ml.conf 1.6 KB

123456789101112131415161718192021222324252627282930313233343536
  1. # below are some examples of using the `anomaly-bit` option to define alerts based on anomaly
  2. # rates as opposed to raw metric values. You can read more about the anomaly-bit and Netdata's
  3. # native anomaly detection here:
  4. # https://learn.netdata.cloud/docs/configure/machine-learning#anomaly-bit---100--anomalous-0--normal
  5. # examples below are commented, you would need to uncomment and adjust as desired to enable them.
  6. # alert per dimension example
  7. # if anomaly rate is between 5-20% then warning (pick your own threshold that works best via tial and error).
  8. # if anomaly rate is above 20% then critical (pick your own threshold that works best via tial and error).
  9. # template: ml_5min_cpu_dims
  10. # on: system.cpu
  11. # os: linux
  12. # hosts: *
  13. # lookup: average -5m anomaly-bit foreach *
  14. # calc: $this
  15. # units: %
  16. # every: 30s
  17. # warn: $this > (($status >= $WARNING) ? (5) : (20))
  18. # crit: $this > (($status == $CRITICAL) ? (20) : (100))
  19. # info: rolling 5min anomaly rate for each system.cpu dimension
  20. # alert per chart example
  21. # if anomaly rate is between 5-20% then warning (pick your own threshold that works best via tial and error).
  22. # if anomaly rate is above 20% then critical (pick your own threshold that works best via tial and error).
  23. # template: ml_5min_cpu_chart
  24. # on: system.cpu
  25. # os: linux
  26. # hosts: *
  27. # lookup: average -5m anomaly-bit of *
  28. # calc: $this
  29. # units: %
  30. # every: 30s
  31. # warn: $this > (($status >= $WARNING) ? (5) : (20))
  32. # crit: $this > (($status == $CRITICAL) ? (20) : (100))
  33. # info: rolling 5min anomaly rate for system.cpu chart