123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167 |
- from __future__ import annotations
- import random
- from collections import namedtuple
- from copy import deepcopy
- from datetime import timedelta
- import pytest
- from django.urls import reverse
- from rest_framework.exceptions import ErrorDetail
- from sentry.sentry_metrics.aggregation_option_registry import AggregationOption
- from sentry.testutils.cases import APITestCase, MetricsEnhancedPerformanceTestCase, SnubaTestCase
- from sentry.testutils.helpers.datetime import before_now, iso_format
- from sentry.utils.samples import load_data
- from sentry.utils.snuba import get_array_column_alias
- pytestmark = pytest.mark.sentry_metrics
- HistogramSpec = namedtuple(
- "HistogramSpec", ["start", "end", "fields", "tags"], defaults=[None, None, [], {}]
- )
- ARRAY_COLUMNS = ["measurements", "span_op_breakdowns"]
- class OrganizationEventsHistogramEndpointTest(APITestCase, SnubaTestCase):
- def setUp(self):
- super().setUp()
- self.min_ago = iso_format(before_now(minutes=1))
- self.data = load_data("transaction")
- self.features = {}
- def populate_events(self, specs):
- start = before_now(minutes=5)
- for spec in specs:
- spec = HistogramSpec(*spec)
- for suffix_key, count in spec.fields:
- for i in range(count):
- data = deepcopy(self.data)
- measurement_name = suffix_key
- breakdown_name = f"ops.{suffix_key}"
- data["timestamp"] = iso_format(start)
- data["start_timestamp"] = iso_format(start - timedelta(seconds=i))
- value = random.random() * (spec.end - spec.start) + spec.start
- data["transaction"] = f"/measurement/{measurement_name}/value/{value}"
- data["measurements"] = {measurement_name: {"value": value}}
- data["breakdowns"] = {
- "span_ops": {
- breakdown_name: {"value": value},
- }
- }
- self.store_event(data, self.project.id)
- def as_response_data(self, specs):
- data: dict[str, list[dict[str, int]]] = {}
- for spec in specs:
- spec = HistogramSpec(*spec)
- for measurement, count in sorted(spec.fields):
- if measurement not in data:
- data[measurement] = []
- data[measurement].append({"bin": spec.start, "count": count})
- return data
- def do_request(self, query, features=None):
- if features is None:
- features = {"organizations:performance-view": True}
- features.update(self.features)
- self.login_as(user=self.user)
- url = reverse(
- "sentry-api-0-organization-events-histogram",
- kwargs={"organization_id_or_slug": self.organization.slug},
- )
- with self.feature(features):
- return self.client.get(url, query, format="json")
- def test_no_projects(self):
- response = self.do_request({})
- assert response.status_code == 200, response.content
- assert response.data == {}
- @pytest.mark.querybuilder
- def test_good_params(self):
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "query": "event.type:transaction",
- "project": [self.project.id],
- "field": [f"{alias}.foo", f"{alias}.bar"],
- "numBuckets": 10,
- }
- response = self.do_request(query)
- assert response.status_code == 200, f"failing for {array_column}"
- def test_good_params_with_optionals(self):
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "query": "event.type:transaction",
- "project": [self.project.id],
- "field": [f"{alias}.foo", f"{alias}.bar"],
- "numBuckets": 10,
- "precision": 0,
- "min": 0,
- "max": 10,
- }
- response = self.do_request(query)
- assert response.status_code == 200, f"failing for {array_column}"
- def test_bad_params_reverse_min_max(self):
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "query": "event.type:transaction",
- "project": [self.project.id],
- "field": [f"{alias}.foo", f"{alias}.bar"],
- "numBuckets": 10,
- "precision": 0,
- "min": 10,
- "max": 5,
- }
- response = self.do_request(query)
- assert response.data == {"non_field_errors": ["min cannot be greater than max."]}
- def test_bad_params_missing_fields(self):
- query = {
- "project": [self.project.id],
- "numBuckets": 10,
- }
- response = self.do_request(query)
- assert response.status_code == 400
- assert response.data == {
- "field": [ErrorDetail(string="This field is required.", code="required")],
- }
- def test_bad_params_too_many_fields(self):
- query = {
- "project": [self.project.id],
- "field": ["foo", "bar", "baz", "qux", "quux"],
- "numBuckets": 10,
- "min": 0,
- "max": 100,
- "precision": 0,
- }
- response = self.do_request(query)
- assert response.status_code == 400
- assert response.data == {
- "field": ["Ensure this field has no more than 4 elements."],
- }
- def test_bad_params_mixed_fields(self):
- for array_column in ARRAY_COLUMNS:
- for other_array_column in ARRAY_COLUMNS:
- query = {
- "project": [self.project.id],
- "field": [
- "foo",
- f"{get_array_column_alias(array_column)}.foo",
- f"{get_array_column_alias(other_array_column)}.bar",
- ],
- "numBuckets": 10,
- "min": 0,
- "max": 100,
- "precision": 0,
- }
- response = self.do_request(query)
- assert response.status_code == 400, f"failing for {array_column}"
- assert response.data == {
- "field": [
- "You can only generate histogram for one column at a time unless they are all measurements or all span op breakdowns."
