/* * kmp_atomic.h - ATOMIC header file */ //===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef KMP_ATOMIC_H #define KMP_ATOMIC_H #include "kmp_lock.h" #include "kmp_os.h" #if OMPT_SUPPORT #include "ompt-specific.h" #endif // C++ build port. // Intel compiler does not support _Complex datatype on win. // Intel compiler supports _Complex datatype on lin and mac. // On the other side, there is a problem of stack alignment on lin_32 and mac_32 // if the rhs is cmplx80 or cmplx128 typedef'ed datatype. // The decision is: to use compiler supported _Complex type on lin and mac, // to use typedef'ed types on win. // Condition for WIN64 was modified in anticipation of 10.1 build compiler. #if defined(__cplusplus) && (KMP_OS_WINDOWS) // create shortcuts for c99 complex types // Visual Studio cannot have function parameters that have the // align __declspec attribute, so we must remove it. (Compiler Error C2719) #if KMP_COMPILER_MSVC #undef KMP_DO_ALIGN #define KMP_DO_ALIGN(alignment) /* Nothing */ #endif #if defined(_MSC_VER) && (_MSC_VER < 1600) && defined(_DEBUG) // Workaround for the problem of _DebugHeapTag unresolved external. // This problem prevented to use our static debug library for C tests // compiled with /MDd option (the library itself built with /MTd), #undef _DEBUG #define _DEBUG_TEMPORARILY_UNSET_ #endif #include template std::complex __kmp_lhs_div_rhs(const std::complex &lhs, const std::complex &rhs) { type_lhs a = lhs.real(); type_lhs b = lhs.imag(); type_rhs c = rhs.real(); type_rhs d = rhs.imag(); type_rhs den = c * c + d * d; type_rhs r = (a * c + b * d); type_rhs i = (b * c - a * d); std::complex ret(r / den, i / den); return ret; } // complex8 struct __kmp_cmplx64_t : std::complex { __kmp_cmplx64_t() : std::complex() {} __kmp_cmplx64_t(const std::complex &cd) : std::complex(cd) {} void operator/=(const __kmp_cmplx64_t &rhs) { std::complex lhs = *this; *this = __kmp_lhs_div_rhs(lhs, rhs); } __kmp_cmplx64_t operator/(const __kmp_cmplx64_t &rhs) { std::complex lhs = *this; return __kmp_lhs_div_rhs(lhs, rhs); } }; typedef struct __kmp_cmplx64_t kmp_cmplx64; // complex4 struct __kmp_cmplx32_t : std::complex { __kmp_cmplx32_t() : std::complex() {} __kmp_cmplx32_t(const std::complex &cf) : std::complex(cf) {} __kmp_cmplx32_t operator+(const __kmp_cmplx32_t &b) { std::complex lhs = *this; std::complex rhs = b; return (lhs + rhs); } __kmp_cmplx32_t operator-(const __kmp_cmplx32_t &b) { std::complex lhs = *this; std::complex rhs = b; return (lhs - rhs); } __kmp_cmplx32_t operator*(const __kmp_cmplx32_t &b) { std::complex lhs = *this; std::complex rhs = b; return (lhs * rhs); } __kmp_cmplx32_t operator+(const kmp_cmplx64 &b) { kmp_cmplx64 t = kmp_cmplx64(*this) + b; std::complex d(t); std::complex f(d); __kmp_cmplx32_t r(f); return r; } __kmp_cmplx32_t operator-(const kmp_cmplx64 &b) { kmp_cmplx64 t = kmp_cmplx64(*this) - b; std::complex d(t); std::complex f(d); __kmp_cmplx32_t r(f); return r; } __kmp_cmplx32_t operator*(const kmp_cmplx64 &b) { kmp_cmplx64 t = kmp_cmplx64(*this) * b; std::complex d(t); std::complex f(d); __kmp_cmplx32_t r(f); return r; } void operator/=(const __kmp_cmplx32_t &rhs) { std::complex lhs = *this; *this = __kmp_lhs_div_rhs(lhs, rhs); } __kmp_cmplx32_t operator/(const __kmp_cmplx32_t &rhs) { std::complex lhs = *this; return __kmp_lhs_div_rhs(lhs, rhs); } void operator/=(const kmp_cmplx64 &rhs) { std::complex lhs = *this; *this = __kmp_lhs_div_rhs(lhs, rhs); } __kmp_cmplx32_t operator/(const kmp_cmplx64 &rhs) { std::complex lhs = *this; return __kmp_lhs_div_rhs(lhs, rhs); } }; typedef struct __kmp_cmplx32_t kmp_cmplx32; // complex10 struct KMP_DO_ALIGN(16) __kmp_cmplx80_t : std::complex { __kmp_cmplx80_t() : std::complex() {} __kmp_cmplx80_t(const std::complex &cld) : std::complex(cld) {} void operator/=(const __kmp_cmplx80_t &rhs) { std::complex lhs = *this; *this = __kmp_lhs_div_rhs(lhs, rhs); } __kmp_cmplx80_t operator/(const __kmp_cmplx80_t &rhs) { std::complex lhs = *this; return __kmp_lhs_div_rhs(lhs, rhs); } }; typedef KMP_DO_ALIGN(16) struct __kmp_cmplx80_t kmp_cmplx80; // complex16 #if KMP_HAVE_QUAD struct __kmp_cmplx128_t : std::complex<_Quad> { __kmp_cmplx128_t() : std::complex<_Quad>() {} __kmp_cmplx128_t(const std::complex<_Quad> &cq) : std::complex<_Quad>(cq) {} void operator/=(const __kmp_cmplx128_t &rhs) { std::complex<_Quad> lhs = *this; *this = __kmp_lhs_div_rhs(lhs, rhs); } __kmp_cmplx128_t operator/(const __kmp_cmplx128_t &rhs) { std::complex<_Quad> lhs = *this; return __kmp_lhs_div_rhs(lhs, rhs); } }; typedef struct __kmp_cmplx128_t kmp_cmplx128; #endif /* KMP_HAVE_QUAD */ #ifdef _DEBUG_TEMPORARILY_UNSET_ #undef _DEBUG_TEMPORARILY_UNSET_ // Set it back now #define _DEBUG 1 #endif #else // create shortcuts for c99 complex types typedef float _Complex kmp_cmplx32; typedef double _Complex kmp_cmplx64; typedef long double _Complex kmp_cmplx80; #if KMP_HAVE_QUAD typedef _Quad _Complex kmp_cmplx128; #endif #endif // Compiler 12.0 changed alignment of 16 and 32-byte arguments (like _Quad // and kmp_cmplx128) on IA-32 architecture. The following aligned structures // are implemented to support the old alignment in 10.1, 11.0, 11.1 and // introduce the new alignment in 12.0. See CQ88405. #if KMP_ARCH_X86 && KMP_HAVE_QUAD // 4-byte aligned structures for backward compatibility. #pragma pack(push, 4) struct KMP_DO_ALIGN(4) Quad_a4_t { _Quad q; Quad_a4_t() : q() {} Quad_a4_t(const _Quad &cq) : q(cq) {} Quad_a4_t operator+(const Quad_a4_t &b) { _Quad lhs = (*this).q; _Quad rhs = b.q; return (Quad_a4_t)(lhs + rhs); } Quad_a4_t operator-(const Quad_a4_t &b) { _Quad lhs = (*this).q; _Quad rhs = b.q; return (Quad_a4_t)(lhs - rhs); } Quad_a4_t operator*(const Quad_a4_t &b) { _Quad lhs = (*this).q; _Quad rhs = b.q; return (Quad_a4_t)(lhs * rhs); } Quad_a4_t operator/(const Quad_a4_t &b) { _Quad lhs = (*this).q; _Quad rhs = b.q; return (Quad_a4_t)(lhs / rhs); } }; struct KMP_DO_ALIGN(4) kmp_cmplx128_a4_t { kmp_cmplx128 q; kmp_cmplx128_a4_t() : q() {} #if defined(__cplusplus) && (KMP_OS_WINDOWS) kmp_cmplx128_a4_t(const std::complex<_Quad> &c128) : q(c128) {} #endif kmp_cmplx128_a4_t(const kmp_cmplx128 &c128) : q(c128) {} kmp_cmplx128_a4_t operator+(const kmp_cmplx128_a4_t &b) { kmp_cmplx128 lhs = (*this).q; kmp_cmplx128 rhs = b.q; return (kmp_cmplx128_a4_t)(lhs + rhs); } kmp_cmplx128_a4_t operator-(const kmp_cmplx128_a4_t &b) { kmp_cmplx128 lhs = (*this).q; kmp_cmplx128 rhs = b.q; return (kmp_cmplx128_a4_t)(lhs - rhs); } kmp_cmplx128_a4_t operator*(const kmp_cmplx128_a4_t &b) { kmp_cmplx128 lhs = (*this).q; kmp_cmplx128 rhs = b.q; return (kmp_cmplx128_a4_t)(lhs * rhs); } kmp_cmplx128_a4_t operator/(const kmp_cmplx128_a4_t &b) { kmp_cmplx128 lhs = (*this).q; kmp_cmplx128 rhs = b.q; return (kmp_cmplx128_a4_t)(lhs / rhs); } }; #pragma pack(pop) // New 16-byte aligned structures for 12.0 compiler. struct KMP_DO_ALIGN(16) Quad_a16_t { _Quad q; Quad_a16_t() : q() {} Quad_a16_t(const _Quad &cq) : q(cq) {} Quad_a16_t operator+(const Quad_a16_t &b) { _Quad lhs = (*this).q; _Quad rhs = b.q; return (Quad_a16_t)(lhs + rhs); } Quad_a16_t operator-(const Quad_a16_t &b) { _Quad lhs = (*this).q; _Quad rhs = b.q; return (Quad_a16_t)(lhs - rhs); } Quad_a16_t operator*(const Quad_a16_t &b) { _Quad lhs = (*this).q; _Quad rhs = b.q; return (Quad_a16_t)(lhs * rhs); } Quad_a16_t operator/(const Quad_a16_t &b) { _Quad lhs = (*this).q; _Quad rhs = b.q; return (Quad_a16_t)(lhs / rhs); } }; struct KMP_DO_ALIGN(16) kmp_cmplx128_a16_t { kmp_cmplx128 q; kmp_cmplx128_a16_t() : q() {} #if defined(__cplusplus) && (KMP_OS_WINDOWS) kmp_cmplx128_a16_t(const std::complex<_Quad> &c128) : q(c128) {} #endif kmp_cmplx128_a16_t(const kmp_cmplx128 &c128) : q(c128) {} kmp_cmplx128_a16_t operator+(const kmp_cmplx128_a16_t &b) { kmp_cmplx128 lhs = (*this).q; kmp_cmplx128 rhs = b.q; return (kmp_cmplx128_a16_t)(lhs + rhs); } kmp_cmplx128_a16_t operator-(const kmp_cmplx128_a16_t &b) { kmp_cmplx128 lhs = (*this).q; kmp_cmplx128 rhs = b.q; return (kmp_cmplx128_a16_t)(lhs - rhs); } kmp_cmplx128_a16_t operator*(const kmp_cmplx128_a16_t &b) { kmp_cmplx128 lhs = (*this).q; kmp_cmplx128 rhs = b.q; return (kmp_cmplx128_a16_t)(lhs * rhs); } kmp_cmplx128_a16_t operator/(const kmp_cmplx128_a16_t &b) { kmp_cmplx128 lhs = (*this).q; kmp_cmplx128 rhs = b.q; return (kmp_cmplx128_a16_t)(lhs / rhs); } }; #endif #if (KMP_ARCH_X86) #define QUAD_LEGACY Quad_a4_t #define CPLX128_LEG kmp_cmplx128_a4_t #else #define QUAD_LEGACY _Quad #define CPLX128_LEG kmp_cmplx128 #endif #ifdef __cplusplus extern "C" { #endif extern int __kmp_atomic_mode; // Atomic locks can easily become contended, so we use queuing locks for