123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317 |
- from datetime import datetime, timedelta, timezone
- from typing import Literal, Mapping
- import pytest
- from snuba_sdk import (
- Column,
- Condition,
- Direction,
- Metric,
- MetricsQuery,
- MetricsScope,
- Op,
- Request,
- Rollup,
- Timeseries,
- )
- from sentry.api.utils import InvalidParams
- from sentry.sentry_metrics.use_case_id_registry import UseCaseID
- from sentry.snuba.metrics.naming_layer import TransactionMRI
- from sentry.snuba.metrics_layer.query import run_query
- from sentry.testutils.cases import BaseMetricsTestCase, TestCase
- pytestmark = pytest.mark.sentry_metrics
- class SnQLTest(TestCase, BaseMetricsTestCase):
- def ts(self, dt: datetime) -> int:
- return int(dt.timestamp())
- def setUp(self) -> None:
- super().setUp()
- self.metrics: Mapping[str, Literal["counter", "set", "distribution"]] = {
- TransactionMRI.DURATION.value: "distribution",
- TransactionMRI.USER.value: "set",
- TransactionMRI.COUNT_PER_ROOT_PROJECT.value: "counter",
- }
- self.now = datetime.now(tz=timezone.utc).replace(microsecond=0)
- self.hour_ago = self.now - timedelta(hours=1)
- self.org_id = self.project.organization_id
- # Store a data point every 10 seconds for an hour
- for mri, metric_type in self.metrics.items():
- assert metric_type in {"counter", "distribution", "set"}
- for i in range(360):
- self.store_metric(
- self.org_id,
- self.project.id,
- metric_type,
- mri,
- {
- "transaction": f"transaction_{i % 2}",
- "status_code": "500" if i % 10 == 0 else "200",
- "device": "BlackBerry" if i % 3 == 0 else "Nokia",
- },
- self.ts(self.hour_ago + timedelta(minutes=1 * i)),
- i,
- UseCaseID.TRANSACTIONS,
- )
- def test_basic(self) -> None:
- query = MetricsQuery(
- query=Timeseries(
- metric=Metric(
- "transaction.duration",
- TransactionMRI.DURATION.value,
- ),
- aggregate="max",
- ),
- start=self.hour_ago,
- end=self.now,
- rollup=Rollup(interval=60, granularity=60),
- scope=MetricsScope(
- org_ids=[self.org_id],
- project_ids=[self.project.id],
- use_case_id=UseCaseID.TRANSACTIONS.value,
- ),
- )
- request = Request(
- dataset="generic_metrics",
- app_id="tests",
- query=query,
- tenant_ids={"referrer": "metrics.testing.test", "organization_id": self.org_id},
- )
- result = run_query(request)
- assert len(result["data"]) == 61
- rows = result["data"]
- for i in range(61):
- assert rows[i]["aggregate_value"] == i
- assert (
- rows[i]["time"]
- == (
- self.hour_ago.replace(second=0, microsecond=0) + timedelta(minutes=1 * i)
- ).isoformat()
- )
- def test_groupby(self) -> None:
- query = MetricsQuery(
- query=Timeseries(
- metric=Metric(
- "transaction.duration",
- TransactionMRI.DURATION.value,
- ),
- aggregate="quantiles",
- aggregate_params=[0.5, 0.99],
- groupby=[Column("transaction")],
- ),
- start=self.hour_ago,
- end=self.now,
- rollup=Rollup(interval=60, granularity=60),
- scope=MetricsScope(
- org_ids=[self.org_id],
- project_ids=[self.project.id],
- use_case_id=UseCaseID.TRANSACTIONS.value,
- ),
- )
- request = Request(
- dataset="generic_metrics",
- app_id="tests",
- query=query,
- tenant_ids={"referrer": "metrics.testing.test", "organization_id": self.org_id},
- )
- result = run_query(request)
- assert len(result["data"]) == 61
- rows = result["data"]
- for i in range(61):
- assert rows[i]["aggregate_value"] == [i, i]
- assert rows[i]["transaction"] == f"transaction_{i % 2}"
- assert (
- rows[i]["time"]
- == (
- self.hour_ago.replace(second=0, microsecond=0) + timedelta(minutes=1 * i)
- ).isoformat()
- )
- def test_filters(self) -> None:
- query = MetricsQuery(
- query=Timeseries(
- metric=Metric(
- "transaction.duration",
- TransactionMRI.DURATION.value,
- ),
- aggregate="quantiles",
- aggregate_params=[0.5],
- filters=[Condition(Column("status_code"), Op.EQ, "500")],
- ),
- filters=[Condition(Column("device"), Op.EQ, "BlackBerry")],
- start=self.hour_ago,
- end=self.now,
- rollup=Rollup(interval=60, granularity=60),
- scope=MetricsScope(
- org_ids=[self.org_id],
- project_ids=[self.project.id],
- use_case_id=UseCaseID.TRANSACTIONS.value,
- ),
- )
- request = Request(
- dataset="generic_metrics",
- app_id="tests",
- query=query,
- tenant_ids={"referrer": "metrics.testing.test", "organization_id": self.org_id},
