test_sessions_v2.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664
  1. import math
  2. from datetime import datetime
  3. import pytest
  4. import pytz
  5. from django.http import QueryDict
  6. from freezegun import freeze_time
  7. # from sentry.testutils import TestCase
  8. from sentry.snuba.sessions_v2 import (
  9. AllowedResolution,
  10. InvalidParams,
  11. QueryDefinition,
  12. get_constrained_date_range,
  13. get_timestamps,
  14. massage_sessions_result,
  15. )
  16. def _make_query(qs, allow_minute_resolution=True):
  17. allowed_resolution = (
  18. AllowedResolution.one_minute if allow_minute_resolution else AllowedResolution.one_hour
  19. )
  20. return QueryDefinition(QueryDict(qs), {}, allowed_resolution)
  21. def result_sorted(result):
  22. """sort the groups of the results array by the `by` object, ensuring a stable order"""
  23. def stable_dict(d):
  24. return tuple(sorted(d.items(), key=lambda t: t[0]))
  25. result["groups"].sort(key=lambda group: stable_dict(group["by"]))
  26. return result
  27. @freeze_time("2018-12-11 03:21:00")
  28. def test_round_range():
  29. start, end, interval = get_constrained_date_range({"statsPeriod": "2d"})
  30. assert start == datetime(2018, 12, 9, 4, tzinfo=pytz.utc)
  31. assert end == datetime(2018, 12, 11, 3, 22, tzinfo=pytz.utc)
  32. start, end, interval = get_constrained_date_range({"statsPeriod": "2d", "interval": "1d"})
  33. assert start == datetime(2018, 12, 10, tzinfo=pytz.utc)
  34. assert end == datetime(2018, 12, 11, 3, 22, tzinfo=pytz.utc)
  35. def test_invalid_interval():
  36. with pytest.raises(InvalidParams):
  37. start, end, interval = get_constrained_date_range({"interval": "0d"})
  38. def test_round_exact():
  39. start, end, interval = get_constrained_date_range(
  40. {"start": "2021-01-12T04:06:16", "end": "2021-01-17T08:26:13", "interval": "1d"},
  41. )
  42. assert start == datetime(2021, 1, 12, tzinfo=pytz.utc)
  43. assert end == datetime(2021, 1, 18, tzinfo=pytz.utc)
  44. def test_inclusive_end():
  45. start, end, interval = get_constrained_date_range(
  46. {"start": "2021-02-24T00:00:00", "end": "2021-02-25T00:00:00", "interval": "1h"},
  47. )
  48. assert start == datetime(2021, 2, 24, tzinfo=pytz.utc)
  49. assert end == datetime(2021, 2, 25, 1, tzinfo=pytz.utc)
  50. @freeze_time("2021-03-05T11:14:17.105Z")
  51. def test_interval_restrictions():
  52. # making sure intervals are cleanly divisible
  53. with pytest.raises(InvalidParams, match="The interval has to be less than one day."):
  54. _make_query("statsPeriod=4d&interval=2d&field=sum(session)")
  55. with pytest.raises(
  56. InvalidParams, match="The interval should divide one day without a remainder."
  57. ):
  58. _make_query("statsPeriod=6h&interval=59m&field=sum(session)")
  59. with pytest.raises(
  60. InvalidParams, match="The interval should divide one day without a remainder."
  61. ):
  62. _make_query("statsPeriod=4d&interval=5h&field=sum(session)")
  63. _make_query("statsPeriod=6h&interval=90m&field=sum(session)")
  64. with pytest.raises(
  65. InvalidParams,
  66. match="The interval has to be a multiple of the minimum interval of one hour.",
  67. ):
  68. _make_query("statsPeriod=6h&interval=90m&field=sum(session)", False)
  69. with pytest.raises(
  70. InvalidParams,
  71. match="The interval has to be a multiple of the minimum interval of one minute.",
  72. ):
  73. _make_query("statsPeriod=1h&interval=90s&field=sum(session)")
  74. # restrictions for minute resolution time range
  75. with pytest.raises(
  76. InvalidParams,
  77. match="The time-range when using one-minute resolution intervals is restricted to 6 hours.",
  78. ):
  79. _make_query("statsPeriod=7h&interval=15m&field=sum(session)")
  80. with pytest.raises(
  81. InvalidParams,
  82. match="The time-range when using one-minute resolution intervals is restricted to the last 30 days.",
  83. ):
  84. _make_query(
  85. "start=2021-01-05T11:14:17&end=2021-01-05T12:14:17&interval=15m&field=sum(session)"
  86. )