- ],
- }, f"failing for {array_column}"
- def test_bad_params_missing_num_buckets(self):
- query = {
- "project": [self.project.id],
- "field": ["foo"],
- }
- response = self.do_request(query)
- assert response.status_code == 400
- assert response.data == {
- "numBuckets": ["This field is required."],
- }
- def test_bad_params_invalid_num_buckets(self):
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo", f"{alias}.bar"],
- "numBuckets": "baz",
- }
- response = self.do_request(query)
- assert response.status_code == 400, f"failing for {array_column}"
- assert response.data == {
- "numBuckets": ["A valid integer is required."],
- }, f"failing for {array_column}"
- def test_bad_params_invalid_negative_num_buckets(self):
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo", f"{alias}.bar"],
- "numBuckets": -1,
- }
- response = self.do_request(query)
- assert response.status_code == 400, f"failing for {array_column}"
- assert response.data == {
- "numBuckets": ["Ensure this value is greater than or equal to 1."],
- }, f"failing for {array_column}"
- def test_bad_params_num_buckets_too_large(self):
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo", f"{alias}.bar"],
- "numBuckets": 150,
- }
- response = self.do_request(query)
- assert response.status_code == 400, f"failing for {array_column}"
- assert response.data == {
- "numBuckets": ["Ensure this value is less than or equal to 100."],
- }, f"failing for {array_column}"
- def test_bad_params_invalid_precision_too_small(self):
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo", f"{alias}.bar"],
- "numBuckets": 10,
- "precision": -1,
- }
- response = self.do_request(query)
- assert response.status_code == 400, f"failing for {array_column}"
- assert response.data == {
- "precision": ["Ensure this value is greater than or equal to 0."],
- }, f"failing for {array_column}"
- def test_bad_params_invalid_precision_too_big(self):
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo", f"{alias}.bar"],
- "numBuckets": 10,
- "precision": 100,
- }
- response = self.do_request(query)
- assert response.status_code == 400, f"failing for {array_column}"
- assert response.data == {
- "precision": ["Ensure this value is less than or equal to 4."],
- }, f"failing for {array_column}"
- def test_bad_params_invalid_min(self):
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo", f"{alias}.bar"],
- "numBuckets": 10,
- "min": "qux",
- }
- response = self.do_request(query)
- assert response.status_code == 400, f"failing for {array_column}"
- assert response.data == {
- "min": ["A valid number is required."],
- }, f"failing for {array_column}"
- def test_bad_params_invalid_max(self):
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo", f"{alias}.bar"],
- "numBuckets": 10,
- "max": "qux",
- }
- response = self.do_request(query)
- assert response.status_code == 400, f"failing for {array_column}"
- assert response.data == {
- "max": ["A valid number is required."],
- }, f"failing for {array_column}"
- def test_histogram_empty(self):
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo", f"{alias}.bar"],
- "numBuckets": 5,
- }
- response = self.do_request(query)
- assert response.status_code == 200, f"failing for {array_column}"
- expected = [(i, i + 1, [(f"{alias}.foo", 0), (f"{alias}.bar", 0)]) for i in range(5)]
- assert response.data == self.as_response_data(expected), f"failing for {array_column}"
- def test_histogram_simple(self):
- # range is [0, 5), so it is divided into 5 buckets of width 1
- specs = [
- (0, 1, [("foo", 1)]),