- )
- result = run_query(request)
- assert len(result["data"]) == 3
- rows = result["data"]
- for i in range(3): # 500 status codes on Blackberry are sparse
- assert rows[i]["aggregate_value"] == [i * 30]
- assert (
- rows[i]["time"]
- == (
- self.hour_ago.replace(second=0, microsecond=0) + timedelta(minutes=30 * i)
- ).isoformat()
- )
- def test_complex(self) -> None:
- query = MetricsQuery(
- query=Timeseries(
- metric=Metric(
- "transaction.duration",
- TransactionMRI.DURATION.value,
- ),
- aggregate="quantiles",
- aggregate_params=[0.5],
- filters=[Condition(Column("status_code"), Op.EQ, "500")],
- groupby=[Column("transaction")],
- ),
- filters=[Condition(Column("device"), Op.EQ, "BlackBerry")],
- start=self.hour_ago,
- end=self.now,
- rollup=Rollup(interval=60, granularity=60),
- scope=MetricsScope(
- org_ids=[self.org_id],
- project_ids=[self.project.id],
- use_case_id=UseCaseID.TRANSACTIONS.value,
- ),
- )
- request = Request(
- dataset="generic_metrics",
- app_id="tests",
- query=query,
- tenant_ids={"referrer": "metrics.testing.test", "organization_id": self.org_id},
- )
- result = run_query(request)
- assert len(result["data"]) == 3
- rows = result["data"]
- for i in range(3): # 500 status codes on BB are sparse
- assert rows[i]["aggregate_value"] == [i * 30]
- assert rows[i]["transaction"] == "transaction_0"
- assert (
- rows[i]["time"]
- == (
- self.hour_ago.replace(second=0, microsecond=0) + timedelta(minutes=30 * i)
- ).isoformat()
- )
- def test_totals(self) -> None:
- query = MetricsQuery(
- query=Timeseries(
- metric=Metric(
- "transaction.duration",
- TransactionMRI.DURATION.value,
- ),
- aggregate="max",
- filters=[Condition(Column("status_code"), Op.EQ, "200")],
- groupby=[Column("transaction")],
- ),
- start=self.hour_ago,
- end=self.now,
- rollup=Rollup(totals=True, granularity=60, orderby=Direction.ASC),
- scope=MetricsScope(
- org_ids=[self.org_id],
- project_ids=[self.project.id],
- use_case_id=UseCaseID.TRANSACTIONS.value,
- ),
- )
- request = Request(
- dataset="generic_metrics",
- app_id="tests",
- query=query,
- tenant_ids={"referrer": "metrics.testing.test", "organization_id": self.org_id},
- )
- result = run_query(request)
- assert len(result["data"]) == 2
- rows = result["data"]
- assert rows[0]["aggregate_value"] == 58
- assert rows[0]["transaction"] == "transaction_0"
- assert rows[1]["aggregate_value"] == 59
- assert rows[1]["transaction"] == "transaction_1"
- def test_meta_data_in_response(self) -> None:
- query = MetricsQuery(
- query=Timeseries(
- metric=Metric(
- "transaction.duration",
- TransactionMRI.DURATION.value,
- ),
- aggregate="max",
- filters=[Condition(Column("status_code"), Op.EQ, "200")],
- groupby=[Column("transaction")],
- ),
- start=self.hour_ago.replace(minute=16, second=59),
- end=self.now.replace(minute=16, second=59),
- rollup=Rollup(interval=60, granularity=60),
- scope=MetricsScope(
- org_ids=[self.org_id],
- project_ids=[self.project.id],
- use_case_id=UseCaseID.TRANSACTIONS.value,
- ),
- )
- request = Request(
- dataset="generic_metrics",
- app_id="tests",
- query=query,
- tenant_ids={"referrer": "metrics.testing.test", "organization_id": self.org_id},
- )
- result = run_query(request)
- assert result["modified_start"] == self.hour_ago.replace(minute=16, second=0)
- assert result["modified_end"] == self.now.replace(minute=17, second=0)
- assert result["indexer_mappings"] == {
- "d:transactions/duration@millisecond": 9223372036854775909,
- "status_code": 10000,
- "transaction": 9223372036854776020,
- }
- def test_bad_query(self) -> None:
- query = MetricsQuery(
- query=Timeseries(
- metric=Metric(
- "transaction.duration",
- "not a real MRI",
- ),
- aggregate="max",
- ),
- start=self.hour_ago.replace(minute=16, second=59),
- end=self.now.replace(minute=16, second=59),
- rollup=Rollup(interval=60, granularity=60),
- scope=MetricsScope(
- org_ids=[self.org_id],
- project_ids=[self.project.id],
- use_case_id=UseCaseID.TRANSACTIONS.value,
- ),
- )
- request = Request(
- dataset="generic_metrics",
- app_id="tests",
- query=query,
- tenant_ids={"referrer": "metrics.testing.test", "organization_id": self.org_id},
- )
- with pytest.raises(InvalidParams):
- run_query(request)
|