them. typedef kmp_queuing_lock_t kmp_atomic_lock_t; static inline void __kmp_acquire_atomic_lock(kmp_atomic_lock_t *lck, kmp_int32 gtid) { #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.ompt_callback_mutex_acquire) { ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( ompt_mutex_atomic, 0, kmp_mutex_impl_queuing, (ompt_wait_id_t)(uintptr_t)lck, OMPT_GET_RETURN_ADDRESS(0)); } #endif __kmp_acquire_queuing_lock(lck, gtid); #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.ompt_callback_mutex_acquired) { ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)( ompt_mutex_atomic, (ompt_wait_id_t)(uintptr_t)lck, OMPT_GET_RETURN_ADDRESS(0)); } #endif } static inline int __kmp_test_atomic_lock(kmp_atomic_lock_t *lck, kmp_int32 gtid) { return __kmp_test_queuing_lock(lck, gtid); } static inline void __kmp_release_atomic_lock(kmp_atomic_lock_t *lck, kmp_int32 gtid) { __kmp_release_queuing_lock(lck, gtid); #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.ompt_callback_mutex_released) { ompt_callbacks.ompt_callback(ompt_callback_mutex_released)( ompt_mutex_atomic, (ompt_wait_id_t)(uintptr_t)lck, OMPT_GET_RETURN_ADDRESS(0)); } #endif } static inline void __kmp_init_atomic_lock(kmp_atomic_lock_t *lck) { __kmp_init_queuing_lock(lck); } static inline void __kmp_destroy_atomic_lock(kmp_atomic_lock_t *lck) { __kmp_destroy_queuing_lock(lck); } // Global Locks extern kmp_atomic_lock_t __kmp_atomic_lock; /* Control access to all user coded atomics in Gnu compat mode */ extern kmp_atomic_lock_t __kmp_atomic_lock_1i; /* Control access to all user coded atomics for 1-byte fixed data types */ extern kmp_atomic_lock_t __kmp_atomic_lock_2i; /* Control access to all user coded atomics for 2-byte fixed data types */ extern kmp_atomic_lock_t __kmp_atomic_lock_4i; /* Control access to all user coded atomics for 4-byte fixed data types */ extern kmp_atomic_lock_t __kmp_atomic_lock_4r; /* Control access to all user coded atomics for kmp_real32 data type */ extern kmp_atomic_lock_t __kmp_atomic_lock_8i; /* Control access to all user coded atomics for 8-byte fixed data types */ extern kmp_atomic_lock_t __kmp_atomic_lock_8r; /* Control access to all user coded atomics for kmp_real64 data type */ extern kmp_atomic_lock_t __kmp_atomic_lock_8c; /* Control access to all user coded atomics for complex byte data type */ extern kmp_atomic_lock_t __kmp_atomic_lock_10r; /* Control access to all user coded atomics for long double data type */ extern kmp_atomic_lock_t __kmp_atomic_lock_16r; /* Control access to all user coded atomics for _Quad data type */ extern kmp_atomic_lock_t __kmp_atomic_lock_16c; /* Control access to all user coded atomics for double complex data type*/ extern kmp_atomic_lock_t __kmp_atomic_lock_20c; /* Control access to all user coded atomics for long double complex type*/ extern kmp_atomic_lock_t __kmp_atomic_lock_32c; /* Control access to all user coded atomics for _Quad complex data type */ // Below routines for atomic UPDATE are listed // 1-byte void __kmpc_atomic_fixed1_add(ident_t *id_ref, int gtid, char *lhs, char rhs); void __kmpc_atomic_fixed1_andb(ident_t *id_ref, int gtid, char *lhs, char rhs); void __kmpc_atomic_fixed1_div(ident_t *id_ref, int gtid, char *lhs, char rhs); void __kmpc_atomic_fixed1u_div(ident_t *id_ref, int gtid, unsigned char *lhs, unsigned char rhs); void __kmpc_atomic_fixed1_mul(ident_t *id_ref, int gtid, char *lhs, char rhs); void __kmpc_atomic_fixed1_orb(ident_t *id_ref, int gtid, char *lhs, char rhs); void __kmpc_atomic_fixed1_shl(ident_t *id_ref, int gtid, char *lhs, char rhs); void __kmpc_atomic_fixed1_shr(ident_t *id_ref, int gtid, char *lhs, char rhs); void __kmpc_atomic_fixed1u_shr(ident_t *id_ref, int gtid, unsigned char *lhs, unsigned char rhs); void __kmpc_atomic_fixed1_sub(ident_t *id_ref, int gtid, char *lhs, char rhs); void __kmpc_atomic_fixed1_xor(ident_t *id_ref, int gtid, char *lhs, char rhs); // 2-byte void __kmpc_atomic_fixed2_add(ident_t *id_ref, int gtid, short *lhs, short rhs); void __kmpc_atomic_fixed2_andb(ident_t *id_ref, int gtid, short *lhs, short rhs); void __kmpc_atomic_fixed2_div(ident_t *id_ref, int gtid, short *lhs, short rhs); void __kmpc_atomic_fixed2u_div(ident_t *id_ref, int gtid, unsigned short *lhs, unsigned short rhs); void __kmpc_atomic_fixed2_mul(ident_t *id_ref, int gtid, short *lhs, short rhs); void __kmpc_atomic_fixed2_orb(ident_t *id_ref, int gtid, short *lhs, short rhs); void __kmpc_atomic_fixed2_shl(ident_t *id_ref, int gtid, short *lhs, short rhs); void __kmpc_atomic_fixed2_shr(ident_t *id_ref, int gtid, short *lhs, short rhs); void __kmpc_atomic_fixed2u_shr(ident_t *id_ref, int gtid, unsigned short *lhs, unsigned short rhs); void __kmpc_atomic_fixed2_sub(ident_t *id_ref, int gtid, short *lhs, short rhs); void __kmpc_atomic_fixed2_xor(ident_t *id_ref, int gtid, short *lhs, short rhs); // 4-byte add / sub fixed void __kmpc_atomic_fixed4_add(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs); void __kmpc_atomic_fixed4_sub(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs); // 4-byte add / sub float void __kmpc_atomic_float4_add(ident_t *id_ref, int gtid, kmp_real32 *lhs, kmp_real32 rhs); void __kmpc_atomic_float4_sub(ident_t *id_ref, int gtid, kmp_real32 *lhs, kmp_real32 rhs); // 8-byte add / sub fixed void __kmpc_atomic_fixed8_add(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs); void __kmpc_atomic_fixed8_sub(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs); // 8-byte add / sub float void __kmpc_atomic_float8_add(ident_t *id_ref, int gtid, kmp_real64 *lhs, kmp_real64 rhs); void __kmpc_atomic_float8_sub(ident_t *id_ref, int gtid, kmp_real64 *lhs, kmp_real64 rhs); // 4-byte fixed void __kmpc_atomic_fixed4_andb(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs); void __kmpc_atomic_fixed4_div(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs); void __kmpc_atomic_fixed4u_div(ident_t *id_ref, int gtid, kmp_uint32 *lhs, kmp_uint32 rhs); void __kmpc_atomic_fixed4_mul(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs); void __kmpc_atomic_fixed4_orb(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs); void __kmpc_atomic_fixed4_shl(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs); void __kmpc_atomic_fixed4_shr(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs); void __kmpc_atomic_fixed4u_shr(ident_t *id_ref, int gtid, kmp_uint32 *lhs, kmp_uint32 rhs); void __kmpc_atomic_fixed4_xor(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs); // 8-byte fixed void __kmpc_atomic_fixed8_andb(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs); void __kmpc_atomic_fixed8_div(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs); void __kmpc_atomic_fixed8u_div(ident_t *id_ref, int gtid, kmp_uint64 *lhs, kmp_uint64 rhs); void __kmpc_atomic_fixed8_mul(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs); void __kmpc_atomic_fixed8_orb(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs); void __kmpc_atomic_fixed8_shl(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs); void __kmpc_atomic_fixed8_shr(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs); void __kmpc_atomic_fixed8u_shr(ident_t *id_ref, int gtid, kmp_uint64 *lhs, kmp_uint64 rhs); void __kmpc_atomic_fixed8_xor(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs); // 4-byte float void __kmpc_atomic_float4_div(ident_t *id_ref, int gtid, kmp_real32 *lhs, kmp_real32 rhs); void __kmpc_atomic_float4_mul(ident_t *id_ref, int gtid, kmp_real32 *lhs, kmp_real32 rhs); // 8-byte float void __kmpc_atomic_float8_div(ident_t *id_ref, int gtid, kmp_real64 *lhs, kmp_real64 rhs); void __kmpc_atomic_float8_mul(ident_t *id_ref, int gtid, kmp_real64 *lhs, kmp_real64 rhs); // 1-, 2-, 4-, 8-byte logical (&&, ||) void __kmpc_atomic_fixed1_andl(ident_t *id_ref, int gtid, char *lhs, char rhs); void __kmpc_atomic_fixed1_orl(ident_t *id_ref, int gtid, char *lhs, char rhs); void __kmpc_atomic_fixed2_andl(ident_t *id_ref, int gtid, short *lhs, short rhs); void __kmpc_atomic_fixed2_orl(ident_t *id_ref, int gtid, short *lhs, short rhs); void __kmpc_atomic_fixed4_andl(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs); void __kmpc_atomic_fixed4_orl(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs); void __kmpc_atomic_fixed8_andl(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs); void __kmpc_atomic_fixed8_orl(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs); // MIN / MAX void __kmpc_atomic_fixed1_max(ident_t *id_ref, int gtid, char *lhs, char rhs); void __kmpc_atomic_fixed1_min(ident_t *id_ref, int gtid, char *lhs, char rhs); void __kmpc_atomic_fixed2_max(ident_t *id_ref, int gtid, short *lhs, short