Command Line Interface for Zstandard library ============================================ Command Line Interface (CLI) can be created using the `make` command without any additional parameters. There are however other Makefile targets that create different variations of CLI: - `zstd` : default CLI supporting gzip-like arguments; includes dictionary builder, benchmark, and supports decompression of legacy zstd formats - `zstd_nolegacy` : Same as `zstd` but without support for legacy zstd formats - `zstd-small` : CLI optimized for minimal size; no dictionary builder, no benchmark, and no support for legacy zstd formats - `zstd-compress` : version of CLI which can only compress into zstd format - `zstd-decompress` : version of CLI which can only decompress zstd format ### Compilation variables `zstd` scope can be altered by modifying the following `make` variables : - __HAVE_THREAD__ : multithreading is automatically enabled when `pthread` is detected. It's possible to disable multithread support, by setting `HAVE_THREAD=0`. Example : `make zstd HAVE_THREAD=0` It's also possible to force multithread support, using `HAVE_THREAD=1`. In which case, linking stage will fail if neither `pthread` nor `windows.h` library can be found. This is useful to ensure this feature is not silently disabled. - __ZSTD_LEGACY_SUPPORT__ : `zstd` can decompress files compressed by older versions of `zstd`. Starting v0.8.0, all versions of `zstd` produce frames compliant with the [specification](../doc/zstd_compression_format.md), and are therefore compatible. But older versions (< v0.8.0) produced different, incompatible, frames. By default, `zstd` supports decoding legacy formats >= v0.4.0 (`ZSTD_LEGACY_SUPPORT=4`). This can be altered by modifying this compilation variable. `ZSTD_LEGACY_SUPPORT=1` means "support all formats >= v0.1.0". `ZSTD_LEGACY_SUPPORT=2` means "support all formats >= v0.2.0", and so on. `ZSTD_LEGACY_SUPPORT=0` means _DO NOT_ support any legacy format. if `ZSTD_LEGACY_SUPPORT >= 8`, it's the same as `0`, since there is no legacy format after `7`. Note : `zstd` only supports decoding older formats, and cannot generate any legacy format. - __HAVE_ZLIB__ : `zstd` can compress and decompress files in `.gz` format. This is ordered through command `--format=gzip`. Alternatively, symlinks named `gzip` or `gunzip` will mimic intended behavior. `.gz` support is automatically enabled when `zlib` library is detected at build time. It's possible to disable `.gz` support, by setting `HAVE_ZLIB=0`. Example : `make zstd HAVE_ZLIB=0` It's also possible to force compilation with zlib support, using `HAVE_ZLIB=1`. In which case, linking stage will fail if `zlib` library cannot be found. This is useful to prevent silent feature disabling. - __HAVE_LZMA__ : `zstd` can compress and decompress files in `.xz` and `.lzma` formats. This is ordered through commands `--format=xz` and `--format=lzma` respectively. Alternatively, symlinks named `xz`, `unxz`, `lzma`, or `unlzma` will mimic intended behavior. `.xz` and `.lzma` support is automatically enabled when `lzma` library is detected at build time. It's possible to disable `.xz` and `.lzma` support, by setting `HAVE_LZMA=0`. Example : `make zstd HAVE_LZMA=0` It's also possible to force compilation with lzma support, using `HAVE_LZMA=1`. In which case, linking stage will fail if `lzma` library cannot be found. This is useful to prevent silent feature disabling. - __HAVE_LZ4__ : `zstd` can compress and decompress files in `.lz4` formats. This is ordered through commands `--format=lz4`. Alternatively, symlinks named `lz4`, or `unlz4` will mimic intended behavior. `.lz4` support is automatically enabled when `lz4` library is detected at build time. It's possible to disable `.lz4` support, by setting `HAVE_LZ4=0` . Example : `make zstd HAVE_LZ4=0` It's also possible to force compilation with lz4 support, using `HAVE_LZ4=1`. In which case, linking stage will fail if `lz4` library cannot be found. This is useful to prevent silent feature disabling. - __ZSTD_NOBENCH__ : `zstd` cli will be compiled without its integrated benchmark module. This can be useful to produce smaller binaries. In this case, the corresponding unit can also be excluded from compilation target. - __ZSTD_NODICT__ : `zstd` cli will be compiled without support for the integrated dictionary builder. This can be useful to produce smaller binaries. In this case, the corresponding unit can also be excluded from compilation target. - __ZSTD_NOCOMPRESS__ : `zstd` cli will be compiled without support for compression. The resulting binary will only be able to decompress files. This can be useful to produce smaller binaries. A