  87. with pytest.raises(
  88. InvalidParams, match="Your interval and date range would create too many results."
  89. ):
  90. _make_query("statsPeriod=90d&interval=1h&field=sum(session)")
  91. @freeze_time("2020-12-18T11:14:17.105Z")
  92. def test_timestamps():
  93. query = _make_query("statsPeriod=1d&interval=12h&field=sum(session)")
  94. expected_timestamps = ["2020-12-17T12:00:00Z", "2020-12-18T00:00:00Z"]
  95. actual_timestamps = get_timestamps(query)
  96. assert actual_timestamps == expected_timestamps
  97. @freeze_time("2021-03-08T09:34:00.000Z")
  98. def test_hourly_rounded_start():
  99. query = _make_query("statsPeriod=30m&interval=1m&field=sum(session)")
  100. actual_timestamps = get_timestamps(query)
  101. assert actual_timestamps[0] == "2021-03-08T09:00:00Z"
  102. assert actual_timestamps[-1] == "2021-03-08T09:34:00Z"
  103. assert len(actual_timestamps) == 35
  104. # in this case "45m" means from 08:49:00-09:34:00, but since we round start/end
  105. # to hours, we extend the start time to 08:00:00.
  106. query = _make_query("statsPeriod=45m&interval=1m&field=sum(session)")
  107. actual_timestamps = get_timestamps(query)
  108. assert actual_timestamps[0] == "2021-03-08T08:00:00Z"
  109. assert actual_timestamps[-1] == "2021-03-08T09:34:00Z"
  110. assert len(actual_timestamps) == 95
  111. def test_rounded_end():
  112. query = _make_query(
  113. "field=sum(session)&interval=1h&start=2021-02-24T00:00:00Z&end=2021-02-25T00:00:00Z"
  114. )
  115. expected_timestamps = [
  116. "2021-02-24T00:00:00Z",
  117. "2021-02-24T01:00:00Z",
  118. "2021-02-24T02:00:00Z",
  119. "2021-02-24T03:00:00Z",
  120. "2021-02-24T04:00:00Z",
  121. "2021-02-24T05:00:00Z",
  122. "2021-02-24T06:00:00Z",
  123. "2021-02-24T07:00:00Z",
  124. "2021-02-24T08:00:00Z",
  125. "2021-02-24T09:00:00Z",
  126. "2021-02-24T10:00:00Z",
  127. "2021-02-24T11:00:00Z",
  128. "2021-02-24T12:00:00Z",
  129. "2021-02-24T13:00:00Z",
  130. "2021-02-24T14:00:00Z",
  131. "2021-02-24T15:00:00Z",
  132. "2021-02-24T16:00:00Z",
  133. "2021-02-24T17:00:00Z",
  134. "2021-02-24T18:00:00Z",
  135. "2021-02-24T19:00:00Z",
  136. "2021-02-24T20:00:00Z",
  137. "2021-02-24T21:00:00Z",
  138. "2021-02-24T22:00:00Z",
  139. "2021-02-24T23:00:00Z",
  140. "2021-02-25T00:00:00Z",
  141. ]
  142. actual_timestamps = get_timestamps(query)
  143. assert len(actual_timestamps) == 25
  144. assert actual_timestamps == expected_timestamps
  145. def test_simple_query():
  146. query = _make_query("statsPeriod=1d&interval=12h&field=sum(session)")
  147. assert query.query_columns == ["sessions"]
  148. def test_groupby_query():
  149. query = _make_query("statsPeriod=1d&interval=12h&field=sum(session)&groupBy=release")
  150. assert sorted(query.query_columns) == ["release", "sessions"]
  151. assert query.query_groupby == ["release"]
  152. def test_virtual_groupby_query():
  153. query = _make_query("statsPeriod=1d&interval=12h&field=sum(session)&groupBy=session.status")
  154. assert sorted(query.query_columns) == [
  155. "sessions",
  156. "sessions_abnormal",
  157. "sessions_crashed",
  158. "sessions_errored",
  159. ]
  160. assert query.query_groupby == []
  161. query = _make_query(
  162. "statsPeriod=1d&interval=12h&field=count_unique(user)&groupBy=session.status"