- (1, 2, [("foo", 1)]),
- (2, 3, [("foo", 1)]),
- (4, 5, [("foo", 1)]),
- ]
- self.populate_events(specs)
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo"],
- "numBuckets": 5,
- }
- response = self.do_request(query)
- assert response.status_code == 200, f"failing for {array_column}"
- expected = [
- (0, 1, [(f"{alias}.foo", 1)]),
- (1, 2, [(f"{alias}.foo", 1)]),
- (2, 3, [(f"{alias}.foo", 1)]),
- (3, 4, [(f"{alias}.foo", 0)]),
- (4, 5, [(f"{alias}.foo", 1)]),
- ]
- assert response.data == self.as_response_data(expected), f"failing for {array_column}"
- def test_histogram_simple_using_min_max(self):
- # range is [0, 5), so it is divided into 5 buckets of width 1
- specs = [
- (0, 1, [("foo", 1)]),
- (1, 2, [("foo", 1)]),
- (2, 3, [("foo", 1)]),
- (4, 5, [("foo", 1)]),
- ]
- self.populate_events(specs)
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo"],
- "numBuckets": 5,
- "min": 0,
- "max": 5,
- }
- response = self.do_request(query)
- assert response.status_code == 200, f"failing for {array_column}"
- expected = [
- (0, 1, [(f"{alias}.foo", 1)]),
- (1, 2, [(f"{alias}.foo", 1)]),
- (2, 3, [(f"{alias}.foo", 1)]),
- (3, 4, [(f"{alias}.foo", 0)]),
- (4, 5, [(f"{alias}.foo", 1)]),
- ]
- assert response.data == self.as_response_data(expected), f"failing for {array_column}"
- def test_histogram_simple_using_given_min_above_queried_max(self):
- # All these events are out of range of the query parameters,
- # and should not appear in the results.
- specs = [
- (0, 1, [("foo", 1)]),
- (1, 2, [("foo", 1)]),
- (2, 3, [("foo", 1)]),
- (4, 5, [("foo", 1)]),
- ]
- self.populate_events(specs)
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo"],
- "numBuckets": 5,
- "min": 6,
- }
- response = self.do_request(query)
- assert response.status_code == 200, f"failing for {array_column}"
- expected = [
- (6, 7, [(f"{alias}.foo", 0)]),
- ]
- assert response.data == self.as_response_data(expected), f"failing for {array_column}"
- def test_histogram_simple_using_given_max_below_queried_min(self):
- # All these events are out of range of the query parameters,
- # and should not appear in the results.
- specs = [
- (6, 7, [("foo", 1)]),
- (8, 9, [("foo", 1)]),
- (10, 11, [("foo", 1)]),
- (12, 13, [("foo", 1)]),
- ]
- self.populate_events(specs)
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo"],
- "numBuckets": 5,
- "max": 6,
- }
- response = self.do_request(query)
- assert response.status_code == 200, f"failing for {array_column}"
- expected = [
- (5, 6, [(f"{alias}.foo", 0)]),
- ]
- assert response.data == self.as_response_data(expected), f"failing for {array_column}"
- def test_histogram_large_buckets(self):
- # make sure that it works for large width buckets
- # range is [0, 99], so it is divided into 5 buckets of width 20
- specs = [
- (0, 0, [("foo", 2)]),
- (99, 99, [("foo", 2)]),
- ]
- self.populate_events(specs)
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo"],
- "numBuckets": 5,
- }
- response = self.do_request(query)
- assert response.status_code == 200, f"failing for {array_column}"
- expected = [
- (0, 20, [(f"{alias}.foo", 2)]),
- (20, 40, [(f"{alias}.foo", 0)]),
- (40, 60, [(f"{alias}.foo", 0)]),
- (60, 80, [(f"{alias}.foo", 0)]),
- (80, 100, [(f"{alias}.foo", 2)]),
- ]
- assert response.data == self.as_response_data(expected), f"failing for {array_column}"
- def test_histogram_non_zero_offset(self):
- # range is [10, 15), so it is divided into 5 buckets of width 1
- specs = [
- (10, 11, [("foo", 1)]),
- (12, 13, [("foo", 1)]),
- (13, 14, [("foo", 1)]),
