test_sessions_v2.py 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
  1. import math
  2. from datetime import datetime
  3. import pytest
  4. import pytz
  5. from django.http import QueryDict
  6. from freezegun import freeze_time
  7. from sentry.release_health.base import SessionsQueryConfig
  8. # from sentry.testutils import TestCase
  9. from sentry.snuba.sessions_v2 import (
  10. AllowedResolution,
  11. InvalidParams,
  12. QueryDefinition,
  13. get_constrained_date_range,
  14. get_timestamps,
  15. massage_sessions_result,
  16. )
  17. def _make_query(qs, allow_minute_resolution=True):
  18. query_config = SessionsQueryConfig(
  19. (AllowedResolution.one_minute if allow_minute_resolution else AllowedResolution.one_hour),
  20. allow_session_status_query=False,
  21. restrict_date_range=True,
  22. )
  23. return QueryDefinition(QueryDict(qs), {}, query_config)
  24. def result_sorted(result):
  25. """sort the groups of the results array by the `by` object, ensuring a stable order"""
  26. def stable_dict(d):
  27. return tuple(sorted(d.items(), key=lambda t: t[0]))
  28. result["groups"].sort(key=lambda group: stable_dict(group["by"]))
  29. return result
  30. @freeze_time("2018-12-11 03:21:00")
  31. def test_round_range():
  32. start, end, interval = get_constrained_date_range({"statsPeriod": "2d"})
  33. assert start == datetime(2018, 12, 9, 4, tzinfo=pytz.utc)
  34. assert end == datetime(2018, 12, 11, 3, 22, tzinfo=pytz.utc)
  35. start, end, interval = get_constrained_date_range({"statsPeriod": "2d", "interval": "1d"})
  36. assert start == datetime(2018, 12, 10, tzinfo=pytz.utc)
  37. assert end == datetime(2018, 12, 11, 3, 22, tzinfo=pytz.utc)
  38. def test_invalid_interval():
  39. with pytest.raises(InvalidParams):
  40. start, end, interval = get_constrained_date_range({"interval": "0d"})
  41. def test_round_exact():
  42. start, end, interval = get_constrained_date_range(
  43. {"start": "2021-01-12T04:06:16", "end": "2021-01-17T08:26:13", "interval": "1d"},
  44. )
  45. assert start == datetime(2021, 1, 12, tzinfo=pytz.utc)
  46. assert end == datetime(2021, 1, 18, tzinfo=pytz.utc)
  47. def test_inclusive_end():
  48. start, end, interval = get_constrained_date_range(
  49. {"start": "2021-02-24T00:00:00", "end": "2021-02-25T00:00:00", "interval": "1h"},
  50. )
  51. assert start == datetime(2021, 2, 24, tzinfo=pytz.utc)
  52. assert end == datetime(2021, 2, 25, 1, tzinfo=pytz.utc)
  53. @freeze_time("2021-03-05T11:14:17.105Z")
  54. def test_interval_restrictions():
  55. # making sure intervals are cleanly divisible
  56. with pytest.raises(InvalidParams, match="The interval has to be less than one day."):
  57. _make_query("statsPeriod=4d&interval=2d&field=sum(session)")
  58. with pytest.raises(
  59. InvalidParams, match="The interval should divide one day without a remainder."
  60. ):
  61. _make_query("statsPeriod=6h&interval=59m&field=sum(session)")
