//====- SHA1.cpp - Private copy of the SHA1 implementation ---*- C++ -* ======// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This code is taken from public domain // (http://oauth.googlecode.com/svn/code/c/liboauth/src/sha1.c and // http://cvsweb.netbsd.org/bsdweb.cgi/src/common/lib/libc/hash/sha1/sha1.c?rev=1.6) // and modified by wrapping it in a C++ interface for LLVM, // and removing unnecessary code. // //===----------------------------------------------------------------------===// #include "llvm/Support/SHA1.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/Endian.h" #include "llvm/Support/Host.h" #include using namespace llvm; #if defined(BYTE_ORDER) && defined(BIG_ENDIAN) && BYTE_ORDER == BIG_ENDIAN #define SHA_BIG_ENDIAN #endif static inline uint32_t rol(uint32_t Number, int Bits) { return (Number << Bits) | (Number >> (32 - Bits)); } static inline uint32_t blk0(uint32_t *Buf, int I) { return Buf[I]; } static inline uint32_t blk(uint32_t *Buf, int I) { Buf[I & 15] = rol(Buf[(I + 13) & 15] ^ Buf[(I + 8) & 15] ^ Buf[(I + 2) & 15] ^ Buf[I & 15], 1); return Buf[I & 15]; } static inline void r0(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf) { E += ((B & (C ^ D)) ^ D) + blk0(Buf, I) + 0x5A827999 + rol(A, 5); B = rol(B, 30); } static inline void r1(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf) { E += ((B & (C ^ D)) ^ D) + blk(Buf, I) + 0x5A827999 + rol(A, 5); B = rol(B, 30); } static inline void r2(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf) { E += (B ^ C ^ D) + blk(Buf, I) + 0x6ED9EBA1 + rol(A, 5); B = rol(B, 30); } static inline void r3(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf) { E += (((B | C) & D) | (B & C)) + blk(Buf, I) + 0x8F1BBCDC + rol(A, 5); B = rol(B, 30); } static inline void r4(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf) { E += (B ^ C ^ D) + blk(Buf, I) + 0xCA62C1D6 + rol(A, 5); B = rol(B, 30); } /* code */ #define SHA1_K0 0x5a827999 #define SHA1_K20 0x6ed9eba1 #define SHA1_K40 0x8f1bbcdc #define SHA1_K60 0xca62c1d6 #define SEED_0 0x67452301 #define SEED_1 0xefcdab89 #define SEED_2 0x98badcfe #define SEED_3 0x10325476 #define SEED_4 0xc3d2e1f0 void SHA1::init() { InternalState.State[0] = SEED_0; InternalState.State[1] = SEED_1; InternalState.State[2] = SEED_2; InternalState.State[3] = SEED_3; InternalState.State[4] = SEED_4; InternalState.ByteCount = 0; InternalState.BufferOffset = 0; } void SHA1::hashBlock() { uint32_t A = InternalState.State[0]; uint32_t B = InternalState.State[1]; uint32_t C = InternalState.State[2]; uint32_t D = InternalState.State[3]; uint32_t E = InternalState.State[4]; // 4 rounds of 20 operations each. Loop unrolled. r0(A, B, C, D, E, 0, InternalState.Buffer.L); r0(E, A, B, C, D, 1, InternalState.Buffer.L); r0(D, E, A, B, C, 2, InternalState.Buffer.L); r0(C, D, E, A, B, 3, InternalState.Buffer.L); r0(B, C, D, E, A, 4, InternalState.Buffer.L); r0(A, B, C, D, E, 5, InternalState.Buffer.L); r0(E, A, B, C, D, 6, InternalState.Buffer.L); r0(D, E, A, B, C, 7, InternalState.Buffer.L); r0(C, D, E, A, B, 8, InternalState.Buffer.L); r0(B, C, D, E, A, 9, InternalState.Buffer.L); r0(A, B, C, D, E, 