  163. )
  164. assert sorted(query.query_columns) == [
  165. "users",
  166. "users_abnormal",
  167. "users_crashed",
  168. "users_errored",
  169. ]
  170. assert query.query_groupby == []
  171. @freeze_time("2020-12-18T11:14:17.105Z")
  172. def test_massage_empty():
  173. query = _make_query("statsPeriod=1d&interval=1d&field=sum(session)")
  174. result_totals = []
  175. result_timeseries = []
  176. expected_result = {
  177. "start": "2020-12-18T00:00:00Z",
  178. "end": "2020-12-18T11:15:00Z",
  179. "query": "",
  180. "intervals": ["2020-12-18T00:00:00Z"],
  181. "groups": [],
  182. }
  183. actual_result = result_sorted(massage_sessions_result(query, result_totals, result_timeseries))
  184. assert actual_result == expected_result
  185. @freeze_time("2020-12-18T11:14:17.105Z")
  186. def test_massage_unbalanced_results():
  187. query = _make_query("statsPeriod=1d&interval=1d&field=sum(session)&groupBy=release")
  188. result_totals = [
  189. {"release": "test-example-release", "sessions": 1},
  190. ]
  191. result_timeseries = []
  192. expected_result = {
  193. "start": "2020-12-18T00:00:00Z",
  194. "end": "2020-12-18T11:15:00Z",
  195. "query": "",
  196. "intervals": ["2020-12-18T00:00:00Z"],
  197. "groups": [
  198. {
  199. "by": {"release": "test-example-release"},
  200. "series": {"sum(session)": [0]},
  201. "totals": {"sum(session)": 1},
  202. }
  203. ],
  204. }
  205. actual_result = result_sorted(massage_sessions_result(query, result_totals, result_timeseries))
  206. assert actual_result == expected_result
  207. result_totals = []
  208. result_timeseries = [
  209. {
  210. "release": "test-example-release",
  211. "sessions": 1,
  212. "bucketed_started": "2020-12-18T00:00:00+00:00",
  213. },
  214. ]
  215. expected_result = {
  216. "start": "2020-12-18T00:00:00Z",
  217. "end": "2020-12-18T11:15:00Z",
  218. "query": "",
  219. "intervals": ["2020-12-18T00:00:00Z"],
  220. "groups": [
  221. {
  222. "by": {"release": "test-example-release"},
  223. "series": {"sum(session)": [1]},
  224. "totals": {"sum(session)": 0},
  225. }
  226. ],
  227. }
  228. actual_result = result_sorted(massage_sessions_result(query, result_totals, result_timeseries))
  229. assert actual_result == expected_result
  230. @freeze_time("2020-12-18T11:14:17.105Z")
  231. def test_massage_simple_timeseries():
  232. """A timeseries is filled up when it only receives partial data"""
  233. query = _make_query("statsPeriod=1d&interval=6h&field=sum(session)")
  234. result_totals = [{"sessions": 4}]
  235. # snuba returns the datetimes as strings for now
  236. result_timeseries = [
  237. {"sessions": 2, "bucketed_started": "2020-12-17T12:00:00+00:00"},
  238. {"sessions": 2, "bucketed_started": "2020-12-18T06:00:00+00:00"},
  239. ]
  240. expected_result = {
  241. "start": "2020-12-17T12:00:00Z",
  242. "end": "2020-12-18T11:15:00Z",
  243. "query": "",
  244. "intervals": [
  245. "2020-12-17T12:00:00Z",
  246. "2020-12-17T18:00:00Z",
  247. "2020-12-18T00:00:00Z",
  248. "2020-12-18T06:00:00Z",
  249. ],
  250. "groups": [
  251. {"by": {}, "series": {"sum(session)": [2, 0, 0, 2]}, "totals": {"sum(session)": 4}}
  252. ],
  253. }
  254. actual_result = result_sorted(massage_sessions_result(query, result_totals, result_timeseries))