- (14, 15, [("foo", 1)]),
- ]
- self.populate_events(specs)
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo"],
- "numBuckets": 5,
- }
- response = self.do_request(query)
- assert response.status_code == 200, f"failing for {array_column}"
- expected = [
- (10, 11, [(f"{alias}.foo", 1)]),
- (11, 12, [(f"{alias}.foo", 0)]),
- (12, 13, [(f"{alias}.foo", 1)]),
- (13, 14, [(f"{alias}.foo", 1)]),
- (14, 15, [(f"{alias}.foo", 1)]),
- ]
- assert response.data == self.as_response_data(expected), f"failing for {array_column}"
- def test_histogram_extra_data(self):
- # range is [11, 16), so it is divided into 5 buckets of width 1
- # make sure every bin has some value
- specs = [
- (10, 11, [("foo", 1)]),
- (11, 12, [("foo", 1)]),
- (12, 13, [("foo", 1)]),
- (13, 14, [("foo", 1)]),
- (14, 15, [("foo", 1)]),
- (15, 16, [("foo", 1)]),
- (16, 17, [("foo", 1)]),
- ]
- self.populate_events(specs)
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo"],
- "numBuckets": 5,
- "min": 11,
- "max": 16,
- }
- response = self.do_request(query)
- assert response.status_code == 200, f"failing for {array_column}"
- expected = [
- (11, 12, [(f"{alias}.foo", 1)]),
- (12, 13, [(f"{alias}.foo", 1)]),
- (13, 14, [(f"{alias}.foo", 1)]),
- (14, 15, [(f"{alias}.foo", 1)]),
- (15, 16, [(f"{alias}.foo", 1)]),
- ]
- assert response.data == self.as_response_data(expected), f"failing for {array_column}"
- def test_histogram_non_zero_min_large_buckets(self):
- # range is [10, 59], so it is divided into 5 buckets of width 10
- specs = [
- (10, 10, [("foo", 1)]),
- (40, 50, [("foo", 1)]),
- (59, 59, [("foo", 2)]),
- ]
- self.populate_events(specs)
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo"],
- "numBuckets": 5,
- }
- response = self.do_request(query)
- assert response.status_code == 200, f"failing for {array_column}"
- expected = [
- (10, 20, [(f"{alias}.foo", 1)]),
- (20, 30, [(f"{alias}.foo", 0)]),
- (30, 40, [(f"{alias}.foo", 0)]),
- (40, 50, [(f"{alias}.foo", 1)]),
- (50, 60, [(f"{alias}.foo", 2)]),
- ]
- assert response.data == self.as_response_data(expected), f"failing for {array_column}"
- @pytest.mark.xfail(reason="snuba does not allow - in alias names")
- def test_histogram_negative_values(self):
- # range is [-9, -4), so it is divided into 5 buckets of width 1
- specs = [
- (-9, -8, [("foo", 3)]),
- (-5, -4, [("foo", 1)]),
- ]
- self.populate_events(specs)
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo"],
- "numBuckets": 5,
- }
- response = self.do_request(query)
- assert response.status_code == 200, f"failing for {array_column}"
- expected = [
- (-9, -8, [(f"{alias}.foo", 3)]),
- (-8, -7, [(f"{alias}.foo", 0)]),
- (-7, -6, [(f"{alias}.foo", 0)]),
- (-6, -5, [(f"{alias}.foo", 0)]),
- (-5, -4, [(f"{alias}.foo", 1)]),
- ]
- assert response.data == self.as_response_data(expected), f"failing for {array_column}"
- @pytest.mark.xfail(reason="snuba does not allow - in alias names")
- def test_histogram_positive_and_negative_values(self):
- # range is [-50, 49], so it is divided into 5 buckets of width 10
- specs = [
- (-50, -50, [("foo", 1)]),
- (-10, 10, [("foo", 2)]),
- (49, 49, [("foo", 1)]),
- ]
- self.populate_events(specs)
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo"],
- "numBuckets": 5,
- }
- response = self.do_request(query)
- assert response.status_code == 200, f"failing for {array_column}"
- expected = [
- (-50, -30, [(f"{alias}.foo", 1)]),
- (-30, -10, [(f"{alias}.foo", 0)]),
- (-10, 10, [(f"{alias}.foo", 2)]),
- (10, 30, [(f"{alias}.foo", 0)]),
