ml-private.h 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349
  1. // SPDX-License-Identifier: GPL-3.0-or-later
  2. #ifndef NETDATA_ML_PRIVATE_H
  3. #define NETDATA_ML_PRIVATE_H
  4. #include "dlib/matrix.h"
  5. #include "ml/ml.h"
  6. #include <vector>
  7. #include <queue>
  8. typedef double calculated_number_t;
  9. typedef dlib::matrix<calculated_number_t, 6, 1> DSample;
  10. /*
  11. * Features
  12. */
  13. typedef struct {
  14. size_t diff_n;
  15. size_t smooth_n;
  16. size_t lag_n;
  17. calculated_number_t *dst;
  18. size_t dst_n;
  19. calculated_number_t *src;
  20. size_t src_n;
  21. std::vector<DSample> &preprocessed_features;
  22. } ml_features_t;
  23. /*
  24. * KMeans
  25. */
  26. typedef struct {
  27. std::vector<DSample> cluster_centers;
  28. calculated_number_t min_dist;
  29. calculated_number_t max_dist;
  30. uint32_t after;
  31. uint32_t before;
  32. } ml_kmeans_t;
  33. typedef struct machine_learning_stats_t {
  34. size_t num_machine_learning_status_enabled;
  35. size_t num_machine_learning_status_disabled_sp;
  36. size_t num_metric_type_constant;
  37. size_t num_metric_type_variable;
  38. size_t num_training_status_untrained;
  39. size_t num_training_status_pending_without_model;
  40. size_t num_training_status_trained;
  41. size_t num_training_status_pending_with_model;
  42. size_t num_training_status_silenced;
  43. size_t num_anomalous_dimensions;
  44. size_t num_normal_dimensions;
  45. } ml_machine_learning_stats_t;
  46. typedef struct training_stats_t {
  47. size_t queue_size;
  48. size_t num_popped_items;
  49. usec_t allotted_ut;
  50. usec_t consumed_ut;
  51. usec_t remaining_ut;
  52. size_t training_result_ok;
  53. size_t training_result_invalid_query_time_range;
  54. size_t training_result_not_enough_collected_values;
  55. size_t training_result_null_acquired_dimension;
  56. size_t training_result_chart_under_replication;
  57. } ml_training_stats_t;
  58. enum ml_metric_type {
  59. // The dimension has constant values, no need to train
  60. METRIC_TYPE_CONSTANT,
  61. // The dimension's values fluctuate, we need to generate a model
  62. METRIC_TYPE_VARIABLE,
  63. };
  64. enum ml_machine_learning_status {
  65. // Enable training/prediction
  66. MACHINE_LEARNING_STATUS_ENABLED,
  67. // Disable because configuration pattern matches the chart's id
  68. MACHINE_LEARNING_STATUS_DISABLED_DUE_TO_EXCLUDED_CHART,
  69. };
  70. enum ml_training_status {
  71. // We don't have a model for this dimension
  72. TRAINING_STATUS_UNTRAINED,
  73. // Request for training sent, but we don't have any models yet
  74. TRAINING_STATUS_PENDING_WITHOUT_MODEL,
  75. // Request to update existing models sent
  76. TRAINING_STATUS_PENDING_WITH_MODEL,
  77. // Have a valid, up-to-date model
  78. TRAINING_STATUS_TRAINED,
  79. // Have a valid, up-to-date model that is silenced because its too noisy
  80. TRAINING_STATUS_SILENCED,
  81. };
  82. enum ml_training_result {
  83. // We managed to create a KMeans model
  84. TRAINING_RESULT_OK,
  85. // Could not query DB with a correct time range
  86. TRAINING_RESULT_INVALID_QUERY_TIME_RANGE,
  87. // Did not gather enough data from DB to run KMeans
  88. TRAINING_RESULT_NOT_ENOUGH_COLLECTED_VALUES,
  89. // Acquired a null dimension
  90. TRAINING_RESULT_NULL_ACQUIRED_DIMENSION,
  91. // Chart is under replication
  92. TRAINING_RESULT_CHART_UNDER_REPLICATION,
  93. };
  94. typedef struct {
  95. // Chart/dimension we want to train
  96. char machine_guid[GUID_LEN + 1];
  97. STRING *chart_id;
  98. STRING *dimension_id;
  99. // Creation time of request
  100. time_t request_time;
  101. // First/last entry of this dimension in DB
  102. // at the point the request was made
  103. time_t first_entry_on_request;
  104. time_t last_entry_on_request;
  105. } ml_training_request_t;
  106. typedef struct {
  107. // Time when the request for this response was made
  108. time_t request_time;
  109. // First/last entry of the dimension in DB when generating the request
  110. time_t first_entry_on_request;
  111. time_t last_entry_on_request;
  112. // First/last entry of the dimension in DB when generating the response
  113. time_t first_entry_on_response;
  114. time_t last_entry_on_response;
  115. // After/Before timestamps of our DB query
  116. time_t query_after_t;
  117. time_t query_before_t;
  118. // Actual after/before returned by the DB query ops
  119. time_t db_after_t;
  120. time_t db_before_t;
  121. // Number of doubles returned by the DB query
  122. size_t collected_values;
  123. // Number of values we return to the caller
  124. size_t total_values;
  125. // Result of training response