rhs); void __kmpc_atomic_fixed2_min(ident_t *id_ref, int gtid, short *lhs, short rhs); void __kmpc_atomic_fixed4_max(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs); void __kmpc_atomic_fixed4_min(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs); void __kmpc_atomic_fixed8_max(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs); void __kmpc_atomic_fixed8_min(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs); void __kmpc_atomic_float4_max(ident_t *id_ref, int gtid, kmp_real32 *lhs, kmp_real32 rhs); void __kmpc_atomic_float4_min(ident_t *id_ref, int gtid, kmp_real32 *lhs, kmp_real32 rhs); void __kmpc_atomic_float8_max(ident_t *id_ref, int gtid, kmp_real64 *lhs, kmp_real64 rhs); void __kmpc_atomic_float8_min(ident_t *id_ref, int gtid, kmp_real64 *lhs, kmp_real64 rhs); void __kmpc_atomic_float10_max(ident_t *id_ref, int gtid, long double *lhs, long double rhs); void __kmpc_atomic_float10_min(ident_t *id_ref, int gtid, long double *lhs, long double rhs); #if KMP_HAVE_QUAD void __kmpc_atomic_float16_max(ident_t *id_ref, int gtid, QUAD_LEGACY *lhs, QUAD_LEGACY rhs); void __kmpc_atomic_float16_min(ident_t *id_ref, int gtid, QUAD_LEGACY *lhs, QUAD_LEGACY rhs); #if (KMP_ARCH_X86) // Routines with 16-byte arguments aligned to 16-byte boundary; IA-32 // architecture only void __kmpc_atomic_float16_max_a16(ident_t *id_ref, int gtid, Quad_a16_t *lhs, Quad_a16_t rhs); void __kmpc_atomic_float16_min_a16(ident_t *id_ref, int gtid, Quad_a16_t *lhs, Quad_a16_t rhs); #endif #endif // .NEQV. (same as xor) void __kmpc_atomic_fixed1_neqv(ident_t *id_ref, int gtid, char *lhs, char rhs); void __kmpc_atomic_fixed2_neqv(ident_t *id_ref, int gtid, short *lhs, short rhs); void __kmpc_atomic_fixed4_neqv(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs); void __kmpc_atomic_fixed8_neqv(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs); // .EQV. (same as ~xor) void __kmpc_atomic_fixed1_eqv(ident_t *id_ref, int gtid, char *lhs, char rhs); void __kmpc_atomic_fixed2_eqv(ident_t *id_ref, int gtid, short *lhs, short rhs); void __kmpc_atomic_fixed4_eqv(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs); void __kmpc_atomic_fixed8_eqv(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs); // long double type void __kmpc_atomic_float10_add(ident_t *id_ref, int gtid, long double *lhs, long double rhs); void __kmpc_atomic_float10_sub(ident_t *id_ref, int gtid, long double *lhs, long double rhs); void __kmpc_atomic_float10_mul(ident_t *id_ref, int gtid, long double *lhs, long double rhs); void __kmpc_atomic_float10_div(ident_t *id_ref, int gtid, long double *lhs, long double rhs); // _Quad type #if KMP_HAVE_QUAD void __kmpc_atomic_float16_add(ident_t *id_ref, int gtid, QUAD_LEGACY *lhs, QUAD_LEGACY rhs); void __kmpc_atomic_float16_sub(ident_t *id_ref, int gtid, QUAD_LEGACY *lhs, QUAD_LEGACY rhs); void __kmpc_atomic_float16_mul(ident_t *id_ref, int gtid, QUAD_LEGACY *lhs, QUAD_LEGACY rhs); void __kmpc_atomic_float16_div(ident_t *id_ref, int gtid, QUAD_LEGACY *lhs, QUAD_LEGACY rhs); #if (KMP_ARCH_X86) // Routines with 16-byte arguments aligned to 16-byte boundary void __kmpc_atomic_float16_add_a16(ident_t *id_ref, int gtid, Quad_a16_t *lhs, Quad_a16_t rhs); void __kmpc_atomic_float16_sub_a16(ident_t *id_ref, int gtid, Quad_a16_t *lhs, Quad_a16_t rhs); void __kmpc_atomic_float16_mul_a16(ident_t *id_ref, int gtid, Quad_a16_t *lhs, Quad_a16_t rhs); void __kmpc_atomic_float16_div_a16(ident_t *id_ref, int gtid, Quad_a16_t *lhs, Quad_a16_t rhs); #endif #endif // routines for complex types void __kmpc_atomic_cmplx4_add(ident_t *id_ref, int gtid, kmp_cmplx32 *lhs, kmp_cmplx32 rhs); void __kmpc_atomic_cmplx4_sub(ident_t *id_ref, int gtid, kmp_cmplx32 *lhs, kmp_cmplx32 rhs); void __kmpc_atomic_cmplx4_mul(ident_t *id_ref, int gtid, kmp_cmplx32 *lhs, kmp_cmplx32 rhs); void __kmpc_atomic_cmplx4_div(ident_t *id_ref, int gtid, kmp_cmplx32 *lhs, kmp_cmplx32 rhs); void __kmpc_atomic_cmplx8_add(ident_t *id_ref, int gtid, kmp_cmplx64 *lhs, kmp_cmplx64 rhs); void __kmpc_atomic_cmplx8_sub(ident_t *id_ref, int gtid, kmp_cmplx64 *lhs, kmp_cmplx64 rhs); void __kmpc_atomic_cmplx8_mul(ident_t *id_ref, int gtid, kmp_cmplx64 *lhs, kmp_cmplx64 rhs); void __kmpc_atomic_cmplx8_div(ident_t *id_ref, int gtid, kmp_cmplx64 *lhs, kmp_cmplx64 rhs); void __kmpc_atomic_cmplx10_add(ident_t *id_ref, int gtid, kmp_cmplx80 *lhs, kmp_cmplx80 rhs); void __kmpc_atomic_cmplx10_sub(ident_t *id_ref, int gtid, kmp_cmplx80 *lhs, kmp_cmplx80 rhs); void __kmpc_atomic_cmplx10_mul(ident_t *id_ref, int gtid, kmp_cmplx80 *lhs, kmp_cmplx80 rhs); void __kmpc_atomic_cmplx10_div(ident_t *id_ref, int gtid, kmp_cmplx80 *lhs, kmp_cmplx80 rhs); #if KMP_HAVE_QUAD void __kmpc_atomic_cmplx16_add(ident_t *id_ref, int gtid, CPLX128_LEG *lhs, CPLX128_LEG rhs); void __kmpc_atomic_cmplx16_sub(ident_t *id_ref, int gtid, CPLX128_LEG *lhs, CPLX128_LEG rhs); void __kmpc_atomic_cmplx16_mul(ident_t *id_ref, int gtid, CPLX128_LEG *lhs, CPLX128_LEG rhs); void __kmpc_atomic_cmplx16_div(ident_t *id_ref, int gtid, CPLX128_LEG *lhs, CPLX128_LEG rhs); #if (KMP_ARCH_X86) // Routines with 16-byte arguments aligned to 16-byte boundary void __kmpc_atomic_cmplx16_add_a16(ident_t *id_ref, int gtid, kmp_cmplx128_a16_t *lhs, kmp_cmplx128_a16_t rhs); void __kmpc_atomic_cmplx16_sub_a16(ident_t *id_ref, int gtid, kmp_cmplx128_a16_t *lhs, kmp_cmplx128_a16_t rhs); void __kmpc_atomic_cmplx16_mul_a16(ident_t *id_ref, int gtid, kmp_cmplx128_a16_t *lhs, kmp_cmplx128_a16_t rhs); void __kmpc_atomic_cmplx16_div_a16(ident_t *id_ref, int gtid, kmp_cmplx128_a16_t *lhs, kmp_cmplx128_a16_t rhs); #endif #endif // OpenMP 4.0: x = expr binop x for non-commutative operations. // Supported only on IA-32 architecture and Intel(R) 64 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 void __kmpc_atomic_fixed1_sub_rev(ident_t *id_ref, int gtid, char *lhs, char rhs); void __kmpc_atomic_fixed1_div_rev(ident_t *id_ref, int gtid, char *lhs, char rhs); void __kmpc_atomic_fixed1u_div_rev(ident_t *id_ref, int gtid, unsigned char *lhs, unsigned char rhs); void __kmpc_atomic_fixed1_shl_rev(ident_t *id_ref, int gtid, char *lhs, char rhs); void __kmpc_atomic_fixed1_shr_rev(ident_t *id_ref, int gtid, char *lhs, char rhs); void __kmpc_atomic_fixed1u_shr_rev(ident_t *id_ref, int gtid, unsigned char *lhs, unsigned char rhs); void __kmpc_atomic_fixed2_sub_rev(ident_t *id_ref, int gtid, short *lhs, short rhs); void __kmpc_atomic_fixed2_div_rev(ident_t *id_ref, int gtid, short *lhs, short rhs); void __kmpc_atomic_fixed2u_div_rev(ident_t *id_ref, int gtid, unsigned short *lhs, unsigned short rhs); void __kmpc_atomic_fixed2_shl_rev(ident_t *id_ref, int gtid, short *lhs, short rhs); void __kmpc_atomic_fixed2_shr_rev(ident_t *id_ref, int gtid, short *lhs, short rhs); void __kmpc_atomic_fixed2u_shr_rev(ident_t *id_ref, int gtid, unsigned short *lhs, unsigned short rhs); void __kmpc_atomic_fixed4_sub_rev(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs); void __kmpc_atomic_fixed4_div_rev(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs); void __kmpc_atomic_fixed4u_div_rev(ident_t *id_ref, int gtid, kmp_uint32 *lhs, kmp_uint32 rhs); void __kmpc_atomic_fixed4_shl_rev(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs); void __kmpc_atomic_fixed4_shr_rev(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs); void __kmpc_atomic_fixed4u_shr_rev(ident_t *id_ref, int gtid, kmp_uint32 *lhs, kmp_uint32 rhs); void __kmpc_atomic_fixed8_sub_rev(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs); void __kmpc_atomic_fixed8_div_rev(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs); void __kmpc_atomic_fixed8u_div_rev(ident_t *id_ref, int gtid, kmp_uint64 *lhs, kmp_uint64 rhs); void __kmpc_atomic_fixed8_shl_rev(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs); void __kmpc_atomic_fixed8_shr_rev(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs); void __kmpc_atomic_fixed8u_shr_rev(ident_t *id_ref, int gtid, kmp_uint64 *lhs, kmp_uint64 rhs); void __kmpc_atomic_float4_sub_rev(ident_t *id_ref, int gtid, float *lhs, float rhs); void __kmpc_atomic_float4_div_rev(ident_t *id_ref, int gtid, float *lhs, float rhs); void __kmpc_atomic_float8_sub_rev(ident_t *id_ref, int gtid, double *lhs, double rhs); void __kmpc_atomic_float8_div_rev(ident_t *id_ref, int gtid, double *lhs, double rhs); void __kmpc_atomic_float10_sub_rev(ident_t *id_ref, int gtid, long double *lhs, long double rhs); void __kmpc_atomic_float10_div_rev(ident_t *id_ref, int gtid, long double *lhs, long double rhs); #if KMP_HAVE_QUAD void __kmpc_atomic_float16_sub_rev(ident_t *id_ref, int gtid, QUAD_LEGACY *lhs, QUAD_LEGACY rhs); void __kmpc_atomic_float16_div_rev(ident_t *id_ref, int gtid, QUAD_LEGACY *lhs, QUAD_LEGACY rhs); #endif void __kmpc_atomic_cmplx4_sub_rev(ident_t *id_ref, int gtid, kmp_cmplx32 *lhs, kmp_cmplx32 rhs); void __kmpc_atomic_cmplx4_div_rev(ident_t *id_ref, int gtid, kmp_cmplx32 *lhs, kmp_cmplx32 rhs); void __kmpc_atomic_cmplx8_sub_rev(ident_t *id_ref, int gtid, kmp_cmplx64 *lhs, kmp_cmplx64 rhs); void __kmpc_atomic_cmplx8_div_rev(ident_t *id_ref, int gtid, kmp_cmplx64 *lhs, kmp_cmplx64 rhs); void __kmpc_atomic_cmplx10_sub_rev(ident_t *id_ref, int gtid, kmp_cmplx80 *lhs, kmp_cmplx80 rhs); void __kmpc_atomic_cmplx10_div_rev(ident_t *id_ref, int gtid, kmp_cmplx80 *lhs, kmp_cmplx80 rhs); #if KMP_HAVE_QUAD void __kmpc_atomic_cmplx16_sub_rev(ident_t *id_ref, int gtid, CPLX128_LEG *lhs, CPLX128_LEG rhs); void __kmpc_atomic_cmplx16_div_rev(ident_t *id_ref, int gtid, CPLX128_LEG *lhs, CPLX128_LEG rhs); #if (KMP_ARCH_X86) // Routines with 16-byte arguments aligned to 16-byte boundary void __kmpc_atomic_float16_sub_a16_rev(ident_t *id_ref, int gtid, Quad_a16_t *lhs, Quad_a16_t rhs); void __kmpc_atomic_float16_div_a16_rev(ident_t *id_ref, int gtid, Quad_a16_t *lhs, Quad_a16_t rhs); void __kmpc_atomic_cmplx16_sub_a16_rev(ident_t *id_ref, int gtid, kmp_cmplx128_a16_t *lhs, kmp_cmplx128_a16_t rhs); void __kmpc_atomic_cmplx16_div_a16_rev(ident_t *id_ref, int gtid, kmp_cmplx128_a16_t *lhs, kmp_cmplx128_a16_t rhs); #endif #endif // KMP_HAVE_QUAD #endif // KMP_ARCH_X86 || KMP_ARCH_X86_64 // routines for mixed types // RHS=float8 void __kmpc_atomic_fixed1_mul_float8(ident_t *id_ref, int gtid, char *lhs, kmp_real64 rhs); void __kmpc_atomic_fixed1_div_float8(ident_t *id_ref, int gtid, char *lhs, kmp_real64 rhs); void __kmpc_atomic_fixed2_mul_float8(ident_t *id_ref, int gtid, short *lhs, kmp_real64 rhs); void __kmpc_atomic_fixed2_div_float8(ident_t *id_ref, int gtid, short *lhs, kmp_real64 rhs); void __kmpc_atomic_fixed4_mul_float8(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_real64 rhs); void __kmpc_atomic_fixed4_div_float8(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_real64 rhs); void __kmpc_atomic_fixed8_mul_float8(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_real64 rhs); void __kmpc_atomic_fixed8_div_float8(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_real64 rhs); void __kmpc_atomic_float4_add_float8(ident_t *id_ref, int gtid, kmp_real32 *lhs, kmp_real64 rhs); void __kmpc_atomic_float4_sub_float8(ident_t *id_ref, int gtid, kmp_real32 *lhs, kmp_real64 rhs); void __kmpc_atomic_float4_mul_float8(ident_t *id_ref, int gtid, kmp_real32 *lhs, kmp_real64 rhs); void __kmpc_atomic_float4_div_float8(ident_t *id_ref, int gtid, kmp_real32 *lhs, kmp_real64 rhs); // RHS=float16 (deprecated, to be removed when we are sure the compiler does not // use them) #if KMP_HAVE_QUAD void __kmpc_atomic_fixed1_add_fp(ident_t *id_ref, int gtid, char *lhs, _Quad rhs); void __kmpc_atomic_fixed1u_add_fp(ident_t *id_ref, int gtid, unsigned char *lhs, _Quad rhs); void __kmpc_atomic_fixed1_sub_fp(ident_t *id_ref, int gtid, char *lhs, _Quad rhs); void __kmpc_atomic_fixed1u_sub_fp(ident_t *id_ref, int gtid, unsigned char *lhs, _Quad rhs); void __kmpc_atomic_fixed1_mul_fp(ident_t *id_ref, int gtid, char *lhs, _Quad rhs); void __kmpc_atomic_fixed1u_mul_fp(ident_t *id_ref, int gtid, unsigned char *lhs, _Quad rhs); void __kmpc_atomic_fixed1_div_fp(ident_t *id_ref, int gtid, char *lhs, _Quad rhs); void __kmpc_atomic_fixed1u_div_fp(ident_t *id_ref, int gtid, unsigned char *lhs, _Quad rhs); void __kmpc_atomic_fixed2_add_fp(ident_t *id_ref, int gtid, short *lhs, _Quad rhs); void __kmpc_atomic_fixed2u_add_fp(ident_t *id_ref, int gtid, unsigned short *lhs, _Quad rhs); void __kmpc_atomic_fixed2_sub_fp(ident_t *id_ref, int gtid, short *lhs, _Quad rhs); void __kmpc_atomic_fixed2u_sub_fp(ident_t *id_ref, int gtid, unsigned short *lhs, _Quad rhs); void __kmpc_atomic_fixed2_mul_fp(ident_t *id_ref, int gtid, short *lhs, _Quad rhs); void __kmpc_atomic_fixed2u_mul_fp(ident_t *id_ref, int gtid, unsigned short *lhs, _Quad rhs); void __kmpc_atomic_fixed2_div_fp(ident_t *id_ref, int gtid, short *lhs, _Quad rhs); void __kmpc_atomic_fixed2u_div_fp(ident_t *id_ref, int gtid, unsigned short *lhs, _Quad rhs); void __kmpc_atomic_fixed4_add_fp(ident_t *id_ref, int gtid, kmp_int32 *lhs, _Quad rhs); void __kmpc_atomic_fixed4u_add_fp(ident_t *id_ref, int gtid, kmp_uint32 *lhs, _Quad rhs); void __kmpc_atomic_fixed4_sub_fp(ident_t *id_ref, int gtid, kmp_int32 *lhs, _Quad rhs); void __kmpc_atomic_fixed4u_sub_fp(ident_t *id_ref, int gtid, kmp_uint32 *lhs, _Quad rhs); void __kmpc_atomic_fixed4_mul_fp(ident_t *id_ref, int gtid, kmp_int32 *lhs, _Quad rhs); void __kmpc_atomic_fixed4u_mul_fp(ident_t *id_ref, int gtid, kmp_uint32 *lhs, _Quad rhs); void __kmpc_atomic_fixed4_div_fp(ident_t *id_ref, int gtid, kmp_int32 *lhs, _Quad rhs); void __kmpc_atomic_fixed4u_div_fp(ident_t *id_ref, int gtid, kmp_uint32 *lhs, _Quad rhs); void __kmpc_atomic_fixed8_add_fp(ident_t *id_ref, int gtid, kmp_int64 *lhs, _Quad rhs); void __kmpc_atomic_fixed8u_add_fp(ident_t *id_ref, int gtid, kmp_uint64 *lhs, _Quad rhs); void __kmpc_atomic_fixed8_sub_fp(ident_t *id_ref, int gtid, kmp_int64 *lhs, _Quad rhs); void __kmpc_atomic_fixed8u_sub_fp(ident_t *id_ref, int gtid, kmp_uint64 *lhs, _Quad rhs); void __kmpc_atomic_fixed8_mul_fp(ident_t *id_ref, int gtid, kmp_int64 *lhs, _Quad rhs); void __kmpc_atomic_fixed8u_mul_fp(ident_t *id_ref, int gtid, kmp_uint64 *lhs, _Quad rhs); void __kmpc_atomic_fixed8_div_fp(ident_t *id_ref, int gtid, kmp_int64 *lhs, _Quad rhs); void __kmpc_atomic_fixed8u_div_fp(ident_t *id_ref, int gtid, kmp_uint64 *lhs, _Quad rhs); void __kmpc_atomic_float4_add_fp(ident_t *id_ref, int gtid, kmp_real32 *lhs, _Quad rhs); void __kmpc_atomic_float4_sub_fp(ident_t *id_ref, int gtid, kmp_real32 *lhs, _Quad rhs); void __kmpc_atomic_float4_mul_fp(ident_t *id_ref, int gtid, kmp_real32 *lhs, _Quad rhs); void __kmpc_atomic_float4_div_fp(ident_t *id_ref, int gtid, kmp_real32 *lhs, _Quad rhs); void __kmpc_atomic_float8_add_fp(ident_t *id_ref, int gtid, kmp_real64 *lhs, _Quad rhs); void __kmpc_atomic_float8_sub_fp(ident_t *id_ref, int gtid, kmp_real64 *lhs, _Quad rhs); void __kmpc_atomic_float8_mul_fp(ident_t *id_ref, int gtid, kmp_real64 *lhs, _Quad rhs); void __kmpc_atomic_float8_div_fp(ident_t *id_ref, int gtid, kmp_real64 *lhs, _Quad rhs); void __kmpc_atomic_float10_add_fp(ident_t *id_ref, int gtid, long double *lhs, _Quad rhs); void __kmpc_atomic_float10_sub_fp(ident_t *id_ref, int gtid, long double *lhs, _Quad rhs); void __kmpc_atomic_float10_mul_fp(ident_t *id_ref, int gtid, long double *lhs, _Quad rhs); void __kmpc_atomic_float10_div_fp(ident_t *id_ref, int gtid, long double *lhs, _Quad rhs); // Reverse operations void __kmpc_atomic_fixed1_sub_rev_fp(ident_t *id_ref, int gtid, char *lhs, _Quad rhs); void __kmpc_atomic_fixed1u_sub_rev_fp(ident_t *id_ref, int gtid, unsigned char *lhs, _Quad rhs); void __kmpc_atomic_fixed1_div_rev_fp(ident_t *id_ref, int gtid, char *lhs, _Quad rhs); void __kmpc_atomic_fixed1u_div_rev_fp(ident_t *id_ref, int gtid, unsigned char *lhs, _Quad rhs); void __kmpc_atomic_fixed2_sub_rev_fp(ident_t *id_ref, int gtid, short *lhs, _Quad rhs); void __kmpc_atomic_fixed2u_sub_rev_fp(ident_t *id_ref, int gtid, unsigned short *lhs, _Quad rhs); void __kmpc_atomic_fixed2_div_rev_fp(ident_t *id_ref, int gtid, short *lhs, _Quad rhs); void __kmpc_atomic_fixed2u_div_rev_fp(ident_t *id_ref, int gtid, unsigned short *lhs, _Quad rhs); void __kmpc_atomic_fixed4_sub_rev_fp(ident_t *id_ref, int gtid, kmp_int32 *lhs, _Quad rhs); void __kmpc_atomic_fixed4u_sub_rev_fp(ident_t *id_ref, int gtid, kmp_uint32 *lhs, _Quad rhs); void __kmpc_atomic_fixed4_div_rev_fp(ident_t *id_ref, int gtid, kmp_int32 *lhs, _Quad rhs); void __kmpc_atomic_fixed4u_div_rev_fp(ident_t *id_ref, int gtid, kmp_uint32 *lhs, _Quad rhs); void __kmpc_atomic_fixed8_sub_rev_fp(ident_t *id_ref, int gtid, kmp_int64 *lhs, _Quad rhs); void __kmpc_atomic_fixed8u_sub_rev_fp(ident_t *id_ref, int gtid, kmp_uint64 *lhs, _Quad rhs); void __kmpc_atomic_fixed8_div_rev_fp(ident_t *id_ref, int gtid, kmp_int64 *lhs, _Quad rhs); void __kmpc_atomic_fixed8u_div_rev_fp(ident_t *id_ref, int gtid, kmp_uint64 *lhs, _Quad rhs); void __kmpc_atomic_float4_sub_rev_fp(ident_t *id_ref, int gtid, float *lhs, _Quad rhs); void __kmpc_atomic_float4_div_rev_fp(ident_t *id_ref, int gtid, float *lhs, _Quad rhs); void __kmpc_atomic_float8_sub_rev_fp(ident_t *id_ref, int gtid, double *lhs, _Quad rhs); void __kmpc_atomic_float8_div_rev_fp(ident_t *id_ref, int gtid, double *lhs, _Quad rhs); void __kmpc_atomic_float10_sub_rev_fp(ident_t *id_ref, int