- (30, 50, [(f"{alias}.foo", 1)]),
- ]
- assert response.data == self.as_response_data(expected), f"failing for {array_column}"
- def test_histogram_increased_precision(self):
- # range is [1.00, 2.24], so it is divided into 5 buckets of width 0.25
- specs = [
- (1.00, 1.00, [("foo", 3)]),
- (2.24, 2.24, [("foo", 1)]),
- ]
- self.populate_events(specs)
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo"],
- "numBuckets": 5,
- "precision": 2,
- }
- response = self.do_request(query)
- assert response.status_code == 200, f"failing for {array_column}"
- expected = [
- (1.00, 1.25, [(f"{alias}.foo", 3)]),
- (1.25, 1.50, [(f"{alias}.foo", 0)]),
- (1.50, 1.75, [(f"{alias}.foo", 0)]),
- (1.75, 2.00, [(f"{alias}.foo", 0)]),
- (2.00, 2.25, [(f"{alias}.foo", 1)]),
- ]
- assert response.data == self.as_response_data(expected), f"failing for {array_column}"
- def test_histogram_increased_precision_with_min_max(self):
- # range is [1.25, 2.24], so it is divided into 5 buckets of width 0.25
- specs = [
- (1.00, 1.25, [("foo", 3)]),
- (2.00, 2.25, [("foo", 1)]),
- ]
- self.populate_events(specs)
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo"],
- "numBuckets": 3,
- "precision": 2,
- "min": 1.25,
- "max": 2.00,
- }
- response = self.do_request(query)
- assert response.status_code == 200, f"failing for {array_column}"
- expected = [
- (1.25, 1.50, [(f"{alias}.foo", 0)]),
- (1.50, 1.75, [(f"{alias}.foo", 0)]),
- (1.75, 2.00, [(f"{alias}.foo", 0)]),
- ]
- assert response.data == self.as_response_data(expected), f"failing for {array_column}"
- def test_histogram_increased_precision_large_buckets(self):
- # range is [10.0000, 59.9999] so it is divided into 5 buckets of width 10
- specs = [
- (10.0000, 10.0000, [("foo", 1)]),
- (30.0000, 40.0000, [("foo", 1)]),
- (59.9999, 59.9999, [("foo", 2)]),
- ]
- self.populate_events(specs)
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo"],
- "numBuckets": 5,
- "precision": 4,
- }
- response = self.do_request(query)
- assert response.status_code == 200, f"failing for {array_column}"
- expected = [
- (10.0000, 20.0000, [(f"{alias}.foo", 1)]),
- (20.0000, 30.0000, [(f"{alias}.foo", 0)]),
- (30.0000, 40.0000, [(f"{alias}.foo", 1)]),
- (40.0000, 50.0000, [(f"{alias}.foo", 0)]),
- (50.0000, 60.0000, [(f"{alias}.foo", 2)]),
- ]
- assert response.data == self.as_response_data(expected), f"failing for {array_column}"
- def test_histogram_multiple_measures(self):
- # range is [10, 59] so it is divided into 5 buckets of width 10
- specs = [
- (10, 10, [("bar", 0), ("baz", 0), ("foo", 1)]),
- (30, 40, [("bar", 2), ("baz", 0), ("foo", 0)]),
- (59, 59, [("bar", 0), ("baz", 1), ("foo", 0)]),
- ]
- self.populate_events(specs)
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.bar", f"{alias}.baz", f"{alias}.foo"],
- "numBuckets": 5,
- }
- response = self.do_request(query)
- assert response.status_code == 200, f"failing for {array_column}"
- expected = [
- (
- 10,
- 20,
- [
- (f"{alias}.bar", 0),
- (f"{alias}.baz", 0),
- (f"{alias}.foo", 1),
- ],
- ),
- (
- 20,
- 30,
- [
- (f"{alias}.bar", 0),
- (f"{alias}.baz", 0),
- (f"{alias}.foo", 0),
- ],
- ),
- (
- 30,
- 40,
- [
- (f"{alias}.bar", 2),
- (f"{alias}.baz", 0),
- (f"{alias}.foo", 0),
- ],
- ),
- (
- 40,
- 50,
- [
- (f"{alias}.bar", 0),
- (f"{alias}.baz", 0),
- (f"{alias}.foo", 0),
- ],
- ),
- (
- 50,
- 60,
- [
- (f"{alias}.bar", 0),
- (f"{alias}.baz", 1),
- (f"{alias}.foo", 0),
- ],
- ),
- ]
- assert response.data == self.as_response_data(expected), f"failing for {array_column}"
- def test_histogram_max_value_on_edge(self):