  255. assert actual_result == expected_result
  256. @freeze_time("2020-12-18T11:14:17.105Z")
  257. def test_massage_no_timeseries():
  258. query = _make_query("statsPeriod=1d&interval=6h&field=sum(session)&groupby=projects")
  259. result_totals = [{"sessions": 4}]
  260. # snuba returns the datetimes as strings for now
  261. result_timeseries = None
  262. expected_result = {
  263. "start": "2020-12-17T12:00:00Z",
  264. "end": "2020-12-18T11:15:00Z",
  265. "query": "",
  266. "intervals": [
  267. "2020-12-17T12:00:00Z",
  268. "2020-12-17T18:00:00Z",
  269. "2020-12-18T00:00:00Z",
  270. "2020-12-18T06:00:00Z",
  271. ],
  272. "groups": [{"by": {}, "totals": {"sum(session)": 4}}],
  273. }
  274. actual_result = result_sorted(massage_sessions_result(query, result_totals, result_timeseries))
  275. assert actual_result == expected_result
  276. def test_massage_exact_timeseries():
  277. query = _make_query(
  278. "start=2020-12-17T15:12:34Z&end=2020-12-18T11:14:17Z&interval=6h&field=sum(session)"
  279. )
  280. result_totals = [{"sessions": 4}]
  281. result_timeseries = [
  282. {"sessions": 2, "bucketed_started": "2020-12-17T12:00:00+00:00"},
  283. {"sessions": 2, "bucketed_started": "2020-12-18T06:00:00+00:00"},
  284. ]
  285. expected_result = {
  286. "start": "2020-12-17T12:00:00Z",
  287. "end": "2020-12-18T12:00:00Z",
  288. "query": "",
  289. "intervals": [
  290. "2020-12-17T12:00:00Z",
  291. "2020-12-17T18:00:00Z",
  292. "2020-12-18T00:00:00Z",
  293. "2020-12-18T06:00:00Z",
  294. ],
  295. "groups": [
  296. {"by": {}, "series": {"sum(session)": [2, 0, 0, 2]}, "totals": {"sum(session)": 4}}
  297. ],
  298. }
  299. actual_result = result_sorted(massage_sessions_result(query, result_totals, result_timeseries))
  300. assert actual_result == expected_result
  301. @freeze_time("2020-12-18T11:14:17.105Z")
  302. def test_massage_groupby_timeseries():
  303. query = _make_query("statsPeriod=1d&interval=6h&field=sum(session)&groupBy=release")
  304. result_totals = [
  305. {"release": "test-example-release", "sessions": 4},
  306. {"release": "test-example-release-2", "sessions": 1},
  307. ]
  308. # snuba returns the datetimes as strings for now
  309. result_timeseries = [
  310. {
  311. "release": "test-example-release",
  312. "sessions": 2,
  313. "bucketed_started": "2020-12-17T12:00:00+00:00",
  314. },
  315. {
  316. "release": "test-example-release",
  317. "sessions": 2,
  318. "bucketed_started": "2020-12-18T06:00:00+00:00",
  319. },
  320. {
  321. "release": "test-example-release-2",
  322. "sessions": 1,
  323. "bucketed_started": "2020-12-18T06:00:00+00:00",
  324. },
  325. ]
  326. expected_result = {
  327. "start": "2020-12-17T12:00:00Z",
  328. "end": "2020-12-18T11:15:00Z",
  329. "query": "",
  330. "intervals": [
  331. "2020-12-17T12:00:00Z",
  332. "2020-12-17T18:00:00Z",
  333. "2020-12-18T00:00:00Z",
  334. "2020-12-18T06:00:00Z",
  335. ],
  336. "groups": [
  337. {
  338. "by": {"release": "test-example-release"},
  339. "series": {"sum(session)": [2, 0, 0, 2]},
  340. "totals": {"sum(session)": 4},
  341. },
  342. {
  343. "by": {"release": "test-example-release-2"},
  344. "series": {"sum(session)": [0, 0, 0, 1]},
  345. "totals": {"sum(session)": 1},
  346. },
  347. ],