gtid, long double *lhs, _Quad rhs); void __kmpc_atomic_float10_div_rev_fp(ident_t *id_ref, int gtid, long double *lhs, _Quad rhs); #endif // KMP_HAVE_QUAD // RHS=cmplx8 void __kmpc_atomic_cmplx4_add_cmplx8(ident_t *id_ref, int gtid, kmp_cmplx32 *lhs, kmp_cmplx64 rhs); void __kmpc_atomic_cmplx4_sub_cmplx8(ident_t *id_ref, int gtid, kmp_cmplx32 *lhs, kmp_cmplx64 rhs); void __kmpc_atomic_cmplx4_mul_cmplx8(ident_t *id_ref, int gtid, kmp_cmplx32 *lhs, kmp_cmplx64 rhs); void __kmpc_atomic_cmplx4_div_cmplx8(ident_t *id_ref, int gtid, kmp_cmplx32 *lhs, kmp_cmplx64 rhs); // generic atomic routines void __kmpc_atomic_1(ident_t *id_ref, int gtid, void *lhs, void *rhs, void (*f)(void *, void *, void *)); void __kmpc_atomic_2(ident_t *id_ref, int gtid, void *lhs, void *rhs, void (*f)(void *, void *, void *)); void __kmpc_atomic_4(ident_t *id_ref, int gtid, void *lhs, void *rhs, void (*f)(void *, void *, void *)); void __kmpc_atomic_8(ident_t *id_ref, int gtid, void *lhs, void *rhs, void (*f)(void *, void *, void *)); void __kmpc_atomic_10(ident_t *id_ref, int gtid, void *lhs, void *rhs, void (*f)(void *, void *, void *)); void __kmpc_atomic_16(ident_t *id_ref, int gtid, void *lhs, void *rhs, void (*f)(void *, void *, void *)); void __kmpc_atomic_20(ident_t *id_ref, int gtid, void *lhs, void *rhs, void (*f)(void *, void *, void *)); void __kmpc_atomic_32(ident_t *id_ref, int gtid, void *lhs, void *rhs, void (*f)(void *, void *, void *)); // READ, WRITE, CAPTURE are supported only on IA-32 architecture and Intel(R) 64 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 // Below routines for atomic READ are listed char __kmpc_atomic_fixed1_rd(ident_t *id_ref, int gtid, char *loc); short __kmpc_atomic_fixed2_rd(ident_t *id_ref, int gtid, short *loc); kmp_int32 __kmpc_atomic_fixed4_rd(ident_t *id_ref, int gtid, kmp_int32 *loc); kmp_int64 __kmpc_atomic_fixed8_rd(ident_t *id_ref, int gtid, kmp_int64 *loc); kmp_real32 __kmpc_atomic_float4_rd(ident_t *id_ref, int gtid, kmp_real32 *loc); kmp_real64 __kmpc_atomic_float8_rd(ident_t *id_ref, int gtid, kmp_real64 *loc); long double __kmpc_atomic_float10_rd(ident_t *id_ref, int gtid, long double *loc); #if KMP_HAVE_QUAD QUAD_LEGACY __kmpc_atomic_float16_rd(ident_t *id_ref, int gtid, QUAD_LEGACY *loc); #endif // Fix for CQ220361: cmplx4 READ will return void on Windows* OS; read value // will be returned through an additional parameter #if (KMP_OS_WINDOWS) void __kmpc_atomic_cmplx4_rd(kmp_cmplx32 *out, ident_t *id_ref, int gtid, kmp_cmplx32 *loc); #else kmp_cmplx32 __kmpc_atomic_cmplx4_rd(ident_t *id_ref, int gtid, kmp_cmplx32 *loc); #endif kmp_cmplx64 __kmpc_atomic_cmplx8_rd(ident_t *id_ref, int gtid, kmp_cmplx64 *loc); kmp_cmplx80 __kmpc_atomic_cmplx10_rd(ident_t *id_ref, int gtid, kmp_cmplx80 *loc); #if KMP_HAVE_QUAD CPLX128_LEG __kmpc_atomic_cmplx16_rd(ident_t *id_ref, int gtid, CPLX128_LEG *loc); #if (KMP_ARCH_X86) // Routines with 16-byte arguments aligned to 16-byte boundary Quad_a16_t __kmpc_atomic_float16_a16_rd(ident_t *id_ref, int gtid, Quad_a16_t *loc); kmp_cmplx128_a16_t __kmpc_atomic_cmplx16_a16_rd(ident_t *id_ref, int gtid, kmp_cmplx128_a16_t *loc); #endif #endif // Below routines for atomic WRITE are listed void __kmpc_atomic_fixed1_wr(ident_t *id_ref, int gtid, char *lhs, char rhs); void __kmpc_atomic_fixed2_wr(ident_t *id_ref, int gtid, short *lhs, short rhs); void __kmpc_atomic_fixed4_wr(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs); void __kmpc_atomic_fixed8_wr(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs); void __kmpc_atomic_float4_wr(ident_t *id_ref, int gtid, kmp_real32 *lhs, kmp_real32 rhs); void __kmpc_atomic_float8_wr(ident_t *id_ref, int gtid, kmp_real64 *lhs, kmp_real64 rhs); void __kmpc_atomic_float10_wr(ident_t *id_ref, int gtid, long double *lhs, long double rhs); #if KMP_HAVE_QUAD void __kmpc_atomic_float16_wr(ident_t *id_ref, int gtid, QUAD_LEGACY *lhs, QUAD_LEGACY rhs); #endif void __kmpc_atomic_cmplx4_wr(ident_t *id_ref, int gtid, kmp_cmplx32 *lhs, kmp_cmplx32 rhs); void __kmpc_atomic_cmplx8_wr(ident_t *id_ref, int gtid, kmp_cmplx64 *lhs, kmp_cmplx64 rhs); void __kmpc_atomic_cmplx10_wr(ident_t *id_ref, int gtid, kmp_cmplx80 *lhs, kmp_cmplx80 rhs); #if KMP_HAVE_QUAD void __kmpc_atomic_cmplx16_wr(ident_t *id_ref, int gtid, CPLX128_LEG *lhs, CPLX128_LEG rhs); #if (KMP_ARCH_X86) // Routines with 16-byte arguments aligned to 16-byte boundary void __kmpc_atomic_float16_a16_wr(ident_t *id_ref, int gtid, Quad_a16_t *lhs, Quad_a16_t rhs); void __kmpc_atomic_cmplx16_a16_wr(ident_t *id_ref, int gtid, kmp_cmplx128_a16_t *lhs, kmp_cmplx128_a16_t rhs); #endif #endif // Below routines for atomic CAPTURE are listed // 1-byte char __kmpc_atomic_fixed1_add_cpt(ident_t *id_ref, int gtid, char *lhs, char rhs, int flag); char __kmpc_atomic_fixed1_andb_cpt(ident_t *id_ref, int gtid, char *lhs, char rhs, int flag); char __kmpc_atomic_fixed1_div_cpt(ident_t *id_ref, int gtid, char *lhs, char rhs, int flag); unsigned char __kmpc_atomic_fixed1u_div_cpt(ident_t *id_ref, int gtid, unsigned char *lhs, unsigned char rhs, int flag); char __kmpc_atomic_fixed1_mul_cpt(ident_t *id_ref, int gtid, char *lhs, char rhs, int flag); char __kmpc_atomic_fixed1_orb_cpt(ident_t *id_ref, int gtid, char *lhs, char rhs, int flag); char __kmpc_atomic_fixed1_shl_cpt(ident_t *id_ref, int gtid, char *lhs, char rhs, int flag); char __kmpc_atomic_fixed1_shr_cpt(ident_t *id_ref, int gtid, char *lhs, char rhs, int flag); unsigned char __kmpc_atomic_fixed1u_shr_cpt(ident_t *id_ref, int gtid, unsigned char *lhs, unsigned char rhs, int flag); char __kmpc_atomic_fixed1_sub_cpt(ident_t *id_ref, int gtid, char *lhs, char rhs, int flag); char __kmpc_atomic_fixed1_xor_cpt(ident_t *id_ref, int gtid, char *lhs, char rhs, int flag); // 2-byte short __kmpc_atomic_fixed2_add_cpt(ident_t *id_ref, int gtid, short *lhs, short rhs, int flag); short __kmpc_atomic_fixed2_andb_cpt(ident_t *id_ref, int gtid, short *lhs, short rhs, int flag); short __kmpc_atomic_fixed2_div_cpt(ident_t *id_ref, int gtid, short *lhs, short rhs, int flag); unsigned short __kmpc_atomic_fixed2u_div_cpt(ident_t *id_ref, int gtid, unsigned short *lhs, unsigned short rhs, int flag); short __kmpc_atomic_fixed2_mul_cpt(ident_t *id_ref, int gtid, short *lhs, short rhs, int flag); short __kmpc_atomic_fixed2_orb_cpt(ident_t *id_ref, int gtid, short *lhs, short rhs, int flag); short __kmpc_atomic_fixed2_shl_cpt(ident_t *id_ref, int gtid, short *lhs, short rhs, int flag); short __kmpc_atomic_fixed2_shr_cpt(ident_t *id_ref, int gtid, short *lhs, short rhs, int flag); unsigned short __kmpc_atomic_fixed2u_shr_cpt(ident_t *id_ref, int gtid, unsigned short *lhs, unsigned short rhs, int flag); short __kmpc_atomic_fixed2_sub_cpt(ident_t *id_ref, int gtid, short *lhs, short rhs, int flag); short __kmpc_atomic_fixed2_xor_cpt(ident_t *id_ref, int gtid, short *lhs, short rhs, int flag); // 4-byte add / sub fixed kmp_int32 __kmpc_atomic_fixed4_add_cpt(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_sub_cpt(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs, int flag); // 4-byte add / sub float kmp_real32 __kmpc_atomic_float4_add_cpt(ident_t *id_ref, int gtid, kmp_real32 *lhs, kmp_real32 rhs, int flag); kmp_real32 __kmpc_atomic_float4_sub_cpt(ident_t *id_ref, int gtid, kmp_real32 *lhs, kmp_real32 rhs, int flag); // 8-byte add / sub fixed kmp_int64 __kmpc_atomic_fixed8_add_cpt(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_sub_cpt(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs, int flag); // 8-byte add / sub float kmp_real64 __kmpc_atomic_float8_add_cpt(ident_t *id_ref, int gtid, kmp_real64 *lhs, kmp_real64 rhs, int flag); kmp_real64 __kmpc_atomic_float8_sub_cpt(ident_t *id_ref, int gtid, kmp_real64 *lhs, kmp_real64 rhs, int flag); // 4-byte fixed kmp_int32 __kmpc_atomic_fixed4_andb_cpt(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_div_cpt(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs, int flag); kmp_uint32 __kmpc_atomic_fixed4u_div_cpt(ident_t *id_ref, int gtid, kmp_uint32 *lhs, kmp_uint32 rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_mul_cpt(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_orb_cpt(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_shl_cpt(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_shr_cpt(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs, int flag); kmp_uint32 __kmpc_atomic_fixed4u_shr_cpt(ident_t *id_ref, int gtid, kmp_uint32 *lhs, kmp_uint32 rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_xor_cpt(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs, int flag); // 8-byte fixed kmp_int64 __kmpc_atomic_fixed8_andb_cpt(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_div_cpt(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs, int flag); kmp_uint64 __kmpc_atomic_fixed8u_div_cpt(ident_t *id_ref, int gtid, kmp_uint64 *lhs, kmp_uint64 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_mul_cpt(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_orb_cpt(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_shl_cpt(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_shr_cpt(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs, int flag); kmp_uint64 __kmpc_atomic_fixed8u_shr_cpt(ident_t *id_ref, int gtid, kmp_uint64 *lhs, kmp_uint64 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_xor_cpt(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs, int flag); // 4-byte float kmp_real32 __kmpc_atomic_float4_div_cpt(ident_t *id_ref, int gtid, kmp_real32 *lhs, kmp_real32 rhs, int flag); kmp_real32 __kmpc_atomic_float4_mul_cpt(ident_t *id_ref, int gtid, kmp_real32 *lhs, kmp_real32 rhs, int flag); // 8-byte float kmp_real64 __kmpc_atomic_float8_div_cpt(ident_t *id_ref, int gtid, kmp_real64 *lhs, kmp_real64 rhs, int flag); kmp_real64 __kmpc_atomic_float8_mul_cpt(ident_t *id_ref, int gtid, kmp_real64 *lhs, kmp_real64 rhs, int flag); // 1-, 2-, 4-, 8-byte logical (&&, ||) char __kmpc_atomic_fixed1_andl_cpt(ident_t *id_ref, int gtid, char *lhs, char rhs, int flag); char __kmpc_atomic_fixed1_orl_cpt(ident_t *id_ref, int gtid, char *lhs, char rhs, int flag); short __kmpc_atomic_fixed2_andl_cpt(ident_t *id_ref, int gtid, short *lhs, short rhs, int flag); short __kmpc_atomic_fixed2_orl_cpt(ident_t *id_ref, int gtid, short *lhs, short rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_andl_cpt(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_orl_cpt(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_andl_cpt(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_orl_cpt(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs, int flag); // MIN / MAX char __kmpc_atomic_fixed1_max_cpt(ident_t *id_ref, int gtid, char *lhs, char rhs, int flag); char __kmpc_atomic_fixed1_min_cpt(ident_t *id_ref, int gtid, char *lhs, char rhs, int flag); short __kmpc_atomic_fixed2_max_cpt(ident_t *id_ref, int gtid, short *lhs, short rhs, int flag); short __kmpc_atomic_fixed2_min_cpt(ident_t *id_ref, int gtid, short *lhs, short rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_max_cpt(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_min_cpt(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_max_cpt(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_min_cpt(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs, int flag); kmp_real32 __kmpc_atomic_float4_max_cpt(ident_t *id_ref, int gtid, kmp_real32 *lhs, kmp_real32 rhs, int flag); kmp_real32 __kmpc_atomic_float4_min_cpt(ident_t *id_ref, int gtid, kmp_real32 *lhs, kmp_real32 rhs, int flag); kmp_real64 __kmpc_atomic_float8_max_cpt(ident_t *id_ref, int gtid, kmp_real64 *lhs, kmp_real64 rhs, int flag); kmp_real64 __kmpc_atomic_float8_min_cpt(ident_t *id_ref, int gtid, kmp_real64 *lhs, kmp_real64 rhs, int flag); long double __kmpc_atomic_float10_max_cpt(ident_t *id_ref, int gtid, long double *lhs, long double rhs, int flag); long double __kmpc_atomic_float10_min_cpt(ident_t *id_ref, int gtid, long double *lhs, long double rhs, int flag); #if KMP_HAVE_QUAD QUAD_LEGACY __kmpc_atomic_float16_max_cpt(ident_t *id_ref, int gtid, QUAD_LEGACY *lhs, QUAD_LEGACY rhs, int flag); QUAD_LEGACY __kmpc_atomic_float16_min_cpt(ident_t *id_ref, int gtid, QUAD_LEGACY *lhs, QUAD_LEGACY rhs, int flag); #endif // .NEQV. (same as xor) char __kmpc_atomic_fixed1_neqv_cpt(ident_t *id_ref, int gtid, char *lhs, char rhs, int flag); short __kmpc_atomic_fixed2_neqv_cpt(ident_t *id_ref, int gtid, short *lhs, short rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_neqv_cpt(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_neqv_cpt(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs, int flag); // .EQV. (same as ~xor) char __kmpc_atomic_fixed1_eqv_cpt(ident_t *id_ref, int gtid, char *lhs, char rhs, int flag); short __kmpc_atomic_fixed2_eqv_cpt(ident_t *id_ref, int gtid, short *lhs, short rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_eqv_cpt(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_eqv_cpt(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs, int flag); // long double type long double __kmpc_atomic_float10_add_cpt(ident_t *id_ref, int gtid, long double *lhs, long double rhs, int flag); long double __kmpc_atomic_float10_sub_cpt(ident_t *id_ref, int gtid, long double *lhs, long double rhs, int flag); long double __kmpc_atomic_float10_mul_cpt(ident_t *id_ref, int gtid, long double *lhs, long double rhs, int flag); long double __kmpc_atomic_float10_div_cpt(ident_t *id_ref, int gtid, long double *lhs, long double rhs, int flag); #if KMP_HAVE_QUAD // _Quad type QUAD_LEGACY __kmpc_atomic_float16_add_cpt(ident_t *id_ref, int gtid, QUAD_LEGACY *lhs, QUAD_LEGACY rhs, int flag); QUAD_LEGACY __kmpc_atomic_float16_sub_cpt(ident_t *id_ref, int gtid, QUAD_LEGACY *lhs, QUAD_LEGACY rhs, int flag); QUAD_LEGACY __kmpc_atomic_float16_mul_cpt(ident_t *id_ref, int gtid, QUAD_LEGACY *lhs, QUAD_LEGACY rhs, int flag); QUAD_LEGACY __kmpc_atomic_float16_div_cpt(ident_t *id_ref, int gtid, QUAD_LEGACY *lhs, QUAD_LEGACY rhs, int flag); #endif // routines for complex types // Workaround for cmplx4 routines - return void; captured value is returned via // the argument void __kmpc_atomic_cmplx4_add_cpt(ident_t *id_ref, int gtid, kmp_cmplx32 *lhs, kmp_cmplx32 rhs, kmp_cmplx32 *out, int flag); void __kmpc_atomic_cmplx4_sub_cpt(ident_t *id_ref, int gtid, kmp_cmplx32 *lhs, kmp_cmplx32 rhs, kmp_cmplx32 *out, int flag); void __kmpc_atomic_cmplx4_mul_cpt(ident_t *id_ref, int gtid, kmp_cmplx32 *lhs, kmp_cmplx32 rhs, kmp_cmplx32 *out, int flag); void __kmpc_atomic_cmplx4_div_cpt(ident_t *id_ref, int gtid, kmp_cmplx32 *lhs, kmp_cmplx32 rhs, kmp_cmplx32 *out, int flag); kmp_cmplx64 __kmpc_atomic_cmplx8_add_cpt(ident_t *id_ref, int gtid, kmp_cmplx64 *lhs, kmp_cmplx64 rhs, int flag); kmp_cmplx64 __kmpc_atomic_cmplx8_sub_cpt(ident_t *id_ref, int gtid, kmp_cmplx64 *lhs, kmp_cmplx64 rhs, int flag); kmp_cmplx64 __kmpc_atomic_cmplx8_mul_cpt(ident_t *id_ref, int gtid, kmp_cmplx64 *lhs, kmp_cmplx64 rhs, int flag); kmp_cmplx64 __kmpc_atomic_cmplx8_div_cpt(ident_t *id_ref, int gtid, kmp_cmplx64 *lhs, kmp_cmplx64 rhs, int flag); kmp_cmplx80 __kmpc_atomic_cmplx10_add_cpt(ident_t *id_ref, int gtid, kmp_cmplx80 *lhs, kmp_cmplx80 rhs, int flag); kmp_cmplx80 __kmpc_atomic_cmplx10_sub_cpt(ident_t *id_ref, int gtid, kmp_cmplx80 *lhs, kmp_cmplx80 rhs, int flag); kmp_cmplx80 __kmpc_atomic_cmplx10_mul_cpt(ident_t *id_ref, int gtid, kmp_cmplx80 *lhs, kmp_cmplx80 rhs, int flag); kmp_cmplx80 __kmpc_atomic_cmplx10_div_cpt(ident_t *id_ref, int gtid, kmp_cmplx80 *lhs, kmp_cmplx80 rhs, int flag); #if KMP_HAVE_QUAD CPLX128_LEG __kmpc_atomic_cmplx16_add_cpt(ident_t *id_ref, int gtid, CPLX128_LEG *lhs, CPLX128_LEG rhs, int flag); CPLX128_LEG __kmpc_atomic_cmplx16_sub_cpt(ident_t *id_ref, int gtid, CPLX128_LEG *lhs, CPLX128_LEG rhs, int flag); CPLX128_LEG __kmpc_atomic_cmplx16_mul_cpt(ident_t *id_ref, int gtid, CPLX128_LEG *lhs, CPLX128_LEG rhs, int flag); CPLX128_LEG __kmpc_atomic_cmplx16_div_cpt(ident_t *id_ref, int gtid, CPLX128_LEG *lhs, CPLX128_LEG rhs, int flag); #if (KMP_ARCH_X86) // Routines with 16-byte arguments aligned to 16-byte boundary Quad_a16_t __kmpc_atomic_float16_add_a16_cpt(ident_t *id_ref, int gtid, Quad_a16_t *lhs, Quad_a16_t rhs, int flag); Quad_a16_t __kmpc_atomic_float16_sub_a16_cpt(ident_t *id_ref, int gtid, Quad_a16_t *lhs, Quad_a16_t rhs, int flag); Quad_a16_t __kmpc_atomic_float16_mul_a16_cpt(ident_t *id_ref, int gtid, Quad_a16_t *lhs, Quad_a16_t rhs, int flag); Quad_a16_t __kmpc_atomic_float16_div_a16_cpt(ident_t *id_ref, int gtid, Quad_a16_t *lhs, Quad_a16_t rhs, int flag); Quad_a16_t __kmpc_atomic_float16_max_a16_cpt(ident_t *id_ref, int gtid, Quad_a16_t *lhs, Quad_a16_t rhs, int flag); Quad_a16_t __kmpc_atomic_float16_min_a16_cpt(ident_t *id_ref, int gtid, Quad_a16_t *lhs, Quad_a16_t rhs, int flag); kmp_cmplx128_a16_t __kmpc_atomic_cmplx16_add_a16_cpt(ident_t *id_ref, int gtid, kmp_cmplx128_a16_t *lhs, kmp_cmplx128_a16_t rhs, int flag); kmp_cmplx128_a16_t __kmpc_atomic_cmplx16_sub_a16_cpt(ident_t *id_ref, int gtid, kmp_cmplx128_a16_t *lhs, kmp_cmplx128_a16_t rhs, int flag); kmp_cmplx128_a16_t __kmpc_atomic_cmplx16_mul_a16_cpt(ident_t *id_ref, int gtid, kmp_cmplx128_a16_t *lhs, kmp_cmplx128_a16_t rhs, int flag); kmp_cmplx128_a16_t __kmpc_atomic_cmplx16_div_a16_cpt(ident_t *id_ref, int