- # range is [11, 21] so it is divided into 5 buckets of width 5
- # because using buckets of width 2 will exclude 21, and the next
- # nice number is 5
- specs = [
- (11, 11, [("bar", 0), ("baz", 0), ("foo", 1)]),
- (21, 21, [("bar", 1), ("baz", 1), ("foo", 1)]),
- ]
- self.populate_events(specs)
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.bar", f"{alias}.baz", f"{alias}.foo"],
- "numBuckets": 5,
- }
- response = self.do_request(query)
- assert response.status_code == 200, f"failing for {array_column}"
- expected = [
- (
- 10,
- 15,
- [
- (f"{alias}.bar", 0),
- (f"{alias}.baz", 0),
- (f"{alias}.foo", 1),
- ],
- ),
- (
- 15,
- 20,
- [
- (f"{alias}.bar", 0),
- (f"{alias}.baz", 0),
- (f"{alias}.foo", 0),
- ],
- ),
- (
- 20,
- 25,
- [
- (f"{alias}.bar", 1),
- (f"{alias}.baz", 1),
- (f"{alias}.foo", 1),
- ],
- ),
- ]
- assert response.data == self.as_response_data(expected), f"failing for {array_column}"
- def test_histogram_bins_exceed_max(self):
- specs = [
- (10, 15, [("bar", 0), ("baz", 0), ("foo", 1)]),
- (30, 30, [("bar", 1), ("baz", 1), ("foo", 1)]),
- ]
- self.populate_events(specs)
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.bar", f"{alias}.baz", f"{alias}.foo"],
- "numBuckets": 5,
- "min": 10,
- "max": 21,
- }
- response = self.do_request(query)
- assert response.status_code == 200, f"failing for {array_column}"
- expected = [
- (
- 10,
- 15,
- [
- (f"{alias}.bar", 0),
- (f"{alias}.baz", 0),
- (f"{alias}.foo", 1),
- ],
- ),
- (
- 15,
- 20,
- [
- (f"{alias}.bar", 0),
- (f"{alias}.baz", 0),
- (f"{alias}.foo", 0),
- ],
- ),
- (
- 20,
- 25,
- [
- (f"{alias}.bar", 0),
- (f"{alias}.baz", 0),
- (f"{alias}.foo", 0),
- ],
- ),
- ]
- assert response.data == self.as_response_data(expected), f"failing for {array_column}"
- def test_bad_params_invalid_data_filter(self):
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo", f"{alias}.bar"],
- "numBuckets": 10,
- "dataFilter": "invalid",
- }
- response = self.do_request(query)
- assert response.status_code == 400, f"failing for {array_column}"
- assert response.data == {
- "dataFilter": ['"invalid" is not a valid choice.'],
- }, f"failing for {array_column}"
- def test_histogram_all_data_filter(self):
- specs = [
- (0, 1, [("foo", 4)]),
- (4000, 5000, [("foo", 1)]),
- ]
- self.populate_events(specs)
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo"],
- "numBuckets": 5,
- "dataFilter": "all",
- }
- response = self.do_request(query)
- assert response.status_code == 200, f"failing for {array_column}"
- expected = [
- (0, 1000, [(f"{alias}.foo", 4)]),
- (1000, 2000, [(f"{alias}.foo", 0)]),
- (2000, 3000, [(f"{alias}.foo", 0)]),
- (3000, 4000, [(f"{alias}.foo", 0)]),
- (4000, 5000, [(f"{alias}.foo", 1)]),
- ]
- assert response.data == self.as_response_data(expected), f"failing for {array_column}"
- def test_histogram_exclude_outliers_data_filter(self):
- specs = [
- (0, 0, [("foo", 4)]),
- (4000, 4001, [("foo", 1)]),
- ]
- self.populate_events(specs)
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo"],
- "numBuckets": 5,
- "dataFilter": "exclude_outliers",
- }
- response = self.do_request(query)
- assert response.status_code == 200, f"failing for {array_column}"
- expected = [
- (0, 1, [(f"{alias}.foo", 4)]),
- ]
- assert response.data == self.as_response_data(expected), f"failing for {array_column}"
- def test_histogram_missing_measurement_data(self):
- # make sure there is at least one transaction
- specs = [
- (0, 1, [("foo", 1)]),
- ]
- self.populate_events(specs)