  348. }
  349. actual_result = result_sorted(massage_sessions_result(query, result_totals, result_timeseries))
  350. assert actual_result == expected_result
  351. @freeze_time("2020-12-18T13:25:15.769Z")
  352. def test_massage_virtual_groupby_timeseries():
  353. query = _make_query(
  354. "statsPeriod=1d&interval=6h&field=sum(session)&field=count_unique(user)&groupBy=session.status"
  355. )
  356. result_totals = [
  357. {
  358. "users": 1,
  359. "users_crashed": 1,
  360. "sessions": 31,
  361. "sessions_errored": 15,
  362. "users_errored": 1,
  363. "sessions_abnormal": 6,
  364. "sessions_crashed": 8,
  365. "users_abnormal": 0,
  366. }
  367. ]
  368. # snuba returns the datetimes as strings for now
  369. result_timeseries = [
  370. {
  371. "sessions_errored": 4,
  372. "users": 1,
  373. "users_crashed": 0,
  374. "sessions_abnormal": 4,
  375. "sessions": 10,
  376. "users_errored": 0,
  377. "users_abnormal": 0,
  378. "sessions_crashed": 3,
  379. "bucketed_started": "2020-12-17T18:00:00+00:00",
  380. },
  381. {
  382. "sessions_errored": 10,
  383. "users": 1,
  384. "users_crashed": 0,
  385. "sessions_abnormal": 2,
  386. "sessions": 15,
  387. "users_errored": 0,
  388. "users_abnormal": 0,
  389. "sessions_crashed": 4,
  390. "bucketed_started": "2020-12-18T00:00:00+00:00",
  391. },
  392. {
  393. "sessions_errored": 1,
  394. "users": 1,
  395. "users_crashed": 1,
  396. "sessions_abnormal": 0,
  397. "sessions": 3,
  398. "users_errored": 1,
  399. "users_abnormal": 0,
  400. "sessions_crashed": 1,
  401. "bucketed_started": "2020-12-18T12:00:00+00:00",
  402. },
  403. {
  404. "sessions_errored": 0,
  405. "users": 1,
  406. "users_crashed": 0,
  407. "sessions_abnormal": 0,
  408. "sessions": 3,
  409. "users_errored": 0,
  410. "users_abnormal": 0,
  411. "sessions_crashed": 0,
  412. "bucketed_started": "2020-12-18T06:00:00+00:00",
  413. },
  414. ]
  415. expected_result = {
  416. "start": "2020-12-17T18:00:00Z",
  417. "end": "2020-12-18T13:26:00Z",
  418. "query": "",
  419. "intervals": [
  420. "2020-12-17T18:00:00Z",
  421. "2020-12-18T00:00:00Z",
  422. "2020-12-18T06:00:00Z",
  423. "2020-12-18T12:00:00Z",
  424. ],
  425. "groups": [
  426. {
  427. "by": {"session.status": "abnormal"},
  428. "series": {"count_unique(user)": [0, 0, 0, 0], "sum(session)": [4, 2, 0, 0]},
  429. "totals": {"count_unique(user)": 0, "sum(session)": 6},
  430. },
  431. {
  432. "by": {"session.status": "crashed"},
  433. "series": {"count_unique(user)": [0, 0, 0, 1], "sum(session)": [3, 4, 0, 1]},
  434. "totals": {"count_unique(user)": 1, "sum(session)": 8},
  435. },
  436. {
  437. "by": {"session.status": "errored"},
  438. "series": {"count_unique(user)": [0, 0, 0, 0], "sum(session)": [0, 4, 0, 0]},
  439. "totals": {"count_unique(user)": 0, "sum(session)": 1},
  440. },
  441. {
  442. "by": {"session.status": "healthy"},
  443. "series": {"count_unique(user)": [1, 1, 1, 0], "sum(session)": [6, 5, 3, 2]},
  444. # while in one of the time slots, we have a healthy user, it is
  445. # the *same* user as the one experiencing a crash later on,
  446. # so in the *whole* time window, that one user is not counted as healthy,
  447. # so the `0` here is expected, as thats an example of the `count_unique` behavior.