gtid, kmp_cmplx128_a16_t *lhs, kmp_cmplx128_a16_t rhs, int flag); #endif #endif void __kmpc_atomic_start(void); void __kmpc_atomic_end(void); // OpenMP 4.0: v = x = expr binop x; { v = x; x = expr binop x; } { x = expr // binop x; v = x; } for non-commutative operations. char __kmpc_atomic_fixed1_sub_cpt_rev(ident_t *id_ref, int gtid, char *lhs, char rhs, int flag); char __kmpc_atomic_fixed1_div_cpt_rev(ident_t *id_ref, int gtid, char *lhs, char rhs, int flag); unsigned char __kmpc_atomic_fixed1u_div_cpt_rev(ident_t *id_ref, int gtid, unsigned char *lhs, unsigned char rhs, int flag); char __kmpc_atomic_fixed1_shl_cpt_rev(ident_t *id_ref, int gtid, char *lhs, char rhs, int flag); char __kmpc_atomic_fixed1_shr_cpt_rev(ident_t *id_ref, int gtid, char *lhs, char rhs, int flag); unsigned char __kmpc_atomic_fixed1u_shr_cpt_rev(ident_t *id_ref, int gtid, unsigned char *lhs, unsigned char rhs, int flag); short __kmpc_atomic_fixed2_sub_cpt_rev(ident_t *id_ref, int gtid, short *lhs, short rhs, int flag); short __kmpc_atomic_fixed2_div_cpt_rev(ident_t *id_ref, int gtid, short *lhs, short rhs, int flag); unsigned short __kmpc_atomic_fixed2u_div_cpt_rev(ident_t *id_ref, int gtid, unsigned short *lhs, unsigned short rhs, int flag); short __kmpc_atomic_fixed2_shl_cpt_rev(ident_t *id_ref, int gtid, short *lhs, short rhs, int flag); short __kmpc_atomic_fixed2_shr_cpt_rev(ident_t *id_ref, int gtid, short *lhs, short rhs, int flag); unsigned short __kmpc_atomic_fixed2u_shr_cpt_rev(ident_t *id_ref, int gtid, unsigned short *lhs, unsigned short rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_sub_cpt_rev(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_div_cpt_rev(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs, int flag); kmp_uint32 __kmpc_atomic_fixed4u_div_cpt_rev(ident_t *id_ref, int gtid, kmp_uint32 *lhs, kmp_uint32 rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_shl_cpt_rev(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_shr_cpt_rev(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs, int flag); kmp_uint32 __kmpc_atomic_fixed4u_shr_cpt_rev(ident_t *id_ref, int gtid, kmp_uint32 *lhs, kmp_uint32 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_sub_cpt_rev(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_div_cpt_rev(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs, int flag); kmp_uint64 __kmpc_atomic_fixed8u_div_cpt_rev(ident_t *id_ref, int gtid, kmp_uint64 *lhs, kmp_uint64 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_shl_cpt_rev(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_shr_cpt_rev(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs, int flag); kmp_uint64 __kmpc_atomic_fixed8u_shr_cpt_rev(ident_t *id_ref, int gtid, kmp_uint64 *lhs, kmp_uint64 rhs, int flag); float __kmpc_atomic_float4_sub_cpt_rev(ident_t *id_ref, int gtid, float *lhs, float rhs, int flag); float __kmpc_atomic_float4_div_cpt_rev(ident_t *id_ref, int gtid, float *lhs, float rhs, int flag); double __kmpc_atomic_float8_sub_cpt_rev(ident_t *id_ref, int gtid, double *lhs, double rhs, int flag); double __kmpc_atomic_float8_div_cpt_rev(ident_t *id_ref, int gtid, double *lhs, double rhs, int flag); long double __kmpc_atomic_float10_sub_cpt_rev(ident_t *id_ref, int gtid, long double *lhs, long double rhs, int flag); long double __kmpc_atomic_float10_div_cpt_rev(ident_t *id_ref, int gtid, long double *lhs, long double rhs, int flag); #if KMP_HAVE_QUAD QUAD_LEGACY __kmpc_atomic_float16_sub_cpt_rev(ident_t *id_ref, int gtid, QUAD_LEGACY *lhs, QUAD_LEGACY rhs, int flag); QUAD_LEGACY __kmpc_atomic_float16_div_cpt_rev(ident_t *id_ref, int gtid, QUAD_LEGACY *lhs, QUAD_LEGACY rhs, int flag); #endif // Workaround for cmplx4 routines - return void; captured value is returned via // the argument void __kmpc_atomic_cmplx4_sub_cpt_rev(ident_t *id_ref, int gtid, kmp_cmplx32 *lhs, kmp_cmplx32 rhs, kmp_cmplx32 *out, int flag); void __kmpc_atomic_cmplx4_div_cpt_rev(ident_t *id_ref, int gtid, kmp_cmplx32 *lhs, kmp_cmplx32 rhs, kmp_cmplx32 *out, int flag); kmp_cmplx64 __kmpc_atomic_cmplx8_sub_cpt_rev(ident_t *id_ref, int gtid, kmp_cmplx64 *lhs, kmp_cmplx64 rhs, int flag); kmp_cmplx64 __kmpc_atomic_cmplx8_div_cpt_rev(ident_t *id_ref, int gtid, kmp_cmplx64 *lhs, kmp_cmplx64 rhs, int flag); kmp_cmplx80 __kmpc_atomic_cmplx10_sub_cpt_rev(ident_t *id_ref, int gtid, kmp_cmplx80 *lhs, kmp_cmplx80 rhs, int flag); kmp_cmplx80 __kmpc_atomic_cmplx10_div_cpt_rev(ident_t *id_ref, int gtid, kmp_cmplx80 *lhs, kmp_cmplx80 rhs, int flag); #if KMP_HAVE_QUAD CPLX128_LEG __kmpc_atomic_cmplx16_sub_cpt_rev(ident_t *id_ref, int gtid, CPLX128_LEG *lhs, CPLX128_LEG rhs, int flag); CPLX128_LEG __kmpc_atomic_cmplx16_div_cpt_rev(ident_t *id_ref, int gtid, CPLX128_LEG *lhs, CPLX128_LEG rhs, int flag); #if (KMP_ARCH_X86) Quad_a16_t __kmpc_atomic_float16_sub_a16_cpt_rev(ident_t *id_ref, int gtid, Quad_a16_t *lhs, Quad_a16_t rhs, int flag); Quad_a16_t __kmpc_atomic_float16_div_a16_cpt_rev(ident_t *id_ref, int gtid, Quad_a16_t *lhs, Quad_a16_t rhs, int flag); kmp_cmplx128_a16_t __kmpc_atomic_cmplx16_sub_a16_cpt_rev(ident_t *id_ref, int gtid, kmp_cmplx128_a16_t *lhs, kmp_cmplx128_a16_t rhs, int flag); kmp_cmplx128_a16_t __kmpc_atomic_cmplx16_div_a16_cpt_rev(ident_t *id_ref, int gtid, kmp_cmplx128_a16_t *lhs, kmp_cmplx128_a16_t rhs, int flag); #endif #endif // OpenMP 4.0 Capture-write (swap): {v = x; x = expr;} char __kmpc_atomic_fixed1_swp(ident_t *id_ref, int gtid, char *lhs, char rhs); short __kmpc_atomic_fixed2_swp(ident_t *id_ref, int gtid, short *lhs, short rhs); kmp_int32 __kmpc_atomic_fixed4_swp(ident_t *id_ref, int gtid, kmp_int32 *lhs, kmp_int32 rhs); kmp_int64 __kmpc_atomic_fixed8_swp(ident_t *id_ref, int gtid, kmp_int64 *lhs, kmp_int64 rhs); float __kmpc_atomic_float4_swp(ident_t *id_ref, int gtid, float *lhs, float rhs); double __kmpc_atomic_float8_swp(ident_t *id_ref, int gtid, double *lhs, double rhs); long double __kmpc_atomic_float10_swp(ident_t *id_ref, int gtid, long double *lhs, long double rhs); #if KMP_HAVE_QUAD QUAD_LEGACY __kmpc_atomic_float16_swp(ident_t *id_ref, int gtid, QUAD_LEGACY *lhs, QUAD_LEGACY rhs); #endif // !!! TODO: check if we need a workaround here void __kmpc_atomic_cmplx4_swp(ident_t *id_ref, int gtid, kmp_cmplx32 *lhs, kmp_cmplx32 rhs, kmp_cmplx32 *out); // kmp_cmplx32 __kmpc_atomic_cmplx4_swp( ident_t *id_ref, int gtid, // kmp_cmplx32 * lhs, kmp_cmplx32 rhs ); kmp_cmplx64 __kmpc_atomic_cmplx8_swp(ident_t *id_ref, int gtid, kmp_cmplx64 *lhs, kmp_cmplx64 rhs); kmp_cmplx80 __kmpc_atomic_cmplx10_swp(ident_t *id_ref, int gtid, kmp_cmplx80 *lhs, kmp_cmplx80 rhs); #if KMP_HAVE_QUAD CPLX128_LEG __kmpc_atomic_cmplx16_swp(ident_t *id_ref, int gtid, CPLX128_LEG *lhs, CPLX128_LEG rhs); #if (KMP_ARCH_X86) Quad_a16_t __kmpc_atomic_float16_a16_swp(ident_t *id_ref, int gtid, Quad_a16_t *lhs, Quad_a16_t rhs); kmp_cmplx128_a16_t __kmpc_atomic_cmplx16_a16_swp(ident_t *id_ref, int gtid, kmp_cmplx128_a16_t *lhs, kmp_cmplx128_a16_t rhs); #endif #endif // Capture routines for mixed types (RHS=float16) #if KMP_HAVE_QUAD char __kmpc_atomic_fixed1_add_cpt_fp(ident_t *id_ref, int gtid, char *lhs, _Quad rhs, int flag); char __kmpc_atomic_fixed1_sub_cpt_fp(ident_t *id_ref, int gtid, char *lhs, _Quad rhs, int flag); char __kmpc_atomic_fixed1_mul_cpt_fp(ident_t *id_ref, int gtid, char *lhs, _Quad rhs, int flag); char __kmpc_atomic_fixed1_div_cpt_fp(ident_t *id_ref, int gtid, char *lhs, _Quad rhs, int flag); unsigned char __kmpc_atomic_fixed1u_add_cpt_fp(ident_t *id_ref, int gtid, unsigned char *lhs, _Quad rhs, int flag); unsigned char __kmpc_atomic_fixed1u_sub_cpt_fp(ident_t *id_ref, int gtid, unsigned char *lhs, _Quad rhs, int flag); unsigned char __kmpc_atomic_fixed1u_mul_cpt_fp(ident_t *id_ref, int gtid, unsigned char *lhs, _Quad rhs, int flag); unsigned char __kmpc_atomic_fixed1u_div_cpt_fp(ident_t *id_ref, int gtid, unsigned char *lhs, _Quad rhs, int flag); short __kmpc_atomic_fixed2_add_cpt_fp(ident_t *id_ref, int gtid, short *lhs, _Quad rhs, int flag); short __kmpc_atomic_fixed2_sub_cpt_fp(ident_t *id_ref, int gtid, short *lhs, _Quad rhs, int flag); short __kmpc_atomic_fixed2_mul_cpt_fp(ident_t *id_ref, int gtid, short *lhs, _Quad rhs, int flag); short __kmpc_atomic_fixed2_div_cpt_fp(ident_t *id_ref, int gtid, short *lhs, _Quad rhs, int flag); unsigned short __kmpc_atomic_fixed2u_add_cpt_fp(ident_t *id_ref, int gtid, unsigned short *lhs, _Quad rhs, int flag); unsigned short __kmpc_atomic_fixed2u_sub_cpt_fp(ident_t *id_ref, int gtid, unsigned short *lhs, _Quad rhs, int flag); unsigned short __kmpc_atomic_fixed2u_mul_cpt_fp(ident_t *id_ref, int gtid, unsigned short *lhs, _Quad rhs, int flag); unsigned short __kmpc_atomic_fixed2u_div_cpt_fp(ident_t *id_ref, int gtid, unsigned short *lhs, _Quad rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_add_cpt_fp(ident_t *id_ref, int gtid, kmp_int32 *lhs, _Quad rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_sub_cpt_fp(ident_t *id_ref, int gtid, kmp_int32 *lhs, _Quad rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_mul_cpt_fp(ident_t *id_ref, int gtid, kmp_int32 *lhs, _Quad rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_div_cpt_fp(ident_t *id_ref, int gtid, kmp_int32 *lhs, _Quad rhs, int flag); kmp_uint32 __kmpc_atomic_fixed4u_add_cpt_fp(ident_t *id_ref, int gtid, kmp_uint32 *lhs, _Quad rhs, int flag); kmp_uint32 __kmpc_atomic_fixed4u_sub_cpt_fp(ident_t *id_ref, int gtid, kmp_uint32 *lhs, _Quad rhs, int flag); kmp_uint32 __kmpc_atomic_fixed4u_mul_cpt_fp(ident_t *id_ref, int gtid, kmp_uint32 *lhs, _Quad rhs, int flag); kmp_uint32 __kmpc_atomic_fixed4u_div_cpt_fp(ident_t *id_ref, int gtid, kmp_uint32 *lhs, _Quad rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_add_cpt_fp(ident_t *id_ref, int gtid, kmp_int64 *lhs, _Quad rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_sub_cpt_fp(ident_t *id_ref, int gtid, kmp_int64 *lhs, _Quad rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_mul_cpt_fp(ident_t *id_ref, int gtid, kmp_int64 *lhs, _Quad rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_div_cpt_fp(ident_t *id_ref, int gtid, kmp_int64 *lhs, _Quad rhs, int flag); kmp_uint64 __kmpc_atomic_fixed8u_add_cpt_fp(ident_t *id_ref, int gtid, kmp_uint64 *lhs, _Quad rhs, int flag); kmp_uint64 __kmpc_atomic_fixed8u_sub_cpt_fp(ident_t *id_ref, int gtid, kmp_uint64 *lhs, _Quad rhs, int flag); kmp_uint64 __kmpc_atomic_fixed8u_mul_cpt_fp(ident_t *id_ref, int gtid, kmp_uint64 *lhs, _Quad rhs, int flag); kmp_uint64 __kmpc_atomic_fixed8u_div_cpt_fp(ident_t *id_ref, int gtid, kmp_uint64 *lhs, _Quad rhs, int flag); float __kmpc_atomic_float4_add_cpt_fp(ident_t *id_ref, int gtid, kmp_real32 *lhs, _Quad rhs, int flag); float __kmpc_atomic_float4_sub_cpt_fp(ident_t *id_ref, int gtid, kmp_real32 *lhs, _Quad rhs, int flag); float __kmpc_atomic_float4_mul_cpt_fp(ident_t *id_ref, int gtid, kmp_real32 *lhs, _Quad rhs, int flag); float __kmpc_atomic_float4_div_cpt_fp(ident_t *id_ref, int gtid, kmp_real32 *lhs, _Quad rhs, int flag); double __kmpc_atomic_float8_add_cpt_fp(ident_t *id_ref, int gtid, kmp_real64 *lhs, _Quad rhs, int flag); double __kmpc_atomic_float8_sub_cpt_fp(ident_t *id_ref, int gtid, kmp_real64 *lhs, _Quad rhs, int flag); double __kmpc_atomic_float8_mul_cpt_fp(ident_t *id_ref, int gtid, kmp_real64 *lhs, _Quad rhs, int flag); double __kmpc_atomic_float8_div_cpt_fp(ident_t *id_ref, int gtid, kmp_real64 *lhs, _Quad rhs, int flag); long double __kmpc_atomic_float10_add_cpt_fp(ident_t *id_ref, int gtid, long double *lhs, _Quad rhs, int flag); long double __kmpc_atomic_float10_sub_cpt_fp(ident_t *id_ref, int gtid, long double *lhs, _Quad rhs, int flag); long double __kmpc_atomic_float10_mul_cpt_fp(ident_t *id_ref, int gtid, long double *lhs, _Quad rhs, int flag); long double __kmpc_atomic_float10_div_cpt_fp(ident_t *id_ref, int gtid, long double *lhs, _Quad rhs, int flag); char __kmpc_atomic_fixed1_sub_cpt_rev_fp(ident_t *id_ref, int gtid, char *lhs, _Quad rhs, int flag); unsigned char __kmpc_atomic_fixed1u_sub_cpt_rev_fp(ident_t *id_ref, int gtid, unsigned char *lhs, _Quad rhs, int flag); char __kmpc_atomic_fixed1_div_cpt_rev_fp(ident_t *id_ref, int gtid, char *lhs, _Quad rhs, int flag); unsigned char __kmpc_atomic_fixed1u_div_cpt_rev_fp(ident_t *id_ref, int gtid, unsigned char *lhs, _Quad rhs, int flag); short __kmpc_atomic_fixed2_sub_cpt_rev_fp(ident_t *id_ref, int gtid, short *lhs, _Quad rhs, int flag); unsigned short __kmpc_atomic_fixed2u_sub_cpt_rev_fp(ident_t *id_ref, int gtid, unsigned short *lhs, _Quad rhs, int flag); short __kmpc_atomic_fixed2_div_cpt_rev_fp(ident_t *id_ref, int gtid, short *lhs, _Quad rhs, int flag); unsigned short __kmpc_atomic_fixed2u_div_cpt_rev_fp(ident_t *id_ref, int gtid, unsigned short *lhs, _Quad rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_sub_cpt_rev_fp(ident_t *id_ref, int gtid, kmp_int32 *lhs, _Quad rhs, int flag); kmp_uint32 __kmpc_atomic_fixed4u_sub_cpt_rev_fp(ident_t *id_ref, int gtid, kmp_uint32 *lhs, _Quad rhs, int flag); kmp_int32 __kmpc_atomic_fixed4_div_cpt_rev_fp(ident_t *id_ref, int gtid, kmp_int32 *lhs, _Quad rhs, int flag); kmp_uint32 __kmpc_atomic_fixed4u_div_cpt_rev_fp(ident_t *id_ref, int gtid, kmp_uint32 *lhs, _Quad rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_sub_cpt_rev_fp(ident_t *id_ref, int gtid, kmp_int64 *lhs, _Quad rhs, int flag); kmp_uint64 __kmpc_atomic_fixed8u_sub_cpt_rev_fp(ident_t *id_ref, int gtid, kmp_uint64 *lhs, _Quad rhs, int flag); kmp_int64 __kmpc_atomic_fixed8_div_cpt_rev_fp(ident_t *id_ref, int gtid, kmp_int64 *lhs, _Quad rhs, int flag); kmp_uint64 __kmpc_atomic_fixed8u_div_cpt_rev_fp(ident_t *id_ref, int gtid, kmp_uint64 *lhs, _Quad rhs, int flag); float __kmpc_atomic_float4_sub_cpt_rev_fp(ident_t *id_ref, int gtid, float *lhs, _Quad rhs, int flag); float __kmpc_atomic_float4_div_cpt_rev_fp(ident_t *id_ref, int gtid, float *lhs, _Quad rhs, int flag); double __kmpc_atomic_float8_sub_cpt_rev_fp(ident_t *id_ref, int gtid, double *lhs, _Quad rhs, int flag); double __kmpc_atomic_float8_div_cpt_rev_fp(ident_t *id_ref, int gtid, double *lhs, _Quad rhs, int flag); long double __kmpc_atomic_float10_sub_cpt_rev_fp(ident_t *id_ref, int gtid, long double *lhs, _Quad rhs, int flag); long double __kmpc_atomic_float10_div_cpt_rev_fp(ident_t *id_ref, int gtid, long double *lhs, _Quad rhs, int flag); #endif // KMP_HAVE_QUAD // End of OpenMP 4.0 capture // OpenMP 5.1 compare and swap /* __kmpc_atomic_bool_1_cas __kmpc_atomic_bool_2_cas __kmpc_atomic_bool_4_cas __kmpc_atomic_bool_8_cas __kmpc_atomic_val_1_cas __kmpc_atomic_val_2_cas __kmpc_atomic_val_4_cas __kmpc_atomic_val_8_cas __kmpc_atomic_bool_1_cas_cpt __kmpc_atomic_bool_2_cas_cpt __kmpc_atomic_bool_4_cas_cpt __kmpc_atomic_bool_8_cas_cpt __kmpc_atomic_val_1_cas_cpt __kmpc_atomic_val_2_cas_cpt __kmpc_atomic_val_4_cas_cpt __kmpc_atomic_val_8_cas_cpt */ // In all interfaces of CAS (Compare And Swap): // r is the boolean result of comparison // x is memory location to operate on // e is expected (old) value // d is desired (new) value // pv is pointer to captured value v whose location may coincide with e // { r = x == e; if(r) { x = d; } } // functions return result of comparison bool __kmpc_atomic_bool_1_cas(ident_t *loc, int gtid, char *x, char e, char d); bool __kmpc_atomic_bool_2_cas(ident_t *loc, int gtid, short *x, short e, short d); bool __kmpc_atomic_bool_4_cas(ident_t *loc, int gtid, kmp_int32 *x, kmp_int32 e, kmp_int32 d); bool __kmpc_atomic_bool_8_cas(ident_t *loc, int gtid, kmp_int64 *x, kmp_int64 e, kmp_int64 d); // { v = x; if (x == e) { x = d; } } // functions return old value char __kmpc_atomic_val_1_cas(ident_t *loc, int gtid, char *x, char e, char d); short __kmpc_atomic_val_2_cas(ident_t *loc, int gtid, short *x, short e, short d); kmp_int32 __kmpc_atomic_val_4_cas(ident_t *loc, int gtid, kmp_int32 *x, kmp_int32 e, kmp_int32 d); kmp_int64 __kmpc_atomic_val_8_cas(ident_t *loc, int gtid, kmp_int64 *x, kmp_int64 e, kmp_int64 d); // { r = x == e; if(r) { x = d; } else { v = x; } } // v gets old value if comparison failed, untouched otherwise // functions return result of comparison bool __kmpc_atomic_bool_1_cas_cpt(ident_t *loc, int gtid, char *x, char e, char d, char *pv); bool __kmpc_atomic_bool_2_cas_cpt(ident_t *loc, int gtid, short *x, short e, short d, short *pv); bool __kmpc_atomic_bool_4_cas_cpt(ident_t *loc, int gtid, kmp_int32 *x, kmp_int32 e, kmp_int32 d, kmp_int32 *pv); bool __kmpc_atomic_bool_8_cas_cpt(ident_t *loc, int gtid, kmp_int64 *x, kmp_int64 e, kmp_int64 d, kmp_int64 *pv); // { if (x == e) { x = d; }; v = x; } // v gets old value if comparison failed, new value otherwise // functions return old value char __kmpc_atomic_val_1_cas_cpt(ident_t *loc, int gtid, char *x, char e, char d, char *pv); short __kmpc_atomic_val_2_cas_cpt(ident_t *loc, int gtid, short *x, short e, short d, short *pv); kmp_int32 __kmpc_atomic_val_4_cas_cpt(ident_t *loc, int gtid, kmp_int32 *x, kmp_int32 e, kmp_int32 d, kmp_int32 *pv); kmp_int64 __kmpc_atomic_val_8_cas_cpt(ident_t *loc, int gtid, kmp_int64 *x, kmp_int64 e, kmp_int64 d, kmp_int64 *pv); // End OpenMP 5.1 compare + capture #endif // KMP_ARCH_X86 || KMP_ARCH_X86_64 /* ------------------------------------------------------------------------ */ #ifdef __cplusplus } // extern "C" #endif #endif /* KMP_ATOMIC_H */ // end of file