corresponding `Makefile` target using this ability is `zstd-decompress`. - __ZSTD_NODECOMPRESS__ : `zstd` cli will be compiled without support for decompression. The resulting binary will only be able to compress files. This can be useful to produce smaller binaries. A corresponding `Makefile` target using this ability is `zstd-compress`. - __BACKTRACE__ : `zstd` can display a stack backtrace when execution generates a runtime exception. By default, this feature may be degraded/disabled on some platforms unless additional compiler directives are applied. When triaging a runtime issue, enabling this feature can provide more context to determine the location of the fault. Example : `make zstd BACKTRACE=1` ### Aggregation of parameters CLI supports aggregation of parameters i.e. `-b1`, `-e18`, and `-i1` can be joined into `-b1e18i1`. ### Symlink shortcuts It's possible to invoke `zstd` through a symlink. When the name of the symlink has a specific value, it triggers an associated behavior. - `zstdmt` : compress using all cores available on local system. - `zcat` : will decompress and output target file using any of the supported formats. `gzcat` and `zstdcat` are also equivalent. - `gzip` : if zlib support is enabled, will mimic `gzip` by compressing file using `.gz` format, removing source file by default (use `--keep` to preserve). If zlib is not supported, triggers an error. - `xz` : if lzma support is enabled, will mimic `xz` by compressing file using `.xz` format, removing source file by default (use `--keep` to preserve). If xz is not supported, triggers an error. - `lzma` : if lzma support is enabled, will mimic `lzma` by compressing file using `.lzma` format, removing source file by default (use `--keep` to preserve). If lzma is not supported, triggers an error. - `lz4` : if lz4 support is enabled, will mimic `lz4` by compressing file using `.lz4` format. If lz4 is not supported, triggers an error. - `unzstd` and `unlz4` will decompress any of the supported format. - `ungz`, `unxz` and `unlzma` will do the same, and will also remove source file by default (use `--keep` to preserve). ### Dictionary builder in Command Line Interface Zstd offers a training mode, which can be used to tune the algorithm for a selected type of data, by providing it with a few samples. The result of the training is stored in a file selected with the `-o` option (default name is `dictionary`), which can be loaded before compression and decompression. Using a dictionary, the compression ratio achievable on small data improves dramatically. These compression gains are achieved while simultaneously providing faster compression and decompression speeds. Dictionary work if there is some correlation in a family of small data (there is no universal dictionary). Hence, deploying one dictionary per type of data will provide the greater benefits. Dictionary gains are mostly effective in the first few KB. Then, the compression algorithm will rely more and more on previously decoded content to compress the rest of the file. Usage of the dictionary builder and created dictionaries with CLI: 1. Create the dictionary : `zstd --train PathToTrainingSet/* -o dictionaryName` 2. Compress with the dictionary: `zstd FILE -D dictionaryName` 3. Decompress with the dictionary: `zstd --decompress FILE.zst -D dictionaryName` ### Benchmark in Command Line Interface CLI includes in-memory compression benchmark module for zstd. The benchmark is conducted using given filenames. The files are read into memory and joined together. It makes benchmark more precise as it eliminates I/O overhead. Multiple filenames can be supplied, as multiple parameters, with wildcards, or directory names can be used with `-r` option. If no file is provided, the benchmark will use a procedurally generated "lorem ipsum" content. The benchmark measures ratio, compressed size, compression and decompression speed. One can select compression levels starting from `-b` and ending with `-e`. The `-i` parameter selects minimal time used for each of tested levels. The benchmark can also be used to test specific parameters, such as number of threads (`-T#`), or advanced parameters (`--zstd=#`), or dictionary compression (`-D DICTIONARY`), and many others available on command for regular compression and decompression. ### Usage of Command Line Interface The full list of options can be obtained with `-h` or `-H` parameter: ``` *** Zstandard CLI (64-bit) v1.5.6, by Yann Collet *** Compress or decompress the INPUT file(s); reads from STDIN if INPUT is `-` or not provided. Usage: zstd [OPTIONS...] [INPUT... | -] [-o OUTPUT] Options: -o OUTPUT Write output to a single file, OUTPUT. -k, --keep