  448. "totals": {"count_unique(user)": 0, "sum(session)": 16},
  449. },
  450. ],
  451. }
  452. actual_result = result_sorted(massage_sessions_result(query, result_totals, result_timeseries))
  453. assert actual_result == expected_result
  454. @freeze_time("2020-12-18T13:25:15.769Z")
  455. def test_clamping_in_massage_sessions_results_with_groupby_timeseries():
  456. query = _make_query(
  457. "statsPeriod=12h&interval=6h&field=sum(session)&field=count_unique(user)&groupBy=session.status"
  458. )
  459. # snuba returns the datetimes as strings for now
  460. result_timeseries = [
  461. {
  462. "sessions": 5,
  463. "sessions_errored": 10,
  464. "sessions_crashed": 0,
  465. "sessions_abnormal": 0,
  466. "users": 5,
  467. "users_errored": 10,
  468. "users_crashed": 0,
  469. "users_abnormal": 0,
  470. "bucketed_started": "2020-12-18T06:00:00+00:00",
  471. },
  472. {
  473. "sessions": 7,
  474. "sessions_errored": 3,
  475. "sessions_crashed": 2,
  476. "sessions_abnormal": 2,
  477. "users": 7,
  478. "users_errored": 3,
  479. "users_crashed": 2,
  480. "users_abnormal": 2,
  481. "bucketed_started": "2020-12-18T12:00:00+00:00",
  482. },
  483. ]
  484. expected_result = {
  485. "start": "2020-12-18T06:00:00Z",
  486. "end": "2020-12-18T13:26:00Z",
  487. "query": "",
  488. "intervals": [
  489. "2020-12-18T06:00:00Z",
  490. "2020-12-18T12:00:00Z",
  491. ],
  492. "groups": [
  493. {
  494. "by": {"session.status": "abnormal"},
  495. "series": {"count_unique(user)": [0, 2], "sum(session)": [0, 2]},
  496. "totals": {"count_unique(user)": 0, "sum(session)": 0},
  497. },
  498. {
  499. "by": {"session.status": "crashed"},
  500. "series": {"count_unique(user)": [0, 2], "sum(session)": [0, 2]},
  501. "totals": {"count_unique(user)": 0, "sum(session)": 0},
  502. },
  503. {
  504. "by": {"session.status": "errored"},
  505. "series": {"count_unique(user)": [10, 0], "sum(session)": [10, 0]},
  506. "totals": {"count_unique(user)": 0, "sum(session)": 0},
  507. },
  508. {
  509. "by": {"session.status": "healthy"},
  510. "series": {"count_unique(user)": [0, 4], "sum(session)": [0, 4]},
  511. "totals": {"count_unique(user)": 0, "sum(session)": 0},
  512. },
  513. ],
  514. }
  515. actual_result = result_sorted(massage_sessions_result(query, [], result_timeseries))
  516. assert actual_result == expected_result
  517. @freeze_time("2020-12-18T11:14:17.105Z")
  518. def test_nan_duration():
  519. query = _make_query(
  520. "statsPeriod=1d&interval=6h&field=avg(session.duration)&field=p50(session.duration)"
  521. )
  522. result_totals = [
  523. {
  524. "duration_avg": math.nan,
  525. "duration_quantiles": [math.inf, math.inf, math.inf, math.inf, math.inf, math.inf],
  526. },
  527. ]
  528. result_timeseries = [
  529. {
  530. "duration_avg": math.nan,
  531. "duration_quantiles": [math.nan, math.nan, math.nan, math.nan, math.nan, math.nan],
  532. "bucketed_started": "2020-12-17T12:00:00+00:00",
  533. },
  534. {
  535. "duration_avg": math.inf,
  536. "duration_quantiles": [math.inf, math.inf, math.inf, math.inf, math.inf, math.inf],
  537. "bucketed_started": "2020-12-18T06:00:00+00:00",
  538. },
  539. ]
  540. expected_result = {
  541. "start": "2020-12-17T12:00:00Z",
  542. "end": "2020-12-18T11:15:00Z",
  543. "query": "",
  544. "intervals": [
  545. "2020-12-17T12:00:00Z",
  546. "2020-12-17T18:00:00Z",
  547. "2020-12-18T00:00:00Z",
  548. "2020-12-18T06:00:00Z",
  549. ],
  550. "groups": [
  551. {
  552. "by": {},
  553. "series": {
  554. "avg(session.duration)": [None, None, None, None],
  555. "p50(session.duration)": [None, None, None, None],
  556. },
  557. "totals": {"avg(session.duration)": None, "p50(session.duration)": None},
  558. },
  559. ],
  560. }
  561. actual_result = result_sorted(massage_sessions_result(query, result_totals, result_timeseries))
  562. assert actual_result == expected_result