  62. with pytest.raises(
  63. InvalidParams, match="The interval should divide one day without a remainder."
  64. ):
  65. _make_query("statsPeriod=4d&interval=5h&field=sum(session)")
  66. _make_query("statsPeriod=6h&interval=90m&field=sum(session)")
  67. with pytest.raises(
  68. InvalidParams,
  69. match="The interval has to be a multiple of the minimum interval of one hour.",
  70. ):
  71. _make_query("statsPeriod=6h&interval=90m&field=sum(session)", False)
  72. with pytest.raises(
  73. InvalidParams,
  74. match="The interval has to be a multiple of the minimum interval of one minute.",
  75. ):
  76. _make_query("statsPeriod=1h&interval=90s&field=sum(session)")
  77. # restrictions for minute resolution time range
  78. with pytest.raises(
  79. InvalidParams,
  80. match="The time-range when using one-minute resolution intervals is restricted to 6 hours.",
  81. ):
  82. _make_query("statsPeriod=7h&interval=15m&field=sum(session)")
  83. with pytest.raises(
  84. InvalidParams,
  85. match="The time-range when using one-minute resolution intervals is restricted to the last 30 days.",
  86. ):
  87. _make_query(
  88. "start=2021-01-05T11:14:17&end=2021-01-05T12:14:17&interval=15m&field=sum(session)"
  89. )
  90. with pytest.raises(
  91. InvalidParams, match="Your interval and date range would create too many results."
  92. ):
  93. _make_query("statsPeriod=90d&interval=1h&field=sum(session)")
  94. @freeze_time("2020-12-18T11:14:17.105Z")
  95. def test_timestamps():
  96. query = _make_query("statsPeriod=1d&interval=12h&field=sum(session)")
  97. expected_timestamps = ["2020-12-17T12:00:00Z", "2020-12-18T00:00:00Z"]
  98. actual_timestamps = get_timestamps(query)
  99. assert actual_timestamps == expected_timestamps
  100. @freeze_time("2021-03-08T09:34:00.000Z")
  101. def test_hourly_rounded_start():
  102. query = _make_query("statsPeriod=30m&interval=1m&field=sum(session)")
  103. actual_timestamps = get_timestamps(query)
  104. assert actual_timestamps[0] == "2021-03-08T09:00:00Z"
  105. assert actual_timestamps[-1] == "2021-03-08T09:34:00Z"
  106. assert len(actual_timestamps) == 35
  107. # in this case "45m" means from 08:49:00-09:34:00, but since we round start/end
  108. # to hours, we extend the start time to 08:00:00.
  109. query = _make_query("statsPeriod=45m&interval=1m&field=sum(session)")
  110. actual_timestamps = get_timestamps(query)
  111. assert actual_timestamps[0] == "2021-03-08T08:00:00Z"
  112. assert actual_timestamps[-1] == "2021-03-08T09:34:00Z"
  113. assert len(actual_timestamps) == 95
  114. def test_rounded_end():
  115. query = _make_query(
  116. "field=sum(session)&interval=1h&start=2021-02-24T00:00:00Z&end=2021-02-25T00:00:00Z"
  117. )
  118. expected_timestamps = [
  119. "2021-02-24T00:00:00Z",
  120. "2021-02-24T01:00:00Z",
  121. "2021-02-24T02:00:00Z",
  122. "2021-02-24T03:00:00Z",
  123. "2021-02-24T04:00:00Z",
  124. "2021-02-24T05:00:00Z",
  125. "2021-02-24T06:00:00Z",
  126. "2021-02-24T07:00:00Z",
  127. "2021-02-24T08:00:00Z",
  128. "2021-02-24T09:00:00Z",
  129. "2021-02-24T10:00:00Z",