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- # make sure to query a measurement that does not exist
- "field": [f"{alias}.bar"],
- "numBuckets": 5,
- "dataFilter": "exclude_outliers",
- }
- response = self.do_request(query)
- assert response.status_code == 200, f"failing for {array_column}"
- expected = [
- (0, 1, [(f"{alias}.bar", 0)]),
- (1, 1, [(f"{alias}.bar", 0)]),
- (2, 2, [(f"{alias}.bar", 0)]),
- (3, 3, [(f"{alias}.bar", 0)]),
- (4, 4, [(f"{alias}.bar", 0)]),
- ]
- assert response.data == self.as_response_data(expected), f"failing for {array_column}"
- def test_histogram_missing_measurement_data_with_explicit_bounds(self):
- # make sure there is at least one transaction
- specs = [
- (0, 1, [("foo", 1)]),
- ]
- self.populate_events(specs)
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- # make sure to query a measurement that does not exist
- "field": [f"{alias}.bar"],
- "numBuckets": 5,
- "dataFilter": "exclude_outliers",
- "min": 10,
- }
- response = self.do_request(query)
- assert response.status_code == 200, f"failing for {array_column}"
- expected = [
- (10, 11, [(f"{alias}.bar", 0)]),
- (11, 11, [(f"{alias}.bar", 0)]),
- (12, 12, [(f"{alias}.bar", 0)]),
- (13, 13, [(f"{alias}.bar", 0)]),
- (14, 14, [(f"{alias}.bar", 0)]),
- ]
- assert response.data == self.as_response_data(expected), f"failing for {array_column}"
- def test_histogram_ignores_aggregate_conditions(self):
- # range is [0, 5), so it is divided into 5 buckets of width 1
- specs = [
- (0, 1, [("foo", 1)]),
- (1, 2, [("foo", 1)]),
- (2, 3, [("foo", 1)]),
- (3, 4, [("foo", 0)]),
- (4, 5, [("foo", 1)]),
- ]
- self.populate_events(specs)
- for array_column in ARRAY_COLUMNS:
- alias = get_array_column_alias(array_column)
- query = {
- "project": [self.project.id],
- "field": [f"{alias}.foo"],
- "numBuckets": 5,
- "query": "tpm():>0.001",
- }
- response = self.do_request(query)
- assert response.status_code == 200, f"failing for {array_column}"
- expected = [
- (0, 1, [(f"{alias}.foo", 1)]),
- (1, 2, [(f"{alias}.foo", 1)]),
- (2, 3, [(f"{alias}.foo", 1)]),
- (3, 4, [(f"{alias}.foo", 0)]),
- (4, 5, [(f"{alias}.foo", 1)]),
- ]
- assert response.data == self.as_response_data(expected), f"failing for {array_column}"
- def test_histogram_outlier_filtering_with_no_rows(self):
- query = {
- "project": [self.project.id],
- "field": ["transaction.duration"],
- "numBuckets": 5,
- "dataFilter": "exclude_outliers",
- }
- response = self.do_request(query)
- assert response.status_code == 200
- expected = [
- (0, 1, [("transaction.duration", 0)]),
- ]
- assert response.data == self.as_response_data(expected)
- class OrganizationEventsMetricsEnhancedPerformanceHistogramEndpointTest(
- MetricsEnhancedPerformanceTestCase
- ):
- def setUp(self):
- super().setUp()
- self.min_ago = iso_format(before_now(minutes=1))
- self.features = {}
- def populate_events(self, specs):
- start = before_now(minutes=5)
- for spec in specs:
- spec = HistogramSpec(*spec)
- for suffix_key, count in spec.fields:
- for i in range(count):
- self.store_transaction_metric(
- (spec.end + spec.start) / 2,
- metric=suffix_key,
- tags={"transaction": suffix_key, **spec.tags},
- timestamp=start,
- aggregation_option=AggregationOption.HIST,
- )
- def as_response_data(self, specs):
- data: dict[str, list[dict[str, int]]] = {}
- for spec in specs:
- spec = HistogramSpec(*spec)
- for measurement, count in sorted(spec.fields):
- if measurement not in data:
- data[measurement] = []
- data[measurement].append({"bin": spec.start, "count": count})
- return data