10, InternalState.Buffer.L); r0(E, A, B, C, D, 11, InternalState.Buffer.L); r0(D, E, A, B, C, 12, InternalState.Buffer.L); r0(C, D, E, A, B, 13, InternalState.Buffer.L); r0(B, C, D, E, A, 14, InternalState.Buffer.L); r0(A, B, C, D, E, 15, InternalState.Buffer.L); r1(E, A, B, C, D, 16, InternalState.Buffer.L); r1(D, E, A, B, C, 17, InternalState.Buffer.L); r1(C, D, E, A, B, 18, InternalState.Buffer.L); r1(B, C, D, E, A, 19, InternalState.Buffer.L); r2(A, B, C, D, E, 20, InternalState.Buffer.L); r2(E, A, B, C, D, 21, InternalState.Buffer.L); r2(D, E, A, B, C, 22, InternalState.Buffer.L); r2(C, D, E, A, B, 23, InternalState.Buffer.L); r2(B, C, D, E, A, 24, InternalState.Buffer.L); r2(A, B, C, D, E, 25, InternalState.Buffer.L); r2(E, A, B, C, D, 26, InternalState.Buffer.L); r2(D, E, A, B, C, 27, InternalState.Buffer.L); r2(C, D, E, A, B, 28, InternalState.Buffer.L); r2(B, C, D, E, A, 29, InternalState.Buffer.L); r2(A, B, C, D, E, 30, InternalState.Buffer.L); r2(E, A, B, C, D, 31, InternalState.Buffer.L); r2(D, E, A, B, C, 32, InternalState.Buffer.L); r2(C, D, E, A, B, 33, InternalState.Buffer.L); r2(B, C, D, E, A, 34, InternalState.Buffer.L); r2(A, B, C, D, E, 35, InternalState.Buffer.L); r2(E, A, B, C, D, 36, InternalState.Buffer.L); r2(D, E, A, B, C, 37, InternalState.Buffer.L); r2(C, D, E, A, B, 38, InternalState.Buffer.L); r2(B, C, D, E, A, 39, InternalState.Buffer.L); r3(A, B, C, D, E, 40, InternalState.Buffer.L); r3(E, A, B, C, D, 41, InternalState.Buffer.L); r3(D, E, A, B, C, 42, InternalState.Buffer.L); r3(C, D, E, A, B, 43, InternalState.Buffer.L); r3(B, C, D, E, A, 44, InternalState.Buffer.L); r3(A, B, C, D, E, 45, InternalState.Buffer.L); r3(E, A, B, C, D, 46, InternalState.Buffer.L); r3(D, E, A, B, C, 47, InternalState.Buffer.L); r3(C, D, E, A, B, 48, InternalState.Buffer.L); r3(B, C, D, E, A, 49, InternalState.Buffer.L); r3(A, B, C, D, E, 50, InternalState.Buffer.L); r3(E, A, B, C, D, 51, InternalState.Buffer.L); r3(D, E, A, B, C, 52, InternalState.Buffer.L); r3(C, D, E, A, B, 53, InternalState.Buffer.L); r3(B, C, D, E, A, 54, InternalState.Buffer.L); r3(A, B, C, D, E, 55, InternalState.Buffer.L); r3(E, A, B, C, D, 56, InternalState.Buffer.L); r3(D, E, A, B, C, 57, InternalState.Buffer.L); r3(C, D, E, A, B, 58, InternalState.Buffer.L); r3(B, C, D, E, A, 59, InternalState.Buffer.L); r4(A, B, C, D, E, 60, InternalState.Buffer.L); r4(E, A, B, C, D, 61, InternalState.Buffer.L); r4(D, E, A, B, C, 62, InternalState.Buffer.L); r4(C, D, E, A, B, 63, InternalState.Buffer.L); r4(B, C, D, E, A, 64, InternalState.Buffer.L); r4(A, B, C, D, E, 65, InternalState.Buffer.L); r4(E, A, B, C, D, 66, InternalState.Buffer.L); r4(D, E, A, B, C, 67, InternalState.Buffer.L); r4(C, D, E, A, B, 68, InternalState.Buffer.L); r4(B, C, D, E, A, 69, InternalState.Buffer.L); r4(A, B, C, D, E, 70, InternalState.Buffer.L); r4(E, A, B, C, D, 71, InternalState.Buffer.L); r4(D, E, A, B, C, 72, InternalState.Buffer.L); r4(C, D, E, A, B, 73, InternalState.Buffer.L); r4(B, C, D, E, A, 74, InternalState.Buffer.L); r4(A, B, C, D, E, 75, InternalState.Buffer.L); r4(E, A, B, C, D, 76, InternalState.Buffer.L); r4(D, E, A, B, C, 77, InternalState.Buffer.L); r4(C, D, E, A, B, 