ASSERT(!empty()); return data()[size() - 1]; } // Overload of `InlinedVector::back()` that returns a `const_reference` to the // last element of the inlined vector. const_reference back() const ABSL_ATTRIBUTE_LIFETIME_BOUND { ABSL_HARDENING_ASSERT(!empty()); return data()[size() - 1]; } // `InlinedVector::begin()` // // Returns an `iterator` to the beginning of the inlined vector. iterator begin() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { return data(); } // Overload of `InlinedVector::begin()` that returns a `const_iterator` to // the beginning of the inlined vector. const_iterator begin() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { return data(); } // `InlinedVector::end()` // // Returns an `iterator` to the end of the inlined vector. iterator end() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { return data() + size(); } // Overload of `InlinedVector::end()` that returns a `const_iterator` to the // end of the inlined vector. const_iterator end() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { return data() + size(); } // `InlinedVector::cbegin()` // // Returns a `const_iterator` to the beginning of the inlined vector. const_iterator cbegin() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { return begin(); } // `InlinedVector::cend()` // // Returns a `const_iterator` to the end of the inlined vector. const_iterator cend() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { return end(); } // `InlinedVector::rbegin()` // // Returns a `reverse_iterator` from the end of the inlined vector. reverse_iterator rbegin() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { return reverse_iterator(end()); } // Overload of `InlinedVector::rbegin()` that returns a // `const_reverse_iterator` from the end of the inlined vector. const_reverse_iterator rbegin() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { return const_reverse_iterator(end()); } // `InlinedVector::rend()` // // Returns a `reverse_iterator` from the beginning of the inlined vector. reverse_iterator rend() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { return reverse_iterator(begin()); } // Overload of `InlinedVector::rend()` that returns a `const_reverse_iterator` // from the beginning of the inlined vector. const_reverse_iterator rend() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { return const_reverse_iterator(begin()); } // `InlinedVector::crbegin()` // // Returns a `const_reverse_iterator` from the end of the inlined vector. const_reverse_iterator crbegin() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { return rbegin(); } // `InlinedVector::crend()` // // Returns a `const_reverse_iterator` from the beginning of the inlined // vector. const_reverse_iterator crend() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { return rend(); } // `InlinedVector::get_allocator()` // // Returns a copy of the inlined vector's allocator. allocator_type get_allocator() const { return storage_.GetAllocator(); } // --------------------------------------------------------------------------- // InlinedVector Member Mutators // --------------------------------------------------------------------------- // `InlinedVector::operator=(...)` // // Replaces the elements of the inlined vector with copies of the elements of // `list`. InlinedVector& operator=(std::initializer_list list) { assign(list.begin(), list.end()); return *this; } // Overload of `InlinedVector::operator=(...)` that replaces the elements of // the inlined vector with copies of the elements of `other`. InlinedVector& operator=(const InlinedVector& other) { if (ABSL_PREDICT_TRUE(this != std::addressof(other))) { const_pointer other_data = other.data(); assign(other_data, other_data + other.size()); } return *this; } // Overload of `InlinedVector::operator=(...)` that moves the elements of // `other` into the inlined vector. // // NOTE: as a result of calling this overload, `other` is left in a valid but // unspecified state. InlinedVector& operator=(InlinedVector&& other) { if (ABSL_PREDICT_TRUE(this != std::addressof(other))) { MoveAssignment(MoveAssignmentPolicy{}, std::move(other)); } return *this; } // `InlinedVector::assign(...)` // // Replaces the contents of the inlined vector with `n` copies of `v`. void assign(size_type n, const_reference v) { storage_.Assign(CopyValueAdapter(std::addressof(v)), n); } // Overload of `InlinedVector::assign(...)` that replaces the contents of the // inlined vector with copies of the elements of `list`. void assign(std::initializer_list list) { assign(list.begin(), list.end()); } // Overload of `InlinedVector::assign(...)