- def do_request(self, query, features=None):
- if features is None:
- features = {
- "organizations:performance-view": True,
- "organizations:performance-use-metrics": True,
- }
- features.update(self.features)
- self.login_as(user=self.user)
- url = reverse(
- "sentry-api-0-organization-events-histogram",
- kwargs={"organization_id_or_slug": self.organization.slug},
- )
- with self.feature(features):
- return self.client.get(url, query, format="json")
- def test_no_projects(self):
- response = self.do_request({})
- assert response.status_code == 200, response.content
- assert response.data == {}
- def test_histogram_simple(self):
- specs = [
- (0, 1, [("transaction.duration", 5)]),
- (1, 2, [("transaction.duration", 10)]),
- (2, 3, [("transaction.duration", 1)]),
- (4, 5, [("transaction.duration", 15)]),
- ]
- self.populate_events(specs)
- query = {
- "project": [self.project.id],
- "field": ["transaction.duration"],
- "numBuckets": 5,
- "dataset": "metrics",
- }
- response = self.do_request(query)
- assert response.status_code == 200, response.content
- expected = [
- (0, 1, [("transaction.duration", 6)]),
- (1, 2, [("transaction.duration", 9)]),
- (2, 3, [("transaction.duration", 3)]),
- (3, 4, [("transaction.duration", 8)]),
- (4, 5, [("transaction.duration", 7)]),
- ]
- # Note metrics data is approximate, these values are based on running the test and asserting the results
- expected_response = self.as_response_data(expected)
- expected_response["meta"] = {"isMetricsData": True}
- assert response.data == expected_response
- def test_multi_histogram(self):
- specs = [
- (0, 1, [("measurements.fcp", 5), ("measurements.lcp", 5)]),
- (1, 2, [("measurements.fcp", 5), ("measurements.lcp", 5)]),
- ]
- self.populate_events(specs)
- query = {
- "project": [self.project.id],
- "field": ["measurements.fcp", "measurements.lcp"],
- "numBuckets": 2,
- "dataset": "metrics",
- }
- response = self.do_request(query)
- assert response.status_code == 200, response.content
- expected = [
- (0, 1, [("measurements.fcp", 5), ("measurements.lcp", 5)]),
- (1, 2, [("measurements.fcp", 5), ("measurements.lcp", 5)]),
- ]
- # Note metrics data is approximate, these values are based on running the test and asserting the results
- expected_response = self.as_response_data(expected)
- expected_response["meta"] = {"isMetricsData": True}
- assert response.data == expected_response
- def test_histogram_exclude_outliers_data_filter(self):
- specs = [
- (0, 0, [("transaction.duration", 4)], {"histogram_outlier": "inlier"}),
- (1, 1, [("transaction.duration", 4)], {"histogram_outlier": "inlier"}),
- (4000, 4001, [("transaction.duration", 1)], {"histogram_outlier": "outlier"}),
- ]
- self.populate_events(specs)
- query = {
- "project": [self.project.id],
- "field": ["transaction.duration"],
- "numBuckets": 5,
- "dataFilter": "exclude_outliers",
- "dataset": "metrics",
- }
- response = self.do_request(query)
- assert response.status_code == 200, response.content
- # Metrics approximation means both buckets got merged
- expected = [
- (0, 0, [("transaction.duration", 8)]),
- (1, 2, [("transaction.duration", 0)]),
- ]
- expected_response = self.as_response_data(expected)
- expected_response["meta"] = {"isMetricsData": True}
- assert response.data == expected_response
- class OrganizationEventsMetricsEnhancedPerformanceHistogramEndpointTestWithMetricLayer(
- OrganizationEventsMetricsEnhancedPerformanceHistogramEndpointTest
- ):
- def setUp(self):
- super().setUp()
- self.features["organizations:use-metrics-layer"] = True
|