  130. "2021-02-24T11:00:00Z",
  131. "2021-02-24T12:00:00Z",
  132. "2021-02-24T13:00:00Z",
  133. "2021-02-24T14:00:00Z",
  134. "2021-02-24T15:00:00Z",
  135. "2021-02-24T16:00:00Z",
  136. "2021-02-24T17:00:00Z",
  137. "2021-02-24T18:00:00Z",
  138. "2021-02-24T19:00:00Z",
  139. "2021-02-24T20:00:00Z",
  140. "2021-02-24T21:00:00Z",
  141. "2021-02-24T22:00:00Z",
  142. "2021-02-24T23:00:00Z",
  143. "2021-02-25T00:00:00Z",
  144. ]
  145. actual_timestamps = get_timestamps(query)
  146. assert len(actual_timestamps) == 25
  147. assert actual_timestamps == expected_timestamps
  148. def test_simple_query():
  149. query = _make_query("statsPeriod=1d&interval=12h&field=sum(session)")
  150. assert query.query_columns == ["sessions"]
  151. def test_groupby_query():
  152. query = _make_query("statsPeriod=1d&interval=12h&field=sum(session)&groupBy=release")
  153. assert sorted(query.query_columns) == ["release", "sessions"]
  154. assert query.query_groupby == ["release"]
  155. def test_virtual_groupby_query():
  156. query = _make_query("statsPeriod=1d&interval=12h&field=sum(session)&groupBy=session.status")
  157. assert sorted(query.query_columns) == [
  158. "sessions",
  159. "sessions_abnormal",
  160. "sessions_crashed",
  161. "sessions_errored",
  162. ]
  163. assert query.query_groupby == []
  164. query = _make_query(
  165. "statsPeriod=1d&interval=12h&field=count_unique(user)&groupBy=session.status"
  166. )
  167. assert sorted(query.query_columns) == [
  168. "users",
  169. "users_abnormal",
  170. "users_crashed",
  171. "users_errored",
  172. ]
  173. assert query.query_groupby == []
  174. @freeze_time("2020-12-18T11:14:17.105Z")
  175. def test_massage_empty():
  176. query = _make_query("statsPeriod=1d&interval=1d&field=sum(session)")
  177. result_totals = []
  178. result_timeseries = []
  179. expected_result = {
  180. "start": "2020-12-18T00:00:00Z",
  181. "end": "2020-12-18T11:15:00Z",
  182. "query": "",
  183. "intervals": ["2020-12-18T00:00:00Z"],
  184. "groups": [],
  185. }
  186. actual_result = result_sorted(massage_sessions_result(query, result_totals, result_timeseries))
  187. assert actual_result == expected_result
  188. @freeze_time("2020-12-18T11:14:17.105Z")
  189. def test_massage_unbalanced_results():
  190. query = _make_query("statsPeriod=1d&interval=1d&field=sum(session)&groupBy=release")
  191. result_totals = [
  192. {"release": "test-example-release", "sessions": 1},
  193. ]
  194. result_timeseries = []
  195. expected_result = {
  196. "start": "2020-12-18T00:00:00Z",
  197. "end": "2020-12-18T11:15:00Z",
  198. "query": "",
  199. "intervals": ["2020-12-18T00:00:00Z"],
  200. "groups": [
  201. {
  202. "by": {"release": "test-example-release"},
  203. "series": {"sum(session)": [0]},
  204. "totals": {"sum(session)": 1},
  205. }
  206. ],
  207. }
  208. actual_result = result_sorted(massage_sessions_result(query, result_totals, result_timeseries))
  209. assert actual_result == expected_result
  210. result_totals = []
  211. result_timeseries = [
  212. {
  213. "release": "test-example-release",
  214. "sessions": 1,
