Config.cc 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139
  1. // SPDX-License-Identifier: GPL-3.0-or-later
  2. #include "ml-private.h"
  3. /*
  4. * Global configuration instance to be shared between training and
  5. * prediction threads.
  6. */
  7. ml_config_t Cfg;
  8. template <typename T>
  9. static T clamp(const T& Value, const T& Min, const T& Max) {
  10. return std::max(Min, std::min(Value, Max));
  11. }
  12. /*
  13. * Initialize global configuration variable.
  14. */
  15. void ml_config_load(ml_config_t *cfg) {
  16. const char *config_section_ml = CONFIG_SECTION_ML;
  17. bool enable_anomaly_detection = config_get_boolean(config_section_ml, "enabled", true);
  18. /*
  19. * Read values
  20. */
  21. unsigned max_train_samples = config_get_number(config_section_ml, "maximum num samples to train", 6 * 3600);
  22. unsigned min_train_samples = config_get_number(config_section_ml, "minimum num samples to train", 1 * 900);
  23. unsigned train_every = config_get_number(config_section_ml, "train every", 3 * 3600);
  24. unsigned num_models_to_use = config_get_number(config_section_ml, "number of models per dimension", 18);
  25. unsigned delete_models_older_than = config_get_number(config_section_ml, "delete models older than", 60 * 60 * 24 * 7);
  26. unsigned diff_n = config_get_number(config_section_ml, "num samples to diff", 1);
  27. unsigned smooth_n = config_get_number(config_section_ml, "num samples to smooth", 3);
  28. unsigned lag_n = config_get_number(config_section_ml, "num samples to lag", 5);
  29. double random_sampling_ratio = config_get_float(config_section_ml, "random sampling ratio", 1.0 / 5.0 /* default lag_n */);
  30. unsigned max_kmeans_iters = config_get_number(config_section_ml, "maximum number of k-means iterations", 1000);
  31. double dimension_anomaly_rate_threshold = config_get_float(config_section_ml, "dimension anomaly score threshold", 0.99);
  32. double host_anomaly_rate_threshold = config_get_float(config_section_ml, "host anomaly rate threshold", 1.0);
  33. std::string anomaly_detection_grouping_method = config_get(config_section_ml, "anomaly detection grouping method", "average");
  34. time_t anomaly_detection_query_duration = config_get_number(config_section_ml, "anomaly detection grouping duration", 5 * 60);
  35. size_t num_training_threads = config_get_number(config_section_ml, "num training threads", 4);
  36. size_t flush_models_batch_size = config_get_number(config_section_ml, "flush models batch size", 128);
  37. size_t suppression_window = config_get_number(config_section_ml, "dimension anomaly rate suppression window", 900);
  38. size_t suppression_threshold = config_get_number(config_section_ml, "dimension anomaly rate suppression threshold", suppression_window / 2);
  39. bool enable_statistics_charts = config_get_boolean(config_section_ml, "enable statistics charts", true);
  40. /*
  41. * Clamp
  42. */
  43. max_train_samples = clamp<unsigned>(max_train_samples, 1 * 3600, 24 * 3600);
  44. min_train_samples = clamp<unsigned>(min_train_samples, 1 * 900, 6 * 3600);
  45. train_every = clamp<unsigned>(train_every, 1 * 3600, 6 * 3600);
  46. num_models_to_use = clamp<unsigned>(num_models_to_use, 1, 7 * 24);
  47. delete_models_older_than = clamp<unsigned>(delete_models_older_than, 60 * 60 * 24 * 1, 60 * 60 * 24 * 7);
  48. diff_n = clamp(diff_n, 0u, 1u);
  49. smooth_n = clamp(smooth_n, 0u, 5u);
  50. lag_n = clamp(lag_n, 1u, 5u);
  51. random_sampling_ratio = clamp(random_sampling_ratio, 0.2, 1.0);
  52. max_kmeans_iters = clamp(max_kmeans_iters, 500u, 1000u);
  53. dimension_anomaly_rate_threshold = clamp(dimension_anomaly_rate_threshold, 0.01, 5.00);
  54. host_anomaly_rate_threshold = clamp(host_anomaly_rate_threshold, 0.1, 10.0);
  55. anomaly_detection_query_duration = clamp<time_t>(anomaly_detection_query_duration, 60, 15 * 60);
  56. num_training_threads = clamp<size_t>(num_training_threads, 1, 128);
  57. flush_models_batch_size = clamp<size_t>(flush_models_batch_size, 8, 512);
  58. suppression_window = clamp<size_t>(suppression_window, 1, max_train_samples);
  59. suppression_threshold = clamp<size_t>(suppression_threshold, 1, suppression_window);
  60. /*
  61. * Validate
  62. */
  63. if (min_train_samples >= max_train_samples) {
  64. netdata_log_error("invalid min/max train samples found (%u >= %u)", min_train_samples, max_train_samples);
  65. min_train_samples = 1 * 3600;
  66. max_train_samples = 6 * 3600;
  67. }
  68. /*
  69. * Assign to config instance
  70. */
  71. cfg->enable_anomaly_detection = enable_anomaly_detection;
  72. cfg->max_train_samples = max_train_samples;
  73. cfg->min_train_samples = min_train_samples;
  74. cfg->train_every = train_every;
  75. cfg->num_models_to_use = num_models_to_use;
  76. cfg->delete_models_older_than = delete_models_older_than;
  77. cfg->diff_n = diff_n;
  78. cfg->smooth_n = smooth_n;
  79. cfg->lag_n = lag_n;
  80. cfg->random_sampling_ratio = random_sampling_ratio;
  81. cfg->max_kmeans_iters = max_kmeans_iters;
  82. cfg->host_anomaly_rate_threshold = host_anomaly_rate_threshold;
  83. cfg->anomaly_detection_grouping_method =
  84. time_grouping_parse(anomaly_detection_grouping_method.c_str(), RRDR_GROUPING_AVERAGE);
  85. cfg->anomaly_detection_query_duration = anomaly_detection_query_duration;
  86. cfg->dimension_anomaly_score_threshold = dimension_anomaly_rate_threshold;
  87. cfg->hosts_to_skip = config_get(config_section_ml, "hosts to skip from training", "!*");
  88. cfg->sp_host_to_skip = simple_pattern_create(cfg->hosts_to_skip.c_str(), NULL, SIMPLE_PATTERN_EXACT, true);
  89. // Always exclude anomaly_detection charts from training.
  90. cfg->charts_to_skip = "anomaly_detection.* ";
  91. cfg->charts_to_skip += config_get(config_section_ml, "charts to skip from training", "netdata.*");
  92. cfg->sp_charts_to_skip = simple_pattern_create(cfg->charts_to_skip.c_str(), NULL, SIMPLE_PATTERN_EXACT, true);
  93. cfg->stream_anomaly_detection_charts = config_get_boolean(config_section_ml, "stream anomaly detection charts", true);
  94. cfg->num_training_threads = num_training_threads;
  95. cfg->flush_models_batch_size = flush_models_batch_size;
  96. cfg->suppression_window = suppression_window;
  97. cfg->suppression_threshold = suppression_threshold;
  98. cfg->enable_statistics_charts = enable_statistics_charts;
  99. }