  126. enum ml_training_result result;
  127. } ml_training_response_t;
  128. /*
  129. * Queue
  130. */
  131. typedef struct {
  132. std::queue<ml_training_request_t> internal;
  133. netdata_mutex_t mutex;
  134. pthread_cond_t cond_var;
  135. std::atomic<bool> exit;
  136. } ml_queue_t;
  137. typedef struct {
  138. RRDDIM *rd;
  139. enum ml_metric_type mt;
  140. enum ml_training_status ts;
  141. enum ml_machine_learning_status mls;
  142. ml_training_response_t tr;
  143. time_t last_training_time;
  144. std::vector<calculated_number_t> cns;
  145. std::vector<ml_kmeans_t> km_contexts;
  146. SPINLOCK slock;
  147. ml_kmeans_t kmeans;
  148. std::vector<DSample> feature;
  149. uint32_t suppression_window_counter;
  150. uint32_t suppression_anomaly_counter;
  151. } ml_dimension_t;
  152. typedef struct {
  153. RRDSET *rs;
  154. ml_machine_learning_stats_t mls;
  155. } ml_chart_t;
  156. void ml_chart_update_dimension(ml_chart_t *chart, ml_dimension_t *dim, bool is_anomalous);
  157. typedef struct {
  158. RRDHOST *rh;
  159. std::atomic<bool> ml_running;
  160. ml_machine_learning_stats_t mls;
  161. calculated_number_t host_anomaly_rate;
  162. netdata_mutex_t mutex;
  163. ml_queue_t *training_queue;
  164. /*
  165. * bookkeeping for anomaly detection charts
  166. */
  167. RRDSET *ml_running_rs;
  168. RRDDIM *ml_running_rd;
  169. RRDSET *machine_learning_status_rs;
  170. RRDDIM *machine_learning_status_enabled_rd;
  171. RRDDIM *machine_learning_status_disabled_sp_rd;
  172. RRDSET *metric_type_rs;
  173. RRDDIM *metric_type_constant_rd;
  174. RRDDIM *metric_type_variable_rd;
  175. RRDSET *training_status_rs;
  176. RRDDIM *training_status_untrained_rd;
  177. RRDDIM *training_status_pending_without_model_rd;
  178. RRDDIM *training_status_trained_rd;
  179. RRDDIM *training_status_pending_with_model_rd;
  180. RRDDIM *training_status_silenced_rd;
  181. RRDSET *dimensions_rs;
  182. RRDDIM *dimensions_anomalous_rd;
  183. RRDDIM *dimensions_normal_rd;
  184. RRDSET *anomaly_rate_rs;
  185. RRDDIM *anomaly_rate_rd;
  186. RRDSET *detector_events_rs;
  187. RRDDIM *detector_events_above_threshold_rd;
  188. RRDDIM *detector_events_new_anomaly_event_rd;
  189. } ml_host_t;
  190. typedef struct {
  191. uuid_t metric_uuid;
  192. ml_kmeans_t kmeans;
  193. } ml_model_info_t;
  194. typedef struct {
  195. size_t id;
  196. netdata_thread_t nd_thread;
  197. netdata_mutex_t nd_mutex;
  198. ml_queue_t *training_queue;
  199. ml_training_stats_t training_stats;
  200. calculated_number_t *training_cns;
  201. calculated_number_t *scratch_training_cns;
  202. std::vector<DSample> training_samples;
  203. std::vector<ml_model_info_t> pending_model_info;
  204. RRDSET *queue_stats_rs;
  205. RRDDIM *queue_stats_queue_size_rd;
  206. RRDDIM *queue_stats_popped_items_rd;
  207. RRDSET *training_time_stats_rs;
  208. RRDDIM *training_time_stats_allotted_rd;
  209. RRDDIM *training_time_stats_consumed_rd;
  210. RRDDIM *training_time_stats_remaining_rd;
  211. RRDSET *training_results_rs;
  212. RRDDIM *training_results_ok_rd;
  213. RRDDIM *training_results_invalid_query_time_range_rd;
  214. RRDDIM *training_results_not_enough_collected_values_rd;
  215. RRDDIM *training_results_null_acquired_dimension_rd;
  216. RRDDIM *training_results_chart_under_replication_rd;
  217. } ml_training_thread_t;
  218. typedef struct {
  219. bool enable_anomaly_detection;
  220. unsigned max_train_samples;
  221. unsigned min_train_samples;
  222. unsigned train_every;
  223. unsigned num_models_to_use;
  224. unsigned db_engine_anomaly_rate_every;
  225. unsigned diff_n;
  226. unsigned smooth_n;
  227. unsigned lag_n;
  228. double random_sampling_ratio;
  229. unsigned max_kmeans_iters;
  230. double dimension_anomaly_score_threshold;
  231. double host_anomaly_rate_threshold;
  232. RRDR_TIME_GROUPING anomaly_detection_grouping_method;
  233. time_t anomaly_detection_query_duration;
  234. bool stream_anomaly_detection_charts;
  235. std::string hosts_to_skip;
  236. SIMPLE_PATTERN *sp_host_to_skip;
  237. std::string charts_to_skip;
  238. SIMPLE_PATTERN *sp_charts_to_skip;
  239. std::vector<uint32_t> random_nums;
  240. netdata_thread_t detection_thread;
  241. std::atomic<bool> detection_stop;
  242. size_t num_training_threads;
  243. size_t flush_models_batch_size;
  244. std::vector<ml_training_thread_t> training_threads;
  245. std::atomic<bool> training_stop;
  246. size_t suppression_window;
  247. size_t suppression_threshold;
  248. bool enable_statistics_charts;
  249. } ml_config_t;
  250. void ml_config_load(ml_config_t *cfg);
  251. extern ml_config_t Cfg;
  252. #endif /* NETDATA_ML_PRIVATE_H */