  215. "bucketed_started": "2020-12-18T00:00:00+00:00",
  216. },
  217. ]
  218. expected_result = {
  219. "start": "2020-12-18T00:00:00Z",
  220. "end": "2020-12-18T11:15:00Z",
  221. "query": "",
  222. "intervals": ["2020-12-18T00:00:00Z"],
  223. "groups": [
  224. {
  225. "by": {"release": "test-example-release"},
  226. "series": {"sum(session)": [1]},
  227. "totals": {"sum(session)": 0},
  228. }
  229. ],
  230. }
  231. actual_result = result_sorted(massage_sessions_result(query, result_totals, result_timeseries))
  232. assert actual_result == expected_result
  233. @freeze_time("2020-12-18T11:14:17.105Z")
  234. def test_massage_simple_timeseries():
  235. """A timeseries is filled up when it only receives partial data"""
  236. query = _make_query("statsPeriod=1d&interval=6h&field=sum(session)")
  237. result_totals = [{"sessions": 4}]
  238. # snuba returns the datetimes as strings for now
  239. result_timeseries = [
  240. {"sessions": 2, "bucketed_started": "2020-12-18T06:00:00+00:00"},
  241. {"sessions": 2, "bucketed_started": "2020-12-17T12:00:00+00:00"},
  242. ]
  243. expected_result = {
  244. "start": "2020-12-17T12:00:00Z",
  245. "end": "2020-12-18T11:15:00Z",
  246. "query": "",
  247. "intervals": [
  248. "2020-12-17T12:00:00Z",
  249. "2020-12-17T18:00:00Z",
  250. "2020-12-18T00:00:00Z",
  251. "2020-12-18T06:00:00Z",
  252. ],
  253. "groups": [
  254. {"by": {}, "series": {"sum(session)": [2, 0, 0, 2]}, "totals": {"sum(session)": 4}}
  255. ],
  256. }
  257. actual_result = result_sorted(massage_sessions_result(query, result_totals, result_timeseries))
  258. assert actual_result == expected_result
  259. @freeze_time("2020-12-18T11:14:17.105Z")
  260. def test_massage_unordered_timeseries():
  261. query = _make_query("statsPeriod=1d&interval=6h&field=sum(session)")
  262. result_totals = [{"sessions": 10}]
  263. # snuba returns the datetimes as strings for now
  264. result_timeseries = [
  265. {"sessions": 3, "bucketed_started": "2020-12-18T00:00:00+00:00"},
  266. {"sessions": 2, "bucketed_started": "2020-12-17T18:00:00+00:00"},
  267. {"sessions": 4, "bucketed_started": "2020-12-18T06:00:00+00:00"},
  268. {"sessions": 1, "bucketed_started": "2020-12-17T12:00:00+00:00"},
  269. ]
  270. expected_result = {
  271. "start": "2020-12-17T12:00:00Z",
  272. "end": "2020-12-18T11:15:00Z",
  273. "query": "",
  274. "intervals": [
  275. "2020-12-17T12:00:00Z",
  276. "2020-12-17T18:00:00Z",
  277. "2020-12-18T00:00:00Z",
  278. "2020-12-18T06:00:00Z",
  279. ],
  280. "groups": [
  281. {"by": {}, "series": {"sum(session)": [1, 2, 3, 4]}, "totals": {"sum(session)": 10}}
  282. ],
  283. }
  284. actual_result = result_sorted(massage_sessions_result(query, result_totals, result_timeseries))
  285. assert actual_result == expected_result
  286. @freeze_time("2020-12-18T11:14:17.105Z")
  287. def test_massage_no_timeseries():
  288. query = _make_query("statsPeriod=1d&interval=6h&field=sum(session)&groupby=projects")
  289. result_totals = [{"sessions": 4}]
  290. # snuba returns the datetimes as strings for now
  291. result_timeseries = None