` to replace the contents of the // inlined vector with the range [`first`, `last`). // // NOTE: this overload is for iterators that are "forward" category or better. template = 0> void assign(ForwardIterator first, ForwardIterator last) { storage_.Assign(IteratorValueAdapter(first), static_cast(std::distance(first, last))); } // Overload of `InlinedVector::assign(...)` to replace the contents of the // inlined vector with the range [`first`, `last`). // // NOTE: this overload is for iterators that are "input" category. template = 0> void assign(InputIterator first, InputIterator last) { size_type i = 0; for (; i < size() && first != last; ++i, static_cast(++first)) { data()[i] = *first; } erase(data() + i, data() + size()); std::copy(first, last, std::back_inserter(*this)); } // `InlinedVector::resize(...)` // // Resizes the inlined vector to contain `n` elements. // // NOTE: If `n` is smaller than `size()`, extra elements are destroyed. If `n` // is larger than `size()`, new elements are value-initialized. void resize(size_type n) { ABSL_HARDENING_ASSERT(n <= max_size()); storage_.Resize(DefaultValueAdapter(), n); } // Overload of `InlinedVector::resize(...)` that resizes the inlined vector to // contain `n` elements. // // NOTE: if `n` is smaller than `size()`, extra elements are destroyed. If `n` // is larger than `size()`, new elements are copied-constructed from `v`. void resize(size_type n, const_reference v) { ABSL_HARDENING_ASSERT(n <= max_size()); storage_.Resize(CopyValueAdapter(std::addressof(v)), n); } // `InlinedVector::insert(...)` // // Inserts a copy of `v` at `pos`, returning an `iterator` to the newly // inserted element. iterator insert(const_iterator pos, const_reference v) ABSL_ATTRIBUTE_LIFETIME_BOUND { return emplace(pos, v); } // Overload of `InlinedVector::insert(...)` that inserts `v` at `pos` using // move semantics, returning an `iterator` to the newly inserted element. iterator insert(const_iterator pos, value_type&& v) ABSL_ATTRIBUTE_LIFETIME_BOUND { return emplace(pos, std::move(v)); } // Overload of `InlinedVector::insert(...)` that inserts `n` contiguous copies // of `v` starting at `pos`, returning an `iterator` pointing to the first of // the newly inserted elements. iterator insert(const_iterator pos, size_type n, const_reference v) ABSL_ATTRIBUTE_LIFETIME_BOUND { ABSL_HARDENING_ASSERT(pos >= begin()); ABSL_HARDENING_ASSERT(pos <= end()); if (ABSL_PREDICT_TRUE(n != 0)) { value_type dealias = v; // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102329#c2 // It appears that GCC thinks that since `pos` is a const pointer and may // point to uninitialized memory at this point, a warning should be // issued. But `pos` is actually only used to compute an array index to // write to. #if !defined(__clang__) && defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wmaybe-uninitialized" #endif return storage_.Insert(pos, CopyValueAdapter(std::addressof(dealias)), n); #if !defined(__clang__) && defined(__GNUC__) #pragma GCC diagnostic pop #endif } else { return const_cast(pos); } } // Overload of `InlinedVector::insert(...)` that inserts copies of the // elements of `list` starting at `pos`, returning an `iterator` pointing to // the first of the newly inserted elements. iterator insert(const_iterator pos, std::initializer_list list) ABSL_ATTRIBUTE_LIFETIME_BOUND { return insert(pos, list.begin(), list.end()); } // Overload of `InlinedVector::insert(...)` that inserts the range [`first`, // `last`) starting at `pos`, returning an `iterator` pointing to the first // of the newly inserted elements. // // NOTE: this overload is for iterators that are "forward" category or better. template = 0> iterator insert(const_iterator pos, ForwardIterator first, ForwardIterator last) ABSL_ATTRIBUTE_LIFETIME_BOUND { ABSL_HARDENING_ASSERT(pos >= begin()); ABSL_HARDENING_ASSERT(pos <= end()); if (ABSL_PREDICT_TRUE(first != last)) { return storage_.Insert( pos, IteratorValueAdapter(first), static_cast(std::distance(first, last))); } else { return const_cast(pos); } } // Overload of `InlinedVector::insert(...)` that inserts the range [`first`, // `last`) starting at `pos`, returning an `iterator` pointing to the first // of the newly inserted elements. // // NOTE: this overload is for iterators that are "input" category. template = 0> iterator insert(const_iterator pos, InputIterator first, InputIterator last) ABSL_ATTRIBUTE_LIFETIME_BOUND { ABSL_HARDENING_ASSERT(pos >= begin()); ABSL_HARDENING_ASSERT(pos <= end()); size_type index = static_cast(std::distance(cbegin(), pos)); for (size_type i = index; first != last; ++i, static_cast(++first)) { insert(data() + i, *first); } return iterator(data() + index); } // `InlinedVector::emplace(...)` // // Constructs and inserts an element using `args...` in the inlined vector at // `pos`, returning an `iterator` pointing to the newly emplaced element. template iterator emplace(const_iterator pos, Args&&... args) ABSL_ATTRIBUTE_LIFETIME_BOUND { ABSL_HARDENING_ASSERT(pos >= begin()); ABSL_HARDENING_ASSERT(pos <= end()); value_type dealias(std::forward(args)...); // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102329#c2 // It appears that GCC thinks that since `pos` is a const pointer and may // point to uninitialized memory at this point, a warning should be // issued. But `pos` is actually only used to compute an array index to // write to. #if !defined(__clang__) && defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wmaybe-uninitialized" #endif return storage_.Insert(pos, IteratorValueAdapter>( MoveIterator(std::addressof(dealias))), 1); #if !defined(__clang__) && defined(__GNUC__) #pragma GCC diagnostic pop #endif } // `InlinedVector::emplace_back(...)` // // Constructs and inserts an element using `args...` in the inlined vector at // `end()`, returning a `reference` to the newly emplaced element. template reference emplace_back(Args&&... args) ABSL_ATTRIBUTE_LIFETIME_BOUND { return storage_.EmplaceBack(std::forward(args)...); } // `InlinedVector::push_back(...)` // // Inserts a copy of `v` in the inlined vector at `end()`. void push_back(const_reference v) { static_cast(emplace_back(v)); } // Overload of `InlinedVector::push_back(...)` for inserting `v` at `end()` // using move semantics. void push_back(value_type&& v) { static_cast(emplace_back(std::move(v))); } // `InlinedVector::pop_back()` // // Destroys the element at `back()`, reducing the size by `1`. void pop_back() noexcept { ABSL_HARDENING_ASSERT(!empty()); AllocatorTraits::destroy(storage_.GetAllocator(), data() + (size() - 1)); storage_.SubtractSize(1); } // `InlinedVector::erase(...)` // // Erases the element at `pos`, returning an `iterator` pointing to where the // erased element was located. // // NOTE: may return `end()`, which is not dereferenceable. iterator erase(const_iterator pos) ABSL_ATTRIBUTE_LIFETIME_BOUND { ABSL_HARDENING_ASSERT(pos >= begin()); ABSL_HARDENING_ASSERT(pos < end()); // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102329#c2 // It appears that GCC thinks that since `pos` is a const pointer and may // point to uninitialized memory at this point, a warning should be // issued. But `pos` is actually only used to compute an array index to // write to. #if !defined(__clang__) && defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wmaybe-uninitialized" #pragma GCC diagnostic ignored "-Wuninitialized" #endif return storage_.Erase(pos, pos + 1); #if !defined(__clang__) && defined(__GNUC__) #pragma GCC diagnostic pop #endif } // Overload of `InlinedVector::erase(...)` that erases every element in the // range [`from`, `to`), returning an `iterator` pointing to where the first // erased element was located. // // NOTE: may return `end()`, which is not dereferenceable. iterator erase(const_iterator from, const_iterator to) ABSL_ATTRIBUTE_LIFETIME_BOUND { ABSL_HARDENING_ASSERT(from >= begin()); ABSL_HARDENING_ASSERT(from <= to); ABSL_HARDENING_ASSERT(to <= end()); if (ABSL_PREDICT_TRUE(from != to)) { return storage_.Erase(from, to); } else { return const_cast(from); } } // `InlinedVector::clear()` // // Destroys all elements in the inlined vector, setting the size to `0` and // deallocating any held memory. void clear() noexcept { inlined_vector_internal::DestroyAdapter::DestroyElements( storage_.GetAllocator(), data(), size()); storage_.DeallocateIfAllocated(); storage_.SetInlinedSize(0); } // `InlinedVector::reserve(...)` // // Ensures that there is enough room for at least `n` elements. void reserve(size_type n) { storage_.Reserve(n); } // `InlinedVector::shrink_to_fit()` // // Attempts to reduce memory usage by moving elements to (or keeping elements // in) the smallest available buffer sufficient for containing `size()` // elements. // // If `size()` is sufficiently small, the elements will be moved into (or kept // in) the inlined space. void shrink_to_fit() { if (storage_.GetIsAllocated()) { storage_.ShrinkToFit(); } } // `InlinedVector::swap(...)` // // Swaps the contents of the inlined vector with `other`. void swap(InlinedVector& other) { if (ABSL_PREDICT_TRUE(this != std::addressof(other))) { storage_.Swap(std::addressof(other.storage_)); } } private: template friend H AbslHashValue(H h, const absl::InlinedVector& a); void MoveAssignment(MemcpyPolicy, InlinedVector&& other) { // Assumption check: we shouldn't be told to use memcpy to implement move // assignment unless we have trivially destructible elements and an // allocator that does nothing fancy. static_assert(absl::is_trivially_destructible::value, ""); static_assert(std::is_same>::value, ""); // Throw away our existing heap allocation, if any. There is no need to // destroy the existing elements one by one because we know they are // trivially destructible. storage_.DeallocateIfAllocated(); // Adopt the other vector's inline elements or heap allocation. storage_.MemcpyFrom(other.storage_); other.storage_.SetInlinedSize(0); } // Destroy our existing elements, if any, and adopt the heap-allocated // elements of the other vector. // // REQUIRES: other.storage_.GetIsAllocated() void DestroyExistingAndAdopt(InlinedVector&& other) { ABSL_HARDENING_ASSERT(other.storage_.GetIsAllocated()); inlined_vector_internal::DestroyAdapter::DestroyElements( storage_.GetAllocator(), data(), size()); storage_.DeallocateIfAllocated(); storage_.MemcpyFrom(other.storage_); other.storage_.SetInlinedSize(0); } void MoveAssignment(ElementwiseAssignPolicy, InlinedVector&& other) { // Fast path: if the other vector is on the heap then we don't worry about // actually move-assigning each element. Instead we only throw away our own // existing elements and adopt the heap allocation of the other vector. if (other.storage_.GetIsAllocated()) { DestroyExistingAndAdopt(std::move(other)); return; } storage_.Assign(IteratorValueAdapter>( MoveIterator(other.storage_.GetInlinedData())), other.size()); } void MoveAssignment(ElementwiseConstructPolicy, InlinedVector&& other) { // Fast path: if the other vector is on the heap then we don't worry about // actually move-assigning each element. Instead we only throw away our own // existing elements and adopt the heap allocation of the other vector. if (other.storage_.GetIsAllocated()) { DestroyExistingAndAdopt(std::move(other)); return; } inlined_vector_internal::DestroyAdapter::DestroyElements( storage_.GetAllocator(), data(), size()); storage_.DeallocateIfAllocated(); IteratorValueAdapter> other_values( MoveIterator(other.storage_.GetInlinedData())); inlined_vector_internal::ConstructElements( storage_.GetAllocator(), storage_.GetInlinedData(), other_values, other.storage_.GetSize()); storage_.SetInlinedSize(other.storage_.GetSize()); } Storage storage_; }; // ----------------------------------------------------------------------------- // InlinedVector Non-Member Functions // ----------------------------------------------------------------------------- // `swap(...)` // // Swaps the contents of two inlined vectors. template void swap(absl::InlinedVector& a, absl::InlinedVector& b) noexcept(noexcept(a.swap(b))) { a.swap(b); } // `operator==(...)` // // Tests for value-equality of two inlined vectors. template bool operator==(const absl::InlinedVector& a, const absl::InlinedVector& b) { auto a_data = a.data(); auto b_data = b.data(); return std::equal(a_data, a_data + a.size(), b_data, b_data + b.size()); } // `operator!=(...)` // // Tests for value-inequality of two inlined vectors. template bool operator!=(const absl::InlinedVector& a, const absl::InlinedVector& b) { return !(a == b); } // `operator<(...)` // // Tests whether the value of an inlined vector is less than the value of // another inlined vector using a lexicographical comparison algorithm. template bool operator<(const absl::InlinedVector& a, const absl::InlinedVector& b) { auto a_data = a.data(); auto b_data = b.data(); return std::lexicographical_compare(a_data, a_data + a.size(), b_data, b_data + b.size()); } // `operator>(...)` // // Tests whether the value of an inlined vector is greater than the value of // another inlined vector using a lexicographical comparison algorithm. template bool operator>(const absl::InlinedVector& a, const absl::InlinedVector& b) { return b < a; } // `operator<=(...)` // // Tests whether the value of an inlined vector is less than or equal to the // value of another inlined vector using a lexicographical comparison algorithm. template bool operator<=(const absl::InlinedVector& a, const absl::InlinedVector& b) { return !(b < a); } // `operator>=(...)` // // Tests whether the value of an inlined vector is greater than or equal to the // value of another inlined vector using a lexicographical comparison algorithm. template bool operator>=(const absl::InlinedVector& a, const absl::InlinedVector& b) { return !(a < b); } // `AbslHashValue(...)` // // Provides `absl::Hash` support for `absl::InlinedVector`. It is uncommon to // call this directly. template H AbslHashValue(H h, const absl::InlinedVector& a) { auto size = a.size(); return H::combine(H::combine_contiguous(std::move(h), a.data(), size), size); } ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_CONTAINER_INLINED_VECTOR_H_