78, InternalState.Buffer.L); r4(B, C, D, E, A, 79, InternalState.Buffer.L); InternalState.State[0] += A; InternalState.State[1] += B; InternalState.State[2] += C; InternalState.State[3] += D; InternalState.State[4] += E; } void SHA1::addUncounted(uint8_t Data) { #ifdef SHA_BIG_ENDIAN InternalState.Buffer.C[InternalState.BufferOffset] = Data; #else InternalState.Buffer.C[InternalState.BufferOffset ^ 3] = Data; #endif InternalState.BufferOffset++; if (InternalState.BufferOffset == BLOCK_LENGTH) { hashBlock(); InternalState.BufferOffset = 0; } } void SHA1::writebyte(uint8_t Data) { ++InternalState.ByteCount; addUncounted(Data); } void SHA1::update(ArrayRef Data) { InternalState.ByteCount += Data.size(); // Finish the current block. if (InternalState.BufferOffset > 0) { const size_t Remainder = std::min( Data.size(), BLOCK_LENGTH - InternalState.BufferOffset); for (size_t I = 0; I < Remainder; ++I) addUncounted(Data[I]); Data = Data.drop_front(Remainder); } // Fast buffer filling for large inputs. while (Data.size() >= BLOCK_LENGTH) { assert(InternalState.BufferOffset == 0); static_assert(BLOCK_LENGTH % 4 == 0, ""); constexpr size_t BLOCK_LENGTH_32 = BLOCK_LENGTH / 4; for (size_t I = 0; I < BLOCK_LENGTH_32; ++I) InternalState.Buffer.L[I] = support::endian::read32be(&Data[I * 4]); hashBlock(); Data = Data.drop_front(BLOCK_LENGTH); } // Finish the remainder. for (uint8_t C : Data) addUncounted(C); } void SHA1::update(StringRef Str) { update( ArrayRef((uint8_t *)const_cast(Str.data()), Str.size())); } void SHA1::pad() { // Implement SHA-1 padding (fips180-2 5.1.1) // Pad with 0x80 followed by 0x00 until the end of the block addUncounted(0x80); while (InternalState.BufferOffset != 56) addUncounted(0x00); // Append length in the last 8 bytes addUncounted(0); // We're only using 32 bit lengths addUncounted(0); // But SHA-1 supports 64 bit lengths addUncounted(0); // So zero pad the top bits addUncounted(InternalState.ByteCount >> 29); // Shifting to multiply by 8 addUncounted(InternalState.ByteCount >> 21); // as SHA-1 supports bitstreams as well as addUncounted(InternalState.ByteCount >> 13); // byte. addUncounted(InternalState.ByteCount >> 5); addUncounted(InternalState.ByteCount << 3); } StringRef SHA1::final() { // Pad to complete the last block pad(); #ifdef SHA_BIG_ENDIAN // Just copy the current state for (int i = 0; i < 5; i++) { HashResult[i] = InternalState.State[i]; } #else // Swap byte order back for (int i = 0; i < 5; i++) { HashResult[i] = (((InternalState.State[i]) << 24) & 0xff000000) | (((InternalState.State[i]) << 8) & 0x00ff0000) | (((InternalState.State[i]) >> 8) & 0x0000ff00) | (((InternalState.State[i]) >> 24) & 0x000000ff); } #endif // Return pointer to hash (20 characters) return StringRef((char *)HashResult, HASH_LENGTH); } StringRef SHA1::result() { auto StateToRestore = InternalState; auto Hash = final(); // Restore the state InternalState = StateToRestore; // Return pointer to hash (20 characters) return Hash; } std::array SHA1::hash(ArrayRef Data) { SHA1 Hash; Hash.update(Data); StringRef S = Hash.final(); std::array Arr; memcpy(Arr.data(), S.data(), S.size()); return Arr; }