  292. expected_result = {
  293. "start": "2020-12-17T12:00:00Z",
  294. "end": "2020-12-18T11:15:00Z",
  295. "query": "",
  296. "intervals": [
  297. "2020-12-17T12:00:00Z",
  298. "2020-12-17T18:00:00Z",
  299. "2020-12-18T00:00:00Z",
  300. "2020-12-18T06:00:00Z",
  301. ],
  302. "groups": [{"by": {}, "totals": {"sum(session)": 4}}],
  303. }
  304. actual_result = result_sorted(massage_sessions_result(query, result_totals, result_timeseries))
  305. assert actual_result == expected_result
  306. def test_massage_exact_timeseries():
  307. query = _make_query(
  308. "start=2020-12-17T15:12:34Z&end=2020-12-18T11:14:17Z&interval=6h&field=sum(session)"
  309. )
  310. result_totals = [{"sessions": 4}]
  311. result_timeseries = [
  312. {"sessions": 2, "bucketed_started": "2020-12-18T06:00:00+00:00"},
  313. {"sessions": 2, "bucketed_started": "2020-12-17T12:00:00+00:00"},
  314. ]
  315. expected_result = {
  316. "start": "2020-12-17T12:00:00Z",
  317. "end": "2020-12-18T12:00:00Z",
  318. "query": "",
  319. "intervals": [
  320. "2020-12-17T12:00:00Z",
  321. "2020-12-17T18:00:00Z",
  322. "2020-12-18T00:00:00Z",
  323. "2020-12-18T06:00:00Z",
  324. ],
  325. "groups": [
  326. {"by": {}, "series": {"sum(session)": [2, 0, 0, 2]}, "totals": {"sum(session)": 4}}
  327. ],
  328. }
  329. actual_result = result_sorted(massage_sessions_result(query, result_totals, result_timeseries))
  330. assert actual_result == expected_result
  331. @freeze_time("2020-12-18T11:14:17.105Z")
  332. def test_massage_groupby_timeseries():
  333. query = _make_query("statsPeriod=1d&interval=6h&field=sum(session)&groupBy=release")
  334. result_totals = [
  335. {"release": "test-example-release", "sessions": 4},
  336. {"release": "test-example-release-2", "sessions": 1},
  337. ]
  338. # snuba returns the datetimes as strings for now
  339. result_timeseries = [
  340. {
  341. "release": "test-example-release",
  342. "sessions": 2,
  343. "bucketed_started": "2020-12-18T06:00:00+00:00",
  344. },
  345. {
  346. "release": "test-example-release-2",
  347. "sessions": 1,
  348. "bucketed_started": "2020-12-18T06:00:00+00:00",
  349. },
  350. {
  351. "release": "test-example-release",
  352. "sessions": 2,
  353. "bucketed_started": "2020-12-17T12:00:00+00:00",
  354. },
  355. ]
  356. expected_result = {
  357. "start": "2020-12-17T12:00:00Z",
  358. "end": "2020-12-18T11:15:00Z",
  359. "query": "",
  360. "intervals": [
  361. "2020-12-17T12:00:00Z",
  362. "2020-12-17T18:00:00Z",
  363. "2020-12-18T00:00:00Z",
  364. "2020-12-18T06:00:00Z",
  365. ],
  366. "groups": [
  367. {
  368. "by": {"release": "test-example-release"},
  369. "series": {"sum(session)": [2, 0, 0, 2]},
  370. "totals": {"sum(session)": 4},
  371. },
  372. {
  373. "by": {"release": "test-example-release-2"},
  374. "series": {"sum(session)": [0, 0, 0, 1]},
  375. "totals": {"sum(session)": 1},
  376. },
  377. ],
  378. }
  379. actual_result = result_sorted(massage_sessions_result(query, result_totals, result_timeseries))
  380. assert actual_result == expected_result