Preserve INPUT file(s). [Default] --rm Remove INPUT file(s) after successful (de)compression. -# Desired compression level, where `#` is a number between 1 and 19; lower numbers provide faster compression, higher numbers yield better compression ratios. [Default: 3] -d, --decompress Perform decompression. -D DICT Use DICT as the dictionary for compression or decompression. -f, --force Disable input and output checks. Allows overwriting existing files, receiving input from the console, printing output to STDOUT, and operating on links, block devices, etc. Unrecognized formats will be passed-through through as-is. -h Display short usage and exit. -H, --help Display full help and exit. -V, --version Display the program version and exit. Advanced options: -c, --stdout Write to STDOUT (even if it is a console) and keep the INPUT file(s). -v, --verbose Enable verbose output; pass multiple times to increase verbosity. -q, --quiet Suppress warnings; pass twice to suppress errors. --trace LOG Log tracing information to LOG. --[no-]progress Forcibly show/hide the progress counter. NOTE: Any (de)compressed output to terminal will mix with progress counter text. -r Operate recursively on directories. --filelist LIST Read a list of files to operate on from LIST. --output-dir-flat DIR Store processed files in DIR. --output-dir-mirror DIR Store processed files in DIR, respecting original directory structure. --[no-]asyncio Use asynchronous IO. [Default: Enabled] --[no-]check Add XXH64 integrity checksums during compression. [Default: Add, Validate] If `-d` is present, ignore/validate checksums during decompression. -- Treat remaining arguments after `--` as files. Advanced compression options: --ultra Enable levels beyond 19, up to 22; requires more memory. --fast[=#] Use to very fast compression levels. [Default: 1] --adapt Dynamically adapt compression level to I/O conditions. --long[=#] Enable long distance matching with window log #. [Default: 27] --patch-from=REF Use REF as the reference point for Zstandard's diff engine. -T# Spawn # compression threads. [Default: 1; pass 0 for core count.] --single-thread Share a single thread for I/O and compression (slightly different than `-T1`). --auto-threads={physical|logical} Use physical/logical cores when using `-T0`. [Default: Physical] -B# Set job size to #. [Default: 0 (automatic)] --rsyncable Compress using a rsync-friendly method (`-B` sets block size). --exclude-compressed Only compress files that are not already compressed. --stream-size=# Specify size of streaming input from STDIN. --size-hint=# Optimize compression parameters for streaming input of approximately size #. --target-compressed-block-size=# Generate compressed blocks of approximately # size. --no-dictID Don't write `dictID` into the header (dictionary compression only). --[no-]compress-literals Force (un)compressed literals. --[no-]row-match-finder Explicitly enable/disable the fast, row-based matchfinder for the 'greedy', 'lazy', and 'lazy2' strategies. --format=zstd Compress files to the `.zst` format. [Default] --[no-]mmap-dict Memory-map dictionary file rather than mallocing and loading all at once --format=gzip Compress files to the `.gz` format. --format=xz Compress files to the `.xz` format. --format=lzma Compress files to the `.lzma` format. --format=lz4 Compress files to the `.lz4` format. Advanced decompression options: -l Print information about Zstandard-compressed files. --test Test compressed file integrity. -M# Set the memory usage limit to # megabytes. --[no-]sparse Enable sparse mode. [Default: Enabled for files, disabled for STDOUT.] --[no-]pass-through Pass through uncompressed files as-is. [Default: Disabled] Dictionary builder: --train Create a dictionary from a training set of files. --train-cover[=k=#,d=#,steps=#,split=#,shrink[=#]] Use the cover algorithm (with optional arguments). --train-fastcover[=k=#,d=#,f=#,steps=#,split=#,accel=#,shrink[=#]] Use the fast cover algorithm (with optional arguments). --train-legacy[=s=#] Use the legacy algorithm with selectivity #. [Default: 9] -o NAME Use NAME as dictionary name. [Default: dictionary] --maxdict=# Limit dictionary to specified size #. [Default: 112640] --dictID=# Force dictionary ID to #. [Default: Random] Benchmark options: -b# Perform benchmarking with compression level #. [Default: 3] -e# Test all compression levels up to #; starting level is `-b#`. [Default: 1] -i# Set the minimum evaluation to time # seconds. [Default: 3] -B# Cut file into independent chunks of size #. [Default: No chunking] -S Output one benchmark result per input file. [Default: Consolidated result] -D dictionary Benchmark using dictionary --priority=rt Set process priority to real-time. ``` ### Passing parameters through Environment Variables There is no "generic" way to pass "any kind of parameter" to `zstd` in a pass-through manner. Using environment variables for this purpose has security implications. Therefore, this avenue is intentionally restricted and only supports `ZSTD_CLEVEL` and `ZSTD_NBTHREADS`. `ZSTD_CLEVEL` can be used to modify the default compression level of `zstd` (usually set to `3`) to another value between 1 and 19 (the "normal" range). `ZSTD_NBTHREADS` can be used to specify a number of threads that `zstd` will use for compression, which by default is `1`. This functionality only exists when `zstd` is compiled with multithread support. `0` means "use as many threads as detected cpu cores on local system". The max # of threads is capped at `ZSTDMT_NBWORKERS_MAX`, which is either 64 in 32-bit mode, or 256 for 64-bit environments. This functionality can be useful when `zstd` CLI is invoked in a way that doesn't allow passing arguments. One such scenario is `tar --zstd`. As `ZSTD_CLEVEL` and `ZSTD_NBTHREADS` only replace the default compression level and number of threads respectively, they can both be overridden by corresponding command line arguments: `-#` for compression level and `-T#` for number of threads. ### Long distance matching mode The long distance matching mode, enabled with `--long`, is designed to improve the compression ratio for files with long matches at a large distance (up to the maximum window size, `128 MiB`) while still maintaining compression speed. Enabling this mode sets the window size to `128 MiB` and thus increases the memory usage for both the compressor and decompressor. Performance in terms of speed is dependent on long matches being found. Compression speed may degrade if few long matches are found. Decompression speed usually improves when there are many long distance matches. Below are graphs comparing the compression speed, compression ratio, and decompression speed with and without long distance matching on an ideal use case: a tar of four versions of clang (versions `3.4.1`, `3.4.2`, `3.5.0`, `3.5.1`) with a total size of `244889600 B`. This is an ideal use case as there are many long distance matches within the maximum window size of `128 MiB` (each version is less than `128 MiB`). Compression Speed vs Ratio | Decompression Speed ---------------------------|--------------------- ![Compression Speed vs Ratio](https://raw.githubusercontent.com/facebook/zstd/v1.3.3/doc/images/ldmCspeed.png "Compression Speed vs Ratio") | ![Decompression Speed](https://raw.githubusercontent.com/facebook/zstd/v1.3.3/doc/images/ldmDspeed.png "Decompression Speed") | Method | Compression ratio | Compression speed | Decompression speed | |:-------|------------------:|-------------------------:|---------------------------:| | `zstd -1` | `5.065` | `284.8 MB/s` | `759.3 MB/s` | | `zstd -5` | `5.826` | `124.9 MB/s` | `674.0 MB/s` | | `zstd -10` | `6.504` | `29.5 MB/s` | `771.3 MB/s` | | `zstd -1 --long` | `17.426` | `220.6 MB/s` | `1638.4 MB/s` | | `zstd -5 --long` | `19.661` | `165.5 MB/s` | `1530.6 MB/s` | | `zstd -10 --long`| `21.949` | `75.6 MB/s` | `1632.6 MB/s` | On this file, the compression ratio improves significantly with minimal impact on compression speed, and the decompression speed doubles. On the other extreme, compressing a file with few long distance matches (such as the [Silesia compression corpus]) will likely lead to a deterioration in compression speed (for lower levels) with minimal change in compression ratio. The below table illustrates this on the [Silesia compression corpus]. [Silesia compression corpus]: https://sun.aei.polsl.pl//~sdeor/index.php?page=silesia | Method | Compression ratio | Compression speed | Decompression speed | |:-------|------------------:|------------------:|---------------------:| | `zstd -1` | `2.878` | `231.7 MB/s` | `594.4 MB/s` | | `zstd -1 --long` | `2.929` | `106.5 MB/s` | `517.9 MB/s` | | `zstd -5` | `3.274` | `77.1 MB/s` | `464.2 MB/s` | | `zstd -5 --long` | `3.319` | `51.7 MB/s` | `371.9 MB/s` | | `zstd -10` | `3.523` | `16.4 MB/s` | `489.2 MB/s` | | `zstd -10 --long`| `3.566` | `16.2 MB/s` | `415.7 MB/s` | ### zstdgrep `zstdgrep` is a utility which makes it possible to `grep` directly a `.zst` compressed file. It's used the same way as normal `grep`, for example : `zstdgrep pattern file.zst` `zstdgrep` is _not_ compatible with dictionary compression. To search into a file compressed with a dictionary, it's necessary to decompress it using `zstd` or `zstdcat`, and then pipe the result to `grep`. For example : `zstdcat -D dictionary -qc -- file.zst | grep pattern`