  381. @freeze_time("2020-12-18T13:25:15.769Z")
  382. def test_massage_virtual_groupby_timeseries():
  383. query = _make_query(
  384. "statsPeriod=1d&interval=6h&field=sum(session)&field=count_unique(user)&groupBy=session.status"
  385. )
  386. result_totals = [
  387. {
  388. "users": 1,
  389. "users_crashed": 1,
  390. "sessions": 31,
  391. "sessions_errored": 15,
  392. "users_errored": 1,
  393. "sessions_abnormal": 6,
  394. "sessions_crashed": 8,
  395. "users_abnormal": 0,
  396. }
  397. ]
  398. # snuba returns the datetimes as strings for now
  399. result_timeseries = [
  400. {
  401. "sessions_errored": 1,
  402. "users": 1,
  403. "users_crashed": 1,
  404. "sessions_abnormal": 0,
  405. "sessions": 3,
  406. "users_errored": 1,
  407. "users_abnormal": 0,
  408. "sessions_crashed": 1,
  409. "bucketed_started": "2020-12-18T12:00:00+00:00",
  410. },
  411. {
  412. "sessions_errored": 0,
  413. "users": 1,
  414. "users_crashed": 0,
  415. "sessions_abnormal": 0,
  416. "sessions": 3,
  417. "users_errored": 0,
  418. "users_abnormal": 0,
  419. "sessions_crashed": 0,
  420. "bucketed_started": "2020-12-18T06:00:00+00:00",
  421. },
  422. {
  423. "sessions_errored": 10,
  424. "users": 1,
  425. "users_crashed": 0,
  426. "sessions_abnormal": 2,
  427. "sessions": 15,
  428. "users_errored": 0,
  429. "users_abnormal": 0,
  430. "sessions_crashed": 4,
  431. "bucketed_started": "2020-12-18T00:00:00+00:00",
  432. },
  433. {
  434. "sessions_errored": 4,
  435. "users": 1,
  436. "users_crashed": 0,
  437. "sessions_abnormal": 4,
  438. "sessions": 10,
  439. "users_errored": 0,
  440. "users_abnormal": 0,
  441. "sessions_crashed": 3,
  442. "bucketed_started": "2020-12-17T18:00:00+00:00",
  443. },
  444. ]
  445. expected_result = {
  446. "start": "2020-12-17T18:00:00Z",
  447. "end": "2020-12-18T13:26:00Z",
  448. "query": "",
  449. "intervals": [
  450. "2020-12-17T18:00:00Z",
  451. "2020-12-18T00:00:00Z",
  452. "2020-12-18T06:00:00Z",
  453. "2020-12-18T12:00:00Z",
  454. ],
  455. "groups": [
  456. {
  457. "by": {"session.status": "abnormal"},
  458. "series": {"count_unique(user)": [0, 0, 0, 0], "sum(session)": [4, 2, 0, 0]},
  459. "totals": {"count_unique(user)": 0, "sum(session)": 6},
  460. },
  461. {
  462. "by": {"session.status": "crashed"},
  463. "series": {"count_unique(user)": [0, 0, 0, 1], "sum(session)": [3, 4, 0, 1]},
  464. "totals": {"count_unique(user)": 1, "sum(session)": 8},
  465. },
  466. {
  467. "by": {"session.status": "errored"},
  468. "series": {"count_unique(user)": [0, 0, 0, 0], "sum(session)": [0, 4, 0, 0]},
  469. "totals": {"count_unique(user)": 0, "sum(session)": 1},
  470. },
  471. {
  472. "by": {"session.status": "healthy"},
  473. "series": {"count_unique(user)": [1, 1, 1, 0], "sum(session)": [6, 5, 3, 2]},
  474. # while in one of the time slots, we have a healthy user, it is
  475. # the *same* user as the one experiencing a crash later on,
  476. # so in the *whole* time window, that one user is not counted as healthy,
  477. # so the `0` here is expected, as that's an example of the `count_unique` behavior.
  478. "totals": {"count_unique(user)": 0, "sum(session)": 16},
  479. },
  480. ],
  481. }
  482. actual_result = result_sorted(massage_sessions_result(query, result_totals, result_timeseries))
  483. assert actual_result == expected_result
  484. @freeze_time("2020-12-18T13:25:15.769Z")
  485. def test_clamping_in_massage_sessions_results_with_groupby_timeseries():
  486. query = _make_query(
  487. "statsPeriod=12h&interval=6h&field=sum(session)&field=count_unique(user)&groupBy=session.status"
  488. )
  489. # snuba returns the datetimes as strings for now
  490. result_timeseries = [
  491. {
  492. "sessions": 7,
  493. "sessions_errored": 3,
  494. "sessions_crashed": 2,
  495. "sessions_abnormal": 2,
  496. "users": 7,
  497. "users_errored": 3,
  498. "users_crashed": 2,
  499. "users_abnormal": 2,
  500. "bucketed_started": "2020-12-18T12:00:00+00:00",
  501. },
  502. {
  503. "sessions": 5,
  504. "sessions_errored": 10,
  505. "sessions_crashed": 0,
  506. "sessions_abnormal": 0,
  507. "users": 5,
  508. "users_errored": 10,
  509. "users_crashed": 0,
  510. "users_abnormal": 0,
  511. "bucketed_started": "2020-12-18T06:00:00+00:00",
  512. },
  513. ]
  514. expected_result = {
  515. "start": "2020-12-18T06:00:00Z",
  516. "end": "2020-12-18T13:26:00Z",
  517. "query": "",
  518. "intervals": [
  519. "2020-12-18T06:00:00Z",
  520. "2020-12-18T12:00:00Z",
  521. ],
  522. "groups": [
  523. {
  524. "by": {"session.status": "abnormal"},
  525. "series": {"count_unique(user)": [0, 2], "sum(session)": [0, 2]},
  526. "totals": {"count_unique(user)": 0, "sum(session)": 0},
  527. },
  528. {
  529. "by": {"session.status": "crashed"},
  530. "series": {"count_unique(user)": [0, 2], "sum(session)": [0, 2]},
  531. "totals": {"count_unique(user)": 0, "sum(session)": 0},
  532. },
  533. {
  534. "by": {"session.status": "errored"},
  535. "series": {"count_unique(user)": [10, 0], "sum(session)": [10, 0]},
  536. "totals": {"count_unique(user)": 0, "sum(session)": 0},
  537. },
  538. {
  539. "by": {"session.status": "healthy"},
  540. "series": {"count_unique(user)": [0, 4], "sum(session)": [0, 4]},
  541. "totals": {"count_unique(user)": 0, "sum(session)": 0},
  542. },
  543. ],
  544. }
  545. actual_result = result_sorted(massage_sessions_result(query, [], result_timeseries))
  546. assert actual_result == expected_result
  547. @freeze_time("2020-12-18T11:14:17.105Z")
  548. def test_nan_duration():
  549. query = _make_query(
  550. "statsPeriod=1d&interval=6h&field=avg(session.duration)&field=p50(session.duration)"
  551. )
  552. result_totals = [
  553. {
  554. "duration_avg": math.nan,
  555. "duration_quantiles": [math.inf, math.inf, math.inf, math.inf, math.inf, math.inf],
  556. },
  557. ]
  558. result_timeseries = [
  559. {
  560. "duration_avg": math.inf,
  561. "duration_quantiles": [math.inf, math.inf, math.inf, math.inf, math.inf, math.inf],
  562. "bucketed_started": "2020-12-18T06:00:00+00:00",
  563. },
  564. {
  565. "duration_avg": math.nan,
  566. "duration_quantiles": [math.nan, math.nan, math.nan, math.nan, math.nan, math.nan],
  567. "bucketed_started": "2020-12-17T12:00:00+00:00",
  568. },
  569. ]
  570. expected_result = {
  571. "start": "2020-12-17T12:00:00Z",
  572. "end": "2020-12-18T11:15:00Z",
  573. "query": "",
  574. "intervals": [
  575. "2020-12-17T12:00:00Z",
  576. "2020-12-17T18:00:00Z",
  577. "2020-12-18T00:00:00Z",
  578. "2020-12-18T06:00:00Z",
  579. ],
  580. "groups": [
  581. {
  582. "by": {},
  583. "series": {
  584. "avg(session.duration)": [None, None, None, None],
  585. "p50(session.duration)": [None, None, None, None],
  586. },
  587. "totals": {"avg(session.duration)": None, "p50(session.duration)": None},
  588. },
  589. ],
  590. }
  591. actual_result = result_sorted(massage_sessions_result(query, result_totals, result_timeseries))